JPH06222060A - Flow cell - Google Patents

Flow cell

Info

Publication number
JPH06222060A
JPH06222060A JP3133093A JP3133093A JPH06222060A JP H06222060 A JPH06222060 A JP H06222060A JP 3133093 A JP3133093 A JP 3133093A JP 3133093 A JP3133093 A JP 3133093A JP H06222060 A JPH06222060 A JP H06222060A
Authority
JP
Japan
Prior art keywords
carrier
liquid
flow
flow cell
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3133093A
Other languages
Japanese (ja)
Inventor
Toshiichi Onishi
敏一 大西
Takeshi Miyazaki
健 宮崎
Kazusane Tanaka
和實 田中
Matsuomi Nishimura
松臣 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3133093A priority Critical patent/JPH06222060A/en
Publication of JPH06222060A publication Critical patent/JPH06222060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To provide a flow cell which does not cause blocking of conducting part. CONSTITUTION:The flow cell 1 is formed by bonding boards 2, 4 and an intermediate body 3. The intermediate body 3 is provided with one liquid sump part 5a, a removing part 6, and a conducting part 7 whereas the board 4 is provided with a liquid sump part 5b communicated with the liquid sump part 5a. The interval between the walls 3a and 4a at the removing part 6 is maximized on the liquid sump 5a side while minimized on the conducting part 7. Solid matter is captured at the removing part 6 and only the carrier is fed to the conducting part 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料液中に含有される
分析対象物、特に核酸、抗原、抗体等の生体関連の微量
物質を、これらと選択的に結合する物質を坦持する担体
を用いて分析するフローセルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carrier that carries a substance that selectively binds an analyte contained in a sample liquid, particularly a trace substance related to a living body such as nucleic acid, antigen and antibody. The present invention relates to a flow cell to be analyzed using.

【0002】[0002]

【従来の技術】従来、生体関連の微量物質を分析するた
めには、例えば「検査と技術vol6 NO.7,1988」に開示さ
れているようなRIA(放射性免疫測定法)、EIA
(酵素免疫測定法)、FIA(蛍光免疫測定法)等が利
用されている。ここでは、試料液中の微量物質と選択的
に結合する試薬をフィルタやラテックス粒子、ガラスビ
ーズ等の固体材料に坦持させ、その試薬に微量物質を結
合させた結合体を放射性的、光学的、電気的に検出する
ようになっている。このような固体材料は一般に担体と
呼ばれ、微量物質を分析する速度や感度は、担体が微量
物質と結合する速さや量に左右される。従って、担体に
は反応面積つまり比表面積が大きく、反応時の運動能力
つまり撹伴が良好なラテックス粒子等が主に使用されて
いる。
2. Description of the Related Art Conventionally, in order to analyze a trace substance related to a living body, for example, RIA (radioimmunoassay), EIA as disclosed in "Inspection and Technology vol6 NO.7,1988".
(Enzyme immunoassay), FIA (fluorescent immunoassay) and the like are used. Here, a reagent that selectively binds to a trace substance in a sample solution is carried on a solid material such as a filter, latex particles, or glass beads, and a conjugate obtained by binding the trace substance to the reagent is radioactively or optically. , Is designed to be detected electrically. Such a solid material is generally called a carrier, and the speed and sensitivity of analyzing a trace substance depend on the speed and amount of the carrier binding to the trace substance. Therefore, as the carrier, latex particles having a large reaction area, that is, a large specific surface area, and having good motility during reaction, that is, agitation, are mainly used.

