JPH06222310A - Magneto-optical element - Google Patents

Magneto-optical element

Info

Publication number
JPH06222310A
JPH06222310A JP1000093A JP1000093A JPH06222310A JP H06222310 A JPH06222310 A JP H06222310A JP 1000093 A JP1000093 A JP 1000093A JP 1000093 A JP1000093 A JP 1000093A JP H06222310 A JPH06222310 A JP H06222310A
Authority
JP
Japan
Prior art keywords
magneto
optical element
single crystal
optical
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1000093A
Other languages
Japanese (ja)
Inventor
Koichi Onodera
晃一 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1000093A priority Critical patent/JPH06222310A/en
Priority to PCT/JP1994/000095 priority patent/WO1994017437A1/en
Priority to EP94904764A priority patent/EP0634684B1/en
Priority to US08/307,658 priority patent/US5596447A/en
Priority to CA002132616A priority patent/CA2132616C/en
Priority to DE69428559T priority patent/DE69428559T2/en
Publication of JPH06222310A publication Critical patent/JPH06222310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the magneto-optical element adequate for use in a 0.8 to 1.1mum wavelength region. CONSTITUTION:This magneto-optical element has a Cd1-x-yMnxHgyTe single crystal having the compsn. included in a range enclosed by four points; Mn0.41 Hg0.1Cd0.49Te, Mn0.41Hg0.2Cd0.39Te, Mn0.45Hg0.25Cd0.3Te, Mn0.48Hg0.2Cd0.32Te in an MnTe-HgTe-CdTe pseudo ternary phase diagram.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光増幅器等の光アイソレ
ータとして用いられる磁気光学素子に係り、特に波長領
域0.8μm〜1.1μmの使用に好適な磁気光学素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical element used as an optical isolator such as an optical amplifier, and more particularly to a magneto-optical element suitable for use in a wavelength range of 0.8 μm to 1.1 μm.

【0002】[0002]

【従来の技術】従来、Er添加光ファイバを用いた1.
5μm帯進行波型光増幅器は高効率で偏波依存性がな
く、伝送系との整合性に優れた特徴を示し、その実用的
観点より0.98μmおよび1.48μm帯を用いたレ
ーザーダイオード(以下LD)励起が盛んに研究されて
いる。信号光利得・雑音特性が実験的に検討された結
果、0.98μm帯励起は1.48μm帯励起に比べよ
り高効率・低雑音特性であることが分かっている。しか
し、現状では1.48μm帯に適した光デバイス(光ア
イソレータなど)を備えた光増幅器に関する開発が進ん
でいる。
2. Description of the Related Art Conventionally, 1.
The 5 μm traveling-wave optical amplifier is highly efficient, has no polarization dependence, and has excellent compatibility with the transmission system. From the practical viewpoint, laser diodes using 0.98 μm and 1.48 μm bands ( Hereinafter, LD) excitation has been actively studied. As a result of experimentally studying the signal light gain / noise characteristics, it has been found that the 0.98 μm band pump has higher efficiency and lower noise characteristics than the 1.48 μm band pump. However, at present, the development of an optical amplifier equipped with an optical device (optical isolator, etc.) suitable for the 1.48 μm band is progressing.

【0003】[0003]

