JPH06222034A - Probe for measuring polarization resistance in thin pipe - Google Patents

Probe for measuring polarization resistance in thin pipe

Info

Publication number
JPH06222034A
JPH06222034A JP2611793A JP2611793A JPH06222034A JP H06222034 A JPH06222034 A JP H06222034A JP 2611793 A JP2611793 A JP 2611793A JP 2611793 A JP2611793 A JP 2611793A JP H06222034 A JPH06222034 A JP H06222034A
Authority
JP
Japan
Prior art keywords
tube
probe
polarization resistance
support rod
packer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2611793A
Other languages
Japanese (ja)
Other versions
JP3309343B2 (en
Inventor
Mitsuo Akutsu
光男 阿久津
Tomio Hongo
登美男 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP02611793A priority Critical patent/JP3309343B2/en
Publication of JPH06222034A publication Critical patent/JPH06222034A/en
Application granted granted Critical
Publication of JP3309343B2 publication Critical patent/JP3309343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To provide a probe for measuring polarization resistance in a thin pipe having reinforced coupling bridge between front and rear packers in which the front packer can be enlarged even after loading in the thin pipe. CONSTITUTION:A pair of packers 18, 18' comprising a disc of predetermined thickness made, of of an elastic member, e.g. a sponge rubber, sandwiched by a fixed disc and a retainer are coupled by penetrating a main supporting rod 22 made of an insulating member, e.g. Duracon, having threaded parts at the opposite ends thereof while opposing the fixed discs each other. The main supporting rod 22 is provided with tightening nuts 24, 24' at the opposite ends thereof. Furthermore, predetermined number of auxiliary supporting rods 25,... are placed between the fixed discs opposing each other. A liquid feed-in tube, a liquid feed-out tube, a collation electrode and a conduction electrode are fixed by penetration to the rear packer 18' and the purpose is achieved by the pushing force of the main and auxiliary supporting rods 22, 25,... and the reinforced bridge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、復水器において鉄電極
の溶解によって生成させた鉄イオンによる保護皮膜の良
否の判定をするための細管内分極抵抗測定用プローブに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe for measuring polarization resistance in a narrow tube for determining the quality of a protective film by iron ions produced by melting an iron electrode in a condenser.

【0002】[0002]

【従来の技術】海水や河川水等を冷却水として使用する
復水器の防食には電気防食法と鉄イオン注入法が併用さ
れている。鉄イオン注入法の主目的は復水器の細管が主
として銅合金を使用しているためその潰食防止であり、
銅合金上に鉄イオンによって保護皮膜を形成させ、硫化
物などによる腐食を防止することである。その手段とし
ては硫酸第一鉄の間欠注入法や鉄電解槽を用いた連続注
入法などがあるが、最近では環境汚染等の関係で採用さ
れにくくなっているので、電気防食用電極として用いら
れている鉄電極の防食電流によって溶出する鉄イオンを
利用する方法が採用されている。図8に公知の鉄イオン
注入量の自動制御回路を組込んだ実機の概略図を示す。
ところで、この防食法を実施する場合、適正な維持管理
のために細管内面の防食状況を適確に把握することが重
要である。そこで、防食保護皮膜の定量的な評価とし
て、既設の電気防食装置等を利用した分極抵抗法が採用
されてきている。一般的に、分極抵抗は電気防食用直流
電源装置からの通電をOFFし、管板面の電位がほぼ安
定した後、再び通電を行ない、通電電流密度と分極量か
ら計算で求める。あるいは通電OFF後、管板面の電位
がほぼ安定した後、200mV陰分極させ、10分後の通
電電流密度を求めて算出している。しかし、叙上の分極
抵抗測定方法では、通電電極としての電気防食用電極及
び照合電極が水室内に配置されるために、復水器の管板
面及び細管の管端部での評価となる。それゆえ、管板面
はともかく細管内面については、評価が困難であった。
そこで、細管内の測定したい位置まで挿入することので
きる分極抵抗測定用プローブが要求されている。
2. Description of the Related Art An electrolytic protection method and an iron ion implantation method are used in combination for the corrosion protection of a condenser using sea water, river water, etc. as cooling water. The main purpose of the iron ion implantation method is to prevent erosion because the condenser's thin tubes mainly use copper alloy.
A protective film is formed by iron ions on the copper alloy to prevent corrosion due to sulfides. There are intermittent injection method of ferrous sulfate and continuous injection method using an iron electrolyzer as such means, but recently it has become difficult to adopt due to environmental pollution, so it is used as an electrode for cathodic protection. A method of utilizing iron ions eluted by the anticorrosion current of the existing iron electrode is adopted. FIG. 8 shows a schematic diagram of an actual machine incorporating a known automatic control circuit of the iron ion implantation amount.
By the way, when carrying out this anticorrosion method, it is important to accurately grasp the anticorrosion condition on the inner surface of the thin tube for proper maintenance. Therefore, as a quantitative evaluation of the anticorrosion protective film, a polarization resistance method using an existing anticorrosion device has been adopted. Generally, the polarization resistance is obtained by turning off the energization from the DC power supply device for cathodic protection, re-energizing after the potential of the tube plate surface is almost stabilized, and calculating from the energization current density and the polarization amount. Alternatively, after the energization is turned off, after the potential of the tube plate surface is almost stabilized, negative polarization is performed at 200 mV, and the energization current density after 10 minutes is obtained and calculated. However, in the above-mentioned polarization resistance measuring method, since the electrodes for electrocorrosion and the reference electrodes as the energizing electrodes are placed in the water chamber, the tube plate surface of the condenser and the tube end of the thin tube are evaluated. . Therefore, it was difficult to evaluate the inner surface of the thin tube, not the tube sheet surface.
Therefore, there is a demand for a polarization resistance measuring probe that can be inserted up to a desired position in a thin tube.