【0003】このような結合体を検出するためには、微
細な流通部を有するフローセルが使用される。特に光学
的な検出では、検出用の光をフローセルに集光させるこ
とができるため、高い検出感度が得られる。なお、結合
体の検出に際しては酵素活性の検出、放射線量の検出、
吸収・発光等の光学的検出等のために放射性同位元素、
色素、酵素等で標識された試薬が使用されることによ
り、結合体が標識されて検出される。
In order to detect such a bound substance, a flow cell having a fine flow section is used. Particularly in the optical detection, since the detection light can be focused on the flow cell, high detection sensitivity can be obtained. When detecting the conjugate, detection of enzyme activity, detection of radiation dose,
Radioisotope for optical detection such as absorption and emission,
By using a reagent labeled with a dye, an enzyme or the like, the conjugate is labeled and detected.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述した
従来例では、フローセルの流通部の内径よりも大きい固
形物、担体の凝集体等が試料液に含まれると、これらに
よって流通部が閉塞されて担体が流れなくなり、或いは
流通部内の流れが乱れて測定誤差が大きくなるという問
題がある。
However, in the above-mentioned conventional example, when the sample liquid contains a solid substance, an aggregate of carriers, etc., which is larger than the inner diameter of the flow section of the flow cell, the flow section is blocked by these and the carrier is blocked. Does not flow, or the flow in the distribution unit is disturbed, resulting in a large measurement error.

【0005】本発明の目的は、上述した問題点を解消
し、流通部が閉塞することのないフローセルを提供する
ことにある。
An object of the present invention is to solve the above-mentioned problems and to provide a flow cell in which the circulation part is not blocked.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係るフローセルは、試料液中の分析対象物
と結合する物質を坦持させた担体によって前記分析対象
物を検出するフローセルであって、前記試料液と前記担
体とを少なくとも含む反応液を受容する液溜部と、前記
担体を流す流通部とを有し、前記流通部の横断面の最大
内接円の直径よりも大きな直径を有する前記反応液中の
固形物を除去する除去手段を前記液溜部と前記流通部と
の間に設けたことを特徴とする。
A flow cell according to the present invention for achieving the above object is a flow cell for detecting an analyte by a carrier carrying a substance that binds to the analyte in a sample solution. It has a liquid reservoir for receiving a reaction liquid containing at least the sample solution and the carrier, and a circulation part for flowing the carrier, and is larger than the diameter of the maximum inscribed circle of the cross section of the circulation part. It is characterized in that a removing means for removing a solid matter in the reaction solution having a large diameter is provided between the liquid reservoir section and the circulation section.

【0007】[0007]

【作用】上述の構成を有する本発明に係るフローセル
は、反応液を受容する液溜部と、担体を流す流通部とを
有し、流通部の断面の最大内接円の直径よりも大きい固
形物を除去する除去手段を液溜部と流通部との間に設け
ることにより、反応液中の固形物を除去手段により除去
して担体のみを流通部へ流す。
The flow cell according to the present invention having the above-mentioned structure has a liquid reservoir for receiving a reaction liquid and a flow portion for flowing a carrier, and is a solid larger than the diameter of the maximum inscribed circle of the cross section of the flow portion. By providing a removing means for removing the substance between the liquid reservoir and the circulation part, the solid substance in the reaction liquid is removed by the removing means, and only the carrier is flown into the circulation part.

【0008】[0008]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は第1の実施例の断面図であり、フローセル
1は最下層に基板2、中間層に中間体3、最上層に基板
4が接着されて成形されており、これらの基板2、中間
体3、基板4は透明材料によって製作されている。中間
体3には反応液を受容するための一方の液溜部5aと、
反応液中の固形物を除去するための除去部6と、担体を
流すための流通部7が順次に形成され、基板4には液溜
部5aと連通する液溜部5bが形成されている。このよ
うな液溜部5aと液溜部5bとにより、反応液を収容す
るための液溜部5が形成されている。流通部7の流出口
にはOリング8を介して吸引管9が取り付けられ、吸引
管9に図示しない吸引ポンプが接続されることにより、
担体が吸引ポンプにより吸引されて流通部7を流れるよ
うになっている。流通部7の上部には、例えば波長が4
88nmで出力が15mWのアルゴンレーザー装置10
がレンズ11を介して配置され、レーザー光が流通部7
に約15μmの径でスポット状に照射されるようになっ
ている。担体によって散乱された散乱光の進行方向には
レンズ12、干渉フィルタ13、光電子増倍管14が配
置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiments. FIG. 1 is a cross-sectional view of the first embodiment, in which a flow cell 1 is formed by adhering a substrate 2 as the lowermost layer, an intermediate body 3 as the intermediate layer, and a substrate 4 as the uppermost layer. The body 3 and the substrate 4 are made of a transparent material. The intermediate body 3 has one liquid reservoir 5a for receiving the reaction liquid,
A removing section 6 for removing solids in the reaction solution and a circulation section 7 for flowing the carrier are sequentially formed, and a liquid reservoir 5b communicating with the liquid reservoir 5a is formed on the substrate 4. . The liquid reservoir 5a and the liquid reservoir 5b as described above form the liquid reservoir 5 for containing the reaction liquid. A suction pipe 9 is attached to the outlet of the circulation unit 7 via an O-ring 8, and a suction pump (not shown) is connected to the suction pipe 9,
The carrier is sucked by a suction pump and flows through the circulation unit 7. At the upper part of the circulation part 7, for example, a wavelength of 4
Argon laser device 10 with an output of 15 mW at 88 nm
Is arranged through the lens 11, and the laser light is distributed through the circulation part 7.
It is designed to be irradiated in spots with a diameter of about 15 μm. A lens 12, an interference filter 13, and a photomultiplier tube 14 are arranged in the traveling direction of the scattered light scattered by the carrier.