【発明が解決しようとする課題】現在、0.98μm光
アイソレータは、テルビウム・ガリウム・ガーネット
(TGG)単結晶を採用した光アイソレータが実用化さ
れている。しかし、LDに比べて寸法があまりに大きい
ために将来的視野から検討されていない。また、バルク
のイットリウム・鉄・ガーネット(YIG)およびBi
置換ガーネットは、0.98μm帯において吸収が大き
いため、透過損失約5dBと実用的でない。ZnS型結
晶構造をもつCdTeのCdの一部をMnに置換したC
1-x MnxTeは大きなベルデ定数をもつ材料で、可
視光波長0.85〜0.63μmに対する光アイソレー
タ材料として実用性能が確認された{小野寺、及川:第
15回日本応用磁気学会学術講演概要集30aB−7、
p179(1991)}。
At present, as the 0.98 μm optical isolator, an optical isolator employing a terbium gallium garnet (TGG) single crystal has been put into practical use. However, it is not considered from a future perspective because the size is too large as compared with the LD. In addition, bulk yttrium, iron, garnet (YIG) and Bi
The substituted garnet has a large absorption in the 0.98 μm band, and is thus impractical with a transmission loss of about 5 dB. C in which a part of Cd of CdTe having a ZnS type crystal structure is replaced with Mn
d 1-x Mn x Te is a material with a large Verdet constant, and its practical performance was confirmed as an optical isolator material for visible light wavelengths of 0.85 to 0.63 μm (Onodera, Oikawa: The 15th Annual Meeting of the Japan Society for Applied Magnetics) Lecture summary 30aB-7,
p179 (1991)}.

【0004】しかしながら、0.98μmにおいてはベ
ルデ定数があまりに小さすぎて実用化は困難であった。
すなわち、0.98μm帯励起光増幅器に用いられるL
Dモジュール化が可能な光アイソレータが実在しないこ
とが、本質的に高効率・低雑音特性において1.48μ
m帯励起より優れているのに実用化開発が遅れている要
因のひとつであった。
However, at 0.98 μm, the Verdet constant was too small to be practically used.
That is, L used in the 0.98 μm pump optical amplifier
The fact that there is no optical isolator that can be used as a D module is essentially 1.48μ in terms of high efficiency and low noise characteristics.
This was one of the factors behind the delay in practical development, although it was superior to m-band excitation.

【0005】そこで本発明の技術的課題は、上記欠点に
鑑み、波長領域0.8μm〜1.1μm(特に0.98
μm)の使用に好適な磁気光学素子を提供することを目
的とする。
In view of the above drawbacks, the technical problem of the present invention is that the wavelength region is 0.8 μm to 1.1 μm (particularly 0.98 μm).
μm) for the purpose of providing a magneto-optical element suitable for use.

【0006】[0006]

【課題を解決するための手段】本発明によれば、Mnお
よびHgを配合させたCd1-x -yMnx Hgy Te単結
晶を有する磁気光学素子であって、前記単結晶は、波長
領域0.8μm〜1.1μmに使用できるように、Mn
Te−HgTe−CdTe擬3元系相図において、Mn
0.41Hg0.1 Cd0.49Te、Mn0.41Hg0.2 Cd0.39
Te、Mn0.45Hg0.25Cd0.3 Te、Mn0.48Hg
0.2 Cd0.32Te、の4点に囲まれる範囲に含まれる組
成を有することを特徴とする磁気光学素子が得られる。
According to the present invention, there is provided a magneto-optical element having a Cd 1-x -y Mn x Hg y Te single crystal mixed with Mn and Hg, wherein the single crystal has a wavelength of Mn so that it can be used in the region 0.8 μm to 1.1 μm.
In the Te-HgTe-CdTe pseudo-ternary phase diagram, Mn
0.41 Hg 0.1 Cd 0.49 Te, Mn 0.41 Hg 0.2 Cd 0.39
Te, Mn 0.45 Hg 0.25 Cd 0.3 Te, Mn 0.48 Hg
A magneto-optical element having a composition contained in a range surrounded by four points of 0.2 Cd 0.32 Te is obtained.

【0007】更に本発明によれば、前記磁気光学素子を
ファラデー回転子として備えてなることを特徴とする光
アイソレータが得られる。
Further, according to the present invention, there is provided an optical isolator comprising the magneto-optical element as a Faraday rotator.