【0003】現在、管内挿入プローブによる測定要領
は、次記の如く仕様されている。すなわち、図5は測定
要領を示す図で、運転停止中の復水器1の細管2に対し
ては、管内挿入プローブ3が挿入される。プローブ3は
Oリング締め付けベアリングケーブル4の先端に止着さ
れており、当該ケーブル4には図6に示される如く液出
用のシリコンゴム管5、液入用のシリコンゴム管6、リ
ード線7が添着されている。液入用のシリコンゴム管6
の基端は試験液タンク9に装着の吸い上げポンプ8に接
続し、また、液出用のシリコンゴム管5の基端は該タン
ク9に接続されている。当該タンク9内には人工海水1
6が貯えられている。リード線7の基端は計測盤10の
ポテンショスタットに接続している。当該計測盤10に
はポテンショスタットの他に、任意関数発生器,パソコ
ン,プリンター及び電源11が備えられている。なお、
ポテンショスタットには対極14、亜鉛電極15及び復
水器1がそれぞれ接続されている。該プローブ3として
は、例えば、図7に示す如く、Oリング締め付けベアリ
ングケーブル4の先端に所定間隔をもってこれに由って
操作されるところの一対のOリング13,13′を取り
付け、当該Oリング13,13′間の仕切り空間17内
に対極14,亜鉛電極15を外部より持ち込みさせ、さ
らに、該空間17内に該シリコンゴム管5,6を持ち込
むとしたものであるとされている。
At present, the measuring procedure using a probe inserted in a tube is specified as follows. That is, FIG. 5 is a diagram showing a measurement procedure, and the in-tube insertion probe 3 is inserted into the thin tube 2 of the condenser 1 which is not in operation. The probe 3 is fixed to the tip of an O-ring tightening bearing cable 4, and the cable 4 has a silicone rubber tube 5 for liquid discharge, a silicone rubber tube 6 for liquid injection, and a lead wire 7 as shown in FIG. Is attached. Silicon rubber tube for liquid filling 6
The base end of is connected to the suction pump 8 mounted on the test liquid tank 9, and the base end of the silicone rubber tube 5 for discharging the liquid is connected to the tank 9. Artificial seawater 1 in the tank 9
6 are stored. The base end of the lead wire 7 is connected to the potentiostat of the measuring panel 10. In addition to the potentiostat, the measuring board 10 is provided with an arbitrary function generator, a personal computer, a printer and a power supply 11. In addition,
The counter electrode 14, the zinc electrode 15, and the condenser 1 are connected to the potentiostat, respectively. As the probe 3, for example, as shown in FIG. 7, a pair of O-rings 13 and 13 'which are operated at predetermined intervals are attached to the tip of the O-ring tightening bearing cable 4, and the O-rings are attached. It is said that the counter electrode 14 and the zinc electrode 15 are brought into the partition space 17 between 13 and 13 'from the outside, and further the silicon rubber tubes 5 and 6 are brought into the space 17.