【0009】レーザー光を流通部7に照射すると、担体
による散乱光はレンズ12で集光され、干渉フィルタ1
3でレーザー光が除去された後に、光電子増倍管14で
受光され、担体上の標識・色素から蛍光が測定されるよ
うになっている。
When the laser light is applied to the flow section 7, the light scattered by the carrier is condensed by the lens 12, and the interference filter 1
After the laser light is removed in 3, the photomultiplier tube 14 receives the light, and the fluorescence is measured from the label / dye on the carrier.

【0010】図2に示すように、中間体3は紫外線硬化
樹脂から圧縮成形法により形成され、除去部6の深さは
液溜部5a側で約500μm、流通部7側で約10μm
とされ、流通部7は中間体3の表面に形成されている。
基板2は厚さが2mmのガラスとされ、中間体3の下に
接着される。基板4は図3に示すように厚さが2mmの
ガラスとされ、中間体3の上に接着される。このように
形成された流通部7の断面の大きさは10μm角、長さ
は20mmとされ、液溜部5の広さは5mm角、深さは
約2.5mmとされ、容量はマイクロピぺット等で反応
液Lを扱うことができる0.1〜1000μリットル程
度とされている。
As shown in FIG. 2, the intermediate 3 is formed by compression molding from an ultraviolet curable resin, and the depth of the removing portion 6 is about 500 μm on the liquid reservoir 5a side and about 10 μm on the circulating portion 7 side.
Therefore, the circulation part 7 is formed on the surface of the intermediate body 3.
The substrate 2 is made of glass having a thickness of 2 mm and is bonded under the intermediate body 3. The substrate 4 is made of glass having a thickness of 2 mm as shown in FIG. 3, and is bonded onto the intermediate body 3. The cross-sectional size of the flow-through portion 7 thus formed is 10 μm square, the length is 20 mm, the width of the liquid reservoir 5 is 5 mm square, the depth is about 2.5 mm, and the capacity is micropipette. It is set to about 0.1 to 1000 μL so that the reaction liquid L can be handled with a tray or the like.

【0011】液溜部5は試料液、担体、標識試薬等を含
む反応液を受容するものであるが、試料液、担体等の反
応槽としての機能や、反応液の希釈槽としての機能を備
えることもでき、機能に応じては複数の液溜部5を備え
ることもできる。
The liquid reservoir 5 receives a reaction liquid containing a sample liquid, a carrier, a labeling reagent, etc., and has a function as a reaction tank for the sample liquid, the carrier, etc. and a function as a diluting tank for the reaction liquid. It may be provided, or a plurality of liquid reservoirs 5 may be provided depending on the function.