【0008】[0008]

【作用】ZnS型結晶構造をもつCdTeのCdの一部
をMnに置換したCd1-x Mnx Teは大きなベルデ定
数をもつ材料で、可視光波長0.85〜0.63μmに
対する光アイソレータ材料として実用性能が確認されて
いることは前述のとおりであるが、0.98μm帯にお
いてはベルデ定数が小さいため実用性能が得られなかっ
た。これは、ベルデ定数が光の吸収端近傍で大きくなる
特徴があるためである。そこで、この材料を用いて実用
性能を得るためには、材料のバンドギャップエネルギー
を調整することとベルデ定数の絶対値が大きくなるよう
にMn組成を選択する方向で検討すればよい。バンドギ
ャップエネルギーを0.9μm帯にシフトさせるために
は、Cdの一部をHgで置換すればよい。最終的には、
バルクの結晶性が大きく影響を与える。そこで、結晶性
との兼ね合いで最適な結晶組成が決定される。
[Function] Cd 1-x Mn x Te in which a part of Cd of CdTe having ZnS type crystal structure is replaced by Mn is a material having a large Verdet constant, and is an optical isolator material for visible light wavelength of 0.85 to 0.63 μm. Although the practical performance was confirmed as described above, the practical performance was not obtained in the 0.98 μm band due to the small Verdet constant. This is because the Verdet constant is large near the absorption edge of light. Therefore, in order to obtain practical performance using this material, consideration should be given to adjusting the bandgap energy of the material and selecting the Mn composition so that the absolute value of the Verdet constant becomes large. In order to shift the band gap energy to the 0.9 μm band, a part of Cd may be replaced with Hg. Eventually,
Bulk crystallinity has a large effect. Therefore, the optimum crystal composition is determined in consideration of the crystallinity.

【0009】本発明に係る磁気光学素子によれば、アイ
ソレーション:30dB以上、挿入損失:1dB以下の
実用特性を有するLDモジュール化が可能な0.98μ
m帯光アイソレータを得ることが可能となる。
According to the magneto-optical element of the present invention, an LD module having practical characteristics of isolation: 30 dB or more and insertion loss: 1 dB or less is possible.
It is possible to obtain an m-band optical isolator.

【0010】[0010]

【実施例】以下、本発明の実施例に係る磁気光学素子に
ついて添付図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A magneto-optical element according to embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】最初に、最適組成の選択について述べる。First, selection of the optimum composition will be described.

【0012】MnTe−HgTe−CdTe擬3元系の
相図における種々の組成の結晶をブリッジマン法で作製
した。Cd、Mn、Te、Hgをそれぞれの組成比で石
英アンプル中に配合し、真空封入した。加熱時に完全に
溶融していない場合には、蒸気圧が高くなるために石英
アンプルが割れる可能性があるので、石英アンプルは十
分な肉厚を確保するとともにTe過剰組成にして約80
0℃程度の融点にし、育成工程での内圧を和らげる工夫
をする。
Crystals of various compositions in the phase diagram of the MnTe-HgTe-CdTe pseudo-ternary system were prepared by the Bridgman method. Cd, Mn, Te, and Hg were mixed in a quartz ampoule in respective composition ratios and vacuum-encapsulated. If not completely melted at the time of heating, the quartz ampoule may crack due to the high vapor pressure, so the quartz ampoule should have a sufficient thickness and a Te excess composition of about 80%.
The melting point is set to about 0 ° C, and the internal pressure in the growing process is softened.

【0013】この石英アンプルを縦型ブリッジマン炉に
入れ、溶融温度800℃で10時間保持したのち、石英
るつぼを徐々に降下させ、石英アンプルの低温部の一端
から結晶化させた。
This quartz ampoule was placed in a vertical Bridgman furnace and held at a melting temperature of 800 ° C. for 10 hours. Then, the quartz crucible was gradually lowered to crystallize from one end of the low temperature portion of the quartz ampoule.