【0004】叙上の如き装置でもって、測定は次記の如
くなされる。すなわち、プローブ3を細管2内の任意の
場所へ挿入する。人工海水16が洩れないようOリング
締め付けベアリングケーブル4のハンドルを操作してO
リング13,13′を細管2内面壁に押しつける。人工
海水16をプローブ3内に送り込み、Oリング13,1
3′間の仕切空間が満水後は循環させる。自然電極電位
を測定する、すなわち、電位変化が2mV/min 以下の安
定した状態に達した後、その電位を記録する。ポテンシ
ョスタットで自然電極電位をキャンセルし、電位計の読
みをOmVにする。測定細管2に陰分極電流を除々に印加
し、自然電極電位より−10mV〜−100mV分極させて
安定した分極電流値を記録する。但し、測定時間は最長
でも30分間とする。測定細管2の内半径(a,cm)
(製造時の管内半径を用いる)およびプローブ3の接液
部分の長さ(L,cm)、自然電極電位(E0 ),電位
(E),電流(I)から次式を用いて分極抵抗(Rp,
Ωcm2 )を算出する。 Rp={(E−E0 )/I}×2πaL ・・・・(1) 通常、Rpが2×104 Ωcm2 以上であれば、良好な鉄
皮膜が形成されているといわれている。
With the above-mentioned device, the measurement is performed as follows. That is, the probe 3 is inserted into an arbitrary place in the thin tube 2. Operate the handle of the O-ring tightening bearing cable 4 to prevent the artificial seawater 16 from leaking.
The rings 13, 13 'are pressed against the inner wall of the capillary 2. The artificial seawater 16 is fed into the probe 3, and the O-rings 13, 1
After the partition space between 3'is full, it is circulated. The natural electrode potential is measured, that is, after the potential change reaches a stable state of 2 mV / min or less, the potential is recorded. Cancel the natural electrode potential with a potentiostat and set the electrometer reading to OmV. A negative polarization current is gradually applied to the measuring thin tube 2 to polarize it from the natural electrode potential by -10 mV to -100 mV and record a stable polarization current value. However, the maximum measurement time is 30 minutes. Inner radius of measuring tube 2 (a, cm)
Polarization resistance by using the following equation from (using the tube inner radius at the time of manufacture), the length (L, cm) of the wetted part of the probe 3, the natural electrode potential (E 0 ), the potential (E), and the current (I). (Rp,
Calculate Ωcm 2 ). Rp = {(E−E 0 ) / I} × 2πaL (1) Usually, it is said that a good iron film is formed when Rp is 2 × 10 4 Ωcm 2 or more.

【0005】[0005]