【0012】除去部6は図4〜図6の原理説明図に示す
ように、一方の壁3aと他方の壁4aの間の間隔がA方
向からB方向へ一様に減少するように楔形に形成されて
いる。流通部7側の間隔DBは、担体Fの径Rよりも大き
く径Rの2倍よりも小さくされ、液溜部5側の間隔DAは
凝集体G、固形物H等が通ることができるように流通部
7側の間隔DBの数倍〜数100倍程度とされている。こ
のような除去部6に試料液や担体Fを含む反応液Lが方
向Aから方向Bに流されると、単一の担体Fは方向Bに
流れるが、凝集体Gや固形物Hはその大きさによって途
中で捕捉され、流通部7に流入することがなくなる。な
お、除去部6の両端部の開口の幅は、液溜部5側で流通
部7より狭くしても、或いはその逆にしてもよい。
As shown in the principle explanatory diagrams of FIGS. 4 to 6, the removing portion 6 has a wedge shape so that the distance between the one wall 3a and the other wall 4a decreases uniformly from the A direction to the B direction. Has been formed. The distance DB on the side of the flow section 7 is larger than the diameter R of the carrier F and smaller than twice the diameter R, and the distance DA on the side of the liquid reservoir 5 allows the aggregates G, the solids H and the like to pass therethrough. In addition, it is set to several times to several hundred times the interval DB on the side of the distribution unit 7. When the reaction liquid L containing the sample liquid and the carrier F flows from the direction A to the direction B in such a removing section 6, the single carrier F flows in the direction B, but the aggregates G and the solids H have large sizes. As a result, it will not be caught in the middle of the flow and will not flow into the circulation unit 7. The width of the openings at both ends of the removing section 6 may be narrower on the liquid reservoir section 5 side than the circulation section 7 or vice versa.

【0013】流通部7は担体Fを流すための細長い流路
とされ、ここに流れる担体Fを流通部7の一部で光学的
に測定することにより、試料液中の分析対象物を検出で
きるようになっている。流通部7の断面形状は担体Fの
径Rにより異なるが、ここでは円形又は正方形としてい
る。流通部7の大きさは、固形物Hや凝集体Gが流入す
ることを防止するために、担体Fの径Rよりも大きく、
担体Fの径Rの2倍より小さくする必要がある。流通部
7の長さは短か過ぎると流出入口が近接して担体Fの流
れに乱れが生じて光学部材の配置が難しくなってしま
い、長過ぎると流通部7の内壁と反応液Lとの抵抗が大
きくなって、反応液Lを流すために大きな駆動力が必要
となる。従って、流通部7の長さは5〜50mm程度が
好適である。
The flow section 7 is an elongated channel for flowing the carrier F. By optically measuring the carrier F flowing therein with a part of the flow section 7, the analyte in the sample solution can be detected. It is like this. Although the cross-sectional shape of the flow section 7 varies depending on the diameter R of the carrier F, it is circular or square here. The size of the flow portion 7 is larger than the diameter R of the carrier F in order to prevent the solid matter H and the aggregate G from flowing in,
It must be smaller than twice the diameter R of the carrier F. If the length of the flow section 7 is too short, the outflow port approaches and the flow of the carrier F is disturbed, which makes it difficult to dispose the optical member. If it is too long, the inner wall of the flow section 7 and the reaction solution L are separated from each other. The resistance increases and a large driving force is required to flow the reaction liquid L. Therefore, the length of the circulation portion 7 is preferably about 5 to 50 mm.

【0014】このような構成によるフローセル1を用い
て分析対象物を分析するためには、例えばヒトCRP抗
体(IgG分画)を物理的に吸着させた径Rが7μmの
ポリスチレン粒子を担体Fとし、この分散液(粒子濃度
109 個/mリットル)100μリットルと分析対象物
を含む試料液500μリットルを5mリットルの容器内
で混合し、この混合液を37℃で30分間反応させる。
次に、反応液L中の担体Fを遠心分離法により沈降さ
せ、その上澄液を除去する。また、蛍光標識試薬である
FITC標識をヒトCRP抗体が0.2mg/mリット
ルの濃度になるように、pH7.2の燐酸塩緩衝液−生
理食塩水つまり洗浄液に溶融した試薬1mリットルを加
え、37℃で30分間撹拌反応させ、遠心分離法を用い
て上澄液のみ除去する。更に、洗浄工程として洗浄液を
4mリットル加えて撹拌し、再び遠心分離法を用いて上
澄を除去し、この洗浄工程を3度繰り返す。最後に、洗
浄液を500μリットル加えて担体Fを十分に分散させ
る。
In order to analyze an object to be analyzed using the flow cell 1 having such a structure, for example, polystyrene particles having a diameter R of 7 μm to which a human CRP antibody (IgG fraction) is physically adsorbed are used as the carrier F. 100 μL of this dispersion (particle concentration 10 9 particles / mL) and 500 μL of a sample solution containing an analyte are mixed in a 5 mL container, and this mixed solution is reacted at 37 ° C. for 30 minutes.
Next, the carrier F in the reaction solution L is settled by a centrifugation method, and the supernatant is removed. In addition, 1 ml of the reagent, which was melted in the phosphate buffer-physiological saline of pH 7.2, that is, the washing solution, was added to the FITC label, which is a fluorescent labeling reagent, so that the human CRP antibody had a concentration of 0.2 mg / ml. The mixture is allowed to react with stirring at 37 ° C for 30 minutes, and only the supernatant is removed using a centrifugation method. Further, as a washing step, 4 ml of a washing solution is added and stirred, and the supernatant is removed again by using a centrifugal separation method, and this washing step is repeated 3 times. Finally, 500 μl of the washing liquid is added to sufficiently disperse the carrier F.