【0014】図1に、LDモジュール化が可能な光アイ
ソレータ(9.5φ×10Lmm)を実現可能な印加磁
場3000Oeを加えた場合に、アイソレーション:30
dB以上、挿入損失:1dB以下を実現できる組成を示
す。図1に示すように、本発明による磁気光学素子を構
成するCd1-x -yMnx Hgy Te単結晶は、MnTe
−HgTe−CdTe擬3元系相図において、Mn0.41
Hg0.1 Cd0.49Te、Mn0.41Hg0.2 Cd0.39
e、Mn0.45Hg0.25Cd0.3 Te、Mn0.48Hg0.2
Cd0.32Te、の4点に囲まれる範囲に含まれる組成を
有している。
In FIG. 1, when an applied magnetic field of 3000 Oe that can realize an optical isolator (9.5φ × 10 Lmm) that can be formed into an LD module is added, isolation: 30
A composition that can realize an insertion loss of 1 dB or less and an insertion loss of 1 dB or more is shown. As shown in FIG. 1, the Cd 1-x -y Mn x Hg y Te single crystal that constitutes the magneto-optical element according to the present invention is MnTe.
In the -HgTe-CdTe quasi-ternary phase diagram, Mn 0.41
Hg 0.1 Cd 0.49 Te, Mn 0.41 Hg 0.2 Cd 0.39 T
e, Mn 0.45 Hg 0.25 Cd 0.3 Te, Mn 0.48 Hg 0.2
It has a composition contained in a range surrounded by four points of Cd 0.32 Te.

【0015】図2に、Mn濃度可変でのHgドープ量を
変えた場合の性能指数L* の波長λの分散を示す。ここ
で、L* =(450/ln10)・(α/θF )、αは
吸収係数、θF は5000Oeの磁場Hを印加した場合の
ファラデー回転角であり、xはMn濃度、yはHg濃度
である。
FIG. 2 shows the dispersion of the wavelength λ of the figure of merit L * when the Hg doping amount is changed while the Mn concentration is changed. Here, L * = (450 / ln10) · (α / θ F ), α is the absorption coefficient, θ F is the Faraday rotation angle when a magnetic field H of 5000 Oe is applied, x is the Mn concentration, and y is Hg. The concentration.

【0016】以下、本発明の実施例を示す。Examples of the present invention will be shown below.

【0017】実施例 Mn0.45Hg0.2 Cd0.35Teの組成をもつ単結晶をT
e過剰のメルトにすることで低溶融温度(800℃)で
ブリッジマン法によって育成した。育成法は、前述の通
りである。育成した単結晶より{111}面が端面にな
るように2mm×2mm×1.7tmmの角板状の試料
を作製した。磁場を3000Oe印加したところ、波長
0.98μmのレーザー光に対して、45°のファラデ
ー回転が得られ、アイソレーション:30dB、挿入損
失:0.7dB、アイソレータのサイズ:φ8×5Lm
mで光アイソレータとして十分に使えることが明らかに
なった。
EXAMPLE A single crystal having a composition of Mn 0.45 Hg 0.2 Cd 0.35 Te
e An excessive melt was used to grow at a low melting temperature (800 ° C.) by the Bridgman method. The breeding method is as described above. A square plate-like sample of 2 mm × 2 mm × 1.7 tmm was prepared from the grown single crystal so that the {111} plane was the end face. When a magnetic field of 3000 Oe was applied, a Faraday rotation of 45 ° was obtained for a laser beam with a wavelength of 0.98 μm, isolation: 30 dB, insertion loss: 0.7 dB, isolator size: φ8 × 5 Lm
It has become clear that m can be used sufficiently as an optical isolator.