【0015】このように適当に希釈した分散液を、液溜
部5に50μリットルだけ滴下し、流通部7を通過させ
て担体Fを測定すると、蛍光が観測できると共に、除去
部6の存在により流通部7が閉塞することがない。
When 50 μl of the appropriately diluted dispersion liquid is dropped into the liquid reservoir 5 and the carrier F is measured by passing through the flow portion 7, fluorescence can be observed and the presence of the removing portion 6 The distribution unit 7 will not be blocked.

【0016】図7は第2の実施例の斜視図であり、ここ
では第1の実施例の除去部6の壁面3aには段部3bが
数段階に形成されている。
FIG. 7 is a perspective view of the second embodiment, in which the step portion 3b is formed in several steps on the wall surface 3a of the removing portion 6 of the first embodiment.

【0017】上述した第1及び第2の実施例において、
フローセル1は流通部7で担体Fを光学的に測定でき、
かつ微細構造を容易に成形加工できるように無色透明な
ガラスや高分子材料等から形成しているが、特に熱可塑
性、熱硬化性、光硬化性等を有する種々の高分子材料か
ら射出成形、圧縮成形等を組合わせて形成すれば、低コ
ストで多量に形成することができる。また、シリコン等
の半導体材料の微細加工技術によっても形成でき、ガラ
スと高分子材料を組合わせても形成できる。また、反応
液Lの媒体と親和性の良い物質をフローセル1の内壁表
面に被覆すると、反応液Lがフローセル1内に侵入し易
くなる。このような被覆材には、例えば反応液Lの媒体
が水である場合には親水性物質、界面活性剤、メチルセ
ルロース、カルボキシメチルセルロース、ポリビニルア
ルコール、ポリアクリルアミド等の水溶性高分子を用い
ることができる。更に、除去部6にはメッシュ、紙、或
いはガラスから成るフィルタ等を用いることもできる
が、本実施例では除去部6の壁3aと壁4aの間隔を液
溜部5側から流通部7側に向けて徐々に狭くすることに
よりそれらの役目を持たせている。このような除去部6
はフローセル1を作成する際に作り込むことができるた
め、作成した後にメッシュやフィルタのような除去部6
を装着する場合に比べて手間が少なく、コストが低くな
る。
In the first and second embodiments described above,
In the flow cell 1, the carrier F can be optically measured in the flow section 7,
And it is formed from colorless and transparent glass and polymer materials, etc. so that the microstructure can be easily molded and processed, but in particular injection molding from various polymer materials having thermoplasticity, thermosetting, photocurability, etc. If a combination of compression molding and the like is used, a large amount can be formed at low cost. It can also be formed by a fine processing technique of a semiconductor material such as silicon, or can be formed by combining glass and a polymer material. Further, when the inner wall surface of the flow cell 1 is coated with a substance having a good affinity with the medium of the reaction liquid L, the reaction liquid L easily enters the flow cell 1. For such a coating material, for example, when the medium of the reaction liquid L is water, a hydrophilic substance, a surfactant, a water-soluble polymer such as methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, polyacrylamide, etc. can be used. . Further, a filter made of mesh, paper, or glass may be used for the removing section 6, but in the present embodiment, the interval between the wall 3a and the wall 4a of the removing section 6 is changed from the liquid reservoir section 5 side to the circulation section 7 side. These roles are given by gradually narrowing toward. Such a removing unit 6
Can be created when the flow cell 1 is created, and therefore, the removal unit 6 such as a mesh or a filter can be created after the creation.
There is less labor and cost is lower than when wearing.

【0018】なお、反応液Lを流通部7に流すための手
段として、実施例のように流通部7の流出口から反応液
Lを吸引するため吸引ポンプか、或いは液溜部5に注入
した反応液Lを加圧するための加圧ポンプが使用でき
る。また、例えば圧電素子を用いた電歪力や進行波を利
用して反応液Lを動かすような微小なポンプをフローセ
ル1内に内在させたり、流通部7の流入口の近傍に微小
なポンプを設けることができる。
As a means for flowing the reaction liquid L into the circulation portion 7, a suction pump for sucking the reaction liquid L from the outlet of the circulation portion 7 as in the embodiment or the liquid reservoir 5 is injected. A pressurizing pump for pressurizing the reaction liquid L can be used. In addition, for example, a minute pump that moves the reaction liquid L using an electrostrictive force or a traveling wave using a piezoelectric element is provided inside the flow cell 1, or a minute pump is provided in the vicinity of the inlet of the circulation unit 7. Can be provided.

【0019】[0019]

【発明の効果】以上説明したように本発明に係るフロー
セルは、除去手段によって試料液中の固形物を除去でき
るため、流通部が閉塞することがなくなり、担体が安定
して流れて、測定を良好に行うことができる。また、製
作する際に除去手段を同時に作り込めば、個別の除去手
段を装着する手間が不要になりコストが低くなる。
As described above, in the flow cell according to the present invention, the solid matter in the sample liquid can be removed by the removing means, so that the flow section is not clogged, the carrier flows stably, and the measurement is performed. It can be done well. In addition, if the removing means are made at the same time during the production, the labor for mounting the individual removing means is unnecessary and the cost is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment.

【図2】拡大斜視図である。FIG. 2 is an enlarged perspective view.

【図3】拡大斜視図である。FIG. 3 is an enlarged perspective view.

【図4】除去手段の原理を説明図である。FIG. 4 is a diagram illustrating the principle of a removing unit.

【図5】除去手段の原理を説明図である。FIG. 5 is an explanatory diagram of the principle of a removing unit.

【図6】除去手段の原理を説明図である。FIG. 6 is an explanatory diagram of the principle of a removing unit.

【図7】第2の実施例の斜視図である。FIG. 7 is a perspective view of a second embodiment.

【符号の説明】[Explanation of symbols]

1 フローセル 2、4 基板 3 中間体 5、5a、5b 液溜部 6 除去部 7 流通部 1 Flow Cell 2, 4 Substrate 3 Intermediate 5, 5a, 5b Liquid Reservoir 6 Removal Part 7 Circulation Part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 松臣 東京都大田区下丸子三丁目目30番2号 キ ヤノン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Matsuomi Nishimura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料液中の分析対象物と結合する物質を
坦持させた担体によって前記分析対象物を検出するフロ
ーセルであって、前記試料液と前記担体とを少なくとも
含む反応液を受容する液溜部と、前記担体を流す流通部
とを有し、前記流通部の横断面の最大内接円の直径より
も大きな直径を有する前記反応液中の固形物を除去する
除去手段を前記液溜部と前記流通部との間に設けたこと
を特徴とするフローセル。
1. A flow cell for detecting an analyte by a carrier carrying a substance that binds to the analyte in the sample liquid, which receives a reaction liquid containing at least the sample liquid and the carrier. A liquid reservoir having a liquid flow part and a flow part through which the carrier flows, and a removing means for removing solid matter in the reaction liquid having a diameter larger than the diameter of the maximum inscribed circle of the cross section of the liquid flow part. A flow cell provided between the reservoir and the circulation unit.
【請求項2】 前記除去手段は前記液溜部側から前記流
通部側に向けて一様又は段階的に縮径する空間とする請
求項1に記載のフローセル。
2. The flow cell according to claim 1, wherein the removing means is a space in which the diameter is uniformly or stepwise reduced from the liquid reservoir side toward the flow portion side.
JP3133093A 1993-01-27 1993-01-27 Flow cell Pending JPH06222060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3133093A JPH06222060A (en) 1993-01-27 1993-01-27 Flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3133093A JPH06222060A (en) 1993-01-27 1993-01-27 Flow cell