【0018】比較例1 Mn0.45Hg0.1 Cd0.45Teの組成をもつ単結晶をT
e過剰のメルトにすることで低溶融温度(850℃)で
ブリッジマン法によって育成した。育成法は、前述の通
りである。育成した単結晶より{111}面が端面にな
るように2mm×2mm×7.0mmの角板状の試料を
作製した。磁場を5000Oe印加したところ、波長0.
98μmのレーザー光に対して、45°のファラデー回
転が得られ、アイソレーション:25dB、挿入損失:
1.0dB、アイソレータのサイズ:φ13×15Lm
mであった。性能としてはアイソレーションが25dB
と低く、実用的面からみても半導体レーザーに較べて多
少大きい。
Comparative Example 1 A single crystal having a composition of Mn 0.45 Hg 0.1 Cd 0.45 Te
e An excessive melt was used to grow at a low melting temperature (850 ° C.) by the Bridgman method. The breeding method is as described above. A square plate-like sample of 2 mm × 2 mm × 7.0 mm was prepared from the grown single crystal so that the {111} plane was the end face. When a magnetic field of 5000 Oe was applied, the wavelength was 0.
Faraday rotation of 45 ° was obtained for a laser beam of 98 μm, isolation: 25 dB, insertion loss:
1.0 dB, isolator size: φ13 × 15 Lm
It was m. 25 dB isolation as performance
It is low compared to semiconductor lasers from a practical point of view.

【0019】比較例2 Mn0.45Hg0.03Cd0.52Teの組成をもつ単結晶をT
e過剰のメルトにすることで低溶融(970℃)でブリ
ッジマン法によって育成した。育成法は、前述の通りで
ある。育成した単結晶より{111}面が端面になるよ
うに2mm×2mm×10mmの角板状の試料を作製し
た。磁場を5000Oe印加したところ、波長0.98μ
mのレーザー光に対して、45°のファラデー回転が得
られ、アイソレーション:20dB、挿入損失:1.3
dB、アイソレータのサイズ:φ13×20Lmmであ
った。目的とする用途としては不十分の性能である。
Comparative Example 2 A single crystal having a composition of Mn 0.45 Hg 0.03 Cd 0.52 Te
e By using an excessive melt, it was grown by the Bridgman method with low melting (970 ° C.). The breeding method is as described above. A square plate-like sample of 2 mm × 2 mm × 10 mm was prepared from the grown single crystal so that the {111} plane became the end face. When a magnetic field of 5000 Oe is applied, the wavelength is 0.98μ
Faraday rotation of 45 ° is obtained for laser light of m, isolation: 20 dB, insertion loss: 1.3.
dB, size of isolator: φ13 × 20 Lmm. The performance is insufficient for the intended use.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
0.8〜1.1μmの波長領域の光アイソレータに好適
な磁気光学素子を提供することが可能となる。
As described above, according to the present invention,
It is possible to provide a magneto-optical element suitable for an optical isolator having a wavelength range of 0.8 to 1.1 μm.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明においてLDモジュール化が可能な光ア
イソレータを実現可能な結晶組成をMnTe−HgTe
−CdTe擬3元系相図で表した図である。
FIG. 1 shows the crystal composition of MnTe-HgTe that can realize an optical isolator that can be used as an LD module in the present invention.
-CdTe pseudo-ternary phase diagram.

【図2】Mn濃度可変でのHgドープ量を変えた場合の
性能指数L* の波長λの分散を示す図である。
FIG. 2 is a diagram showing dispersion of wavelength λ of a figure of merit L * when the amount of Hg doping is changed while the Mn concentration is changed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 MnおよびHgを配合させたCd1-x -y
Mnx Hgy Te単結晶を有する磁気光学素子であっ
て、前記単結晶は、波長領域0.8μm〜1.1μmに
使用できるように、MnTe−HgTe−CdTe擬3
元系相図において、 Mn0.41Hg0.1 Cd0.49Te、Mn0.41Hg0.2 Cd
0.39Te、 Mn0.45Hg0.25Cd0.3 Te、Mn0.48Hg0.2 Cd
0.32Te、 の4点に囲まれる範囲に含まれる組成を有することを特
徴とする磁気光学素子。
1. A Cd 1-x -y compounded with Mn and Hg.
A magneto-optical element having a Mn x Hg y Te single crystal, wherein the single crystal is MnTe-HgTe-CdTe pseudo-3 so that it can be used in a wavelength region of 0.8 μm to 1.1 μm.
In the original phase diagram, Mn 0.41 Hg 0.1 Cd 0.49 Te, Mn 0.41 Hg 0.2 Cd
0.39 Te, Mn 0.45 Hg 0.25 Cd 0.3 Te, Mn 0.48 Hg 0.2 Cd
A magneto-optical element having a composition contained in a range surrounded by four points of 0.32 Te.
【請求項2】 請求項1の磁気光学素子をファラデー回
転子として備えてなることを特徴とする光アイソレー
タ。
2. An optical isolator comprising the magneto-optical element according to claim 1 as a Faraday rotator.
JP1000093A 1993-01-25 1993-01-25 Magneto-optical element Pending JPH06222310A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1000093A JPH06222310A (en) 1993-01-25 1993-01-25 Magneto-optical element
PCT/JP1994/000095 WO1994017437A1 (en) 1993-01-25 1994-01-25 Magneto-optical element
EP94904764A EP0634684B1 (en) 1993-01-25 1994-01-25 Magneto-optical element
US08/307,658 US5596447A (en) 1993-01-25 1994-01-25 Magnetooptical element
CA002132616A CA2132616C (en) 1993-01-25 1994-01-25 Magneto-optical element
DE69428559T DE69428559T2 (en) 1993-01-25 1994-01-25 MAGNETOOPTIC ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1000093A JPH06222310A (en) 1993-01-25 1993-01-25 Magneto-optical element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6922099A Division JPH11326854A (en) 1999-03-15 1999-03-15 Production of single crystal of cd1-x-ymnxhgyte for magnetooptical element

Publications (1)

Publication Number Publication Date
JPH06222310A true JPH06222310A (en) 1994-08-12

Family

ID=11738163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1000093A Pending JPH06222310A (en) 1993-01-25 1993-01-25 Magneto-optical element

Country Status (1)

Country Link
JP (1) JPH06222310A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123814A (en) * 1984-11-21 1986-06-11 Hitachi Ltd Magnetic semiconductor material and optical isolator
JPH03229217A (en) * 1990-02-02 1991-10-11 Nippon Telegr & Teleph Corp <Ntt> Magnetooptic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123814A (en) * 1984-11-21 1986-06-11 Hitachi Ltd Magnetic semiconductor material and optical isolator
JPH03229217A (en) * 1990-02-02 1991-10-11 Nippon Telegr & Teleph Corp <Ntt> Magnetooptic material

Similar Documents

Publication Publication Date Title
US5277845A (en) Oxide garnet single crystal
US20190309440A1 (en) Faraday rotator, optical isolator, and method of manufacturing faraday rotator
WO2012073671A1 (en) Bismuth-substituted rare earth iron garnet crystal film and optical isolator
WO2012073670A1 (en) Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2841260B2 (en) Magneto-optical element
JPH0576611B2 (en)
JPH06222310A (en) Magneto-optical element
EP0634684B1 (en) Magneto-optical element
CA1306408C (en) Congruently melting complex oxides
JP2681869B2 (en) Magneto-optical element
US4295988A (en) Magneto-optic Bi1 Lu2 Fe5 O12 crystals
JPH06281902A (en) Magneto-optical element material
JPH08290998A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JPH11326854A (en) Production of single crystal of cd1-x-ymnxhgyte for magnetooptical element
JPH08290997A (en) Bismuth-substituted rare earth metal iron garnet single crystal
US5616176A (en) Oxide garnet single crystal
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2715053B2 (en) Magneto-optical element material
JP2985022B2 (en) Magneto-optical element and optical isolator
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
Kawai et al. Reducing the optical absorption of LPE garnet films at a wavelength of around 1000 nm
JPH04191711A (en) Optical wave guide passage
EP0686711A1 (en) Magneto-optical device and method for production thereof
JP2001174769A (en) Faraday rotator for 1,600 nm band
JPH06256096A (en) Production of cdmnhgte single crystal

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971028