Publications (1)

Publication Number Publication Date
JPH06222060A true JPH06222060A (en) 1994-08-12

Family

ID=12328252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3133093A Pending JPH06222060A (en) 1993-01-27 1993-01-27 Flow cell

Country Status (1)

Country Link
JP (1) JPH06222060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344497A (en) * 1998-05-01 1999-12-14 F Hoffmann La Roche Ag Automatic analyzer
EP1062495A1 (en) * 1998-03-07 2000-12-27 Wardlaw, Stephen Clark Calibration of a whole blood sample analyser
WO2004083823A1 (en) * 2003-03-19 2004-09-30 Nec Corporation Microchip, sampling method, sample separating method, sample analyzing method, and sample recovering method
JP2007315879A (en) * 2006-05-25 2007-12-06 Matsushita Electric Ind Co Ltd Device for optical analysis, and optical analyzer
WO2020085152A1 (en) * 2018-10-23 2020-04-30 株式会社堀場製作所 Duplex particle measuring device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062495A1 (en) * 1998-03-07 2000-12-27 Wardlaw, Stephen Clark Calibration of a whole blood sample analyser
EP1062495A4 (en) * 1998-03-07 2008-01-09 Wardlaw Stephen C Calibration of a whole blood sample analyser
JPH11344497A (en) * 1998-05-01 1999-12-14 F Hoffmann La Roche Ag Automatic analyzer
JP4553276B2 (en) * 1998-05-01 2010-09-29 エフ.ホフマン−ラ ロシュ アーゲー Automatic analyzer
WO2004083823A1 (en) * 2003-03-19 2004-09-30 Nec Corporation Microchip, sampling method, sample separating method, sample analyzing method, and sample recovering method
JP2007315879A (en) * 2006-05-25 2007-12-06 Matsushita Electric Ind Co Ltd Device for optical analysis, and optical analyzer
JP4702182B2 (en) * 2006-05-25 2011-06-15 パナソニック株式会社 Optical analysis device and optical analysis apparatus
WO2020085152A1 (en) * 2018-10-23 2020-04-30 株式会社堀場製作所 Duplex particle measuring device
JPWO2020085152A1 (en) * 2018-10-23 2021-09-24 株式会社堀場製作所 Duplex particle measuring device

Similar Documents

Publication Publication Date Title
US7258837B2 (en) Microfluidic device and surface decoration process for solid phase affinity binding assays
US10384202B2 (en) Devices, systems, and methods for detecting nucleic acids using sedimentation
US6277641B1 (en) Methods for analyzing the presence and concentration of multiple analytes using a diffusion-based chemical sensor
CA2788344C (en) Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen
US20110008776A1 (en) Integrated separation and detection cartridge using magnetic particles with bimodal size distribution
CN102695561B (en) Sample processing cartridge and method of processing and/or analysing a sample under centrifugal force
JP2008526255A (en) Microfluidic diluted cell detection device
KR20110120790A (en) Centrifugal micro-fluidic device and method for immunoassay
US10976225B2 (en) DMF method and system for concentrating analyte from large volumes into smaller volumes using magnetic microparticles
US20060046305A1 (en) Method and apparatus for detecting analyte with filter
JP5685601B2 (en) Nanofluidic biosensor and its utilization and method for rapid measurement of biomolecule interactions in solution
JP2003075444A (en) Chip for measuring substance to be measured, substance measuring apparatus and method therefor
JPH06222060A (en) Flow cell
JP2002122597A (en) Chip for measuring object to be measured, equipment and method for measuring object
CA2549094A1 (en) System
JP2009222562A (en) Measuring chip and measuring method using it
JP2003098175A (en) Chip, apparatus, and method for measuring object to be measured
JP2004108860A (en) Assay method using biochemistry analysis unit