【発明が解決しようとする課題】叙上の従来の仕様にお
けるプローブの構造にあっては、前方のOリング13に
は締め付けベアリングケーブル4が接続しておらず(前
方のOリング13は締め付けベアリングケーブル4より
持ち出しの対極14に支持されている)、遠隔操作でも
って管2内面への押圧力をコントロールし得ないので、
予じめ挿入前に充分なシール効果が奏し得る大径に設定
しておかねばならないので、挿入が極めて困難となる。
また、Oリング13,13′は対極14の連絡架構に由
ってのみ、所定間隔に保持されるとされているが、かか
る架構では充分な強度は奏し得ないという問題点があ
る。さらに水密性が不十分である。本発明は、従来の技
術の有するこのような問題点に鑑みてなされたものであ
り、その目的とするところは、前方の密封仕切壁体(O
リング13に相当)に管内挿入後に新たな管内面への押
圧力を付与させ得て、挿入時の大径化に由る負担を軽減
させ得ると共に前後密封仕切壁体の連絡架構に充分な強
度が付与し、十分な水密性を得ることができ、かつ細管
内の任意の位置まで挿入できる細管内分極抵抗測定用プ
ローブを提供しようとするものである。
In the structure of the probe according to the above conventional specifications, the tightening bearing cable 4 is not connected to the front O-ring 13 (the front O-ring 13 is a tightening bearing). It is supported by the counter electrode 14 which is carried out from the cable 4). Since the pressing force on the inner surface of the tube 2 cannot be controlled by remote control,
Since the diameter must be set to a large value so that a sufficient sealing effect can be obtained before the insertion, the insertion becomes extremely difficult.
Further, the O-rings 13 and 13 'are supposed to be held at a predetermined interval only by the connecting frame of the counter electrode 14, but there is a problem that such a frame cannot provide sufficient strength. Furthermore, the watertightness is insufficient. The present invention has been made in view of the above problems of the conventional technique, and an object of the present invention is to provide a front sealing partition wall (O
It is possible to apply a new pressing force to the inner surface of the pipe after inserting it into the pipe (corresponding to the ring 13) and reduce the load due to the increase in diameter at the time of insertion, and sufficient strength for the connecting frame of the front and rear sealing partition walls. The present invention is intended to provide a probe for measuring polarization resistance in a thin tube, which is capable of obtaining sufficient water-tightness and can be inserted into any position in the thin tube.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明における細管内分極抵抗測定用プローブは、
絶縁性の弾性材からなる所定厚の円板体を固定円板と押
え板とで挟さみ付けてなる1対のパッカーを、該固定円
板同志を対峙させた態様にて中心に両端にネジ部を設け
た絶縁性の主支持棒を貫通架設して連結のうえ、当該主
支持棒両端に締め付け用ナットを装着し、さらに、当該
対峙固定円板間に所定数の補助支持棒を架配し、後方の
パッカーには液入用チューブ,液出用チューブ,照合電
極,通電々極を夫々貫通取り付けするとしたものであ
る。
In order to achieve the above object, a probe for measuring polarization resistance in a thin tube according to the present invention comprises:
A pair of packers in which a disk body of a predetermined thickness made of an insulating elastic material is sandwiched between a fixed disk and a pressing plate, and a pair of packers are provided at both ends in the center with the fixed disk members facing each other. Insulating main support rods provided with threaded parts are pierced and connected to each other, then tightening nuts are attached to both ends of the main support rods, and a predetermined number of auxiliary support rods are mounted between the facing fixed discs. The liquid inlet tube, the liquid outlet tube, the reference electrode, and the current-carrying electrode are attached to the packer at the rear through the packer.

【0007】通電々極は液出用チューブに内装するとパ
ッカーへの穿設貫通孔が減り、断面強度上有利である。
If the current-carrying electrode is installed inside the liquid discharge tube, the number of through holes formed in the packer is reduced, which is advantageous in terms of cross-sectional strength.

【0008】[0008]

【作用】パッカー主体である弾性体の円板体は締め付け
用ナットで圧締め操作で径大変形するが、前方のパッカ
ーの場合には挿入後にあっては操作不可能であるので、
挿入前に予じめある程度変形させておかねばならない。
一方、後方のパッカーの場合にはナット廻し用治具の挿
入組み付けが可能であるので、挿入後にすればよい。挿
入には主支持棒端部のネジ部を利用してカプラーを介し
て棒継ぎ足しで長尺化して組み込むとするとよい。前方
のパッカーは弾力性に優れる主支持棒と補助支持棒に由
る蓄勢押圧を受けるため挿入定置後に径大変形作用を受
ける。このため、前述の挿入前の変形をさほど困難な程
にしなくとも良いので、挿入の困難度は低減する。ま
た、前後パッカー間の架構は主支持棒,補助支持棒の複
数渡架梁に由り著しく強度が高まる。通電々極のリード
線は液出用チューブ内を通るとするとパッカーへの穿孔
が省略できてパッカーの断面欠損上有利である。
[Function] The elastic disk body, which is mainly a packer, is largely deformed by the tightening operation with the tightening nut, but in the case of the front packer, it cannot be operated after the insertion.
Before insertion, it must be deformed to some extent.
On the other hand, in the case of the packer on the rear side, the nut turning jig can be inserted and assembled, so that it can be done after the insertion. For insertion, it is advisable to use a threaded portion at the end of the main support rod and add a rod through a coupler to lengthen and incorporate the rod. The packer on the front side is subjected to a large-diameter deformation action after insertion and placement because it is subjected to energy storage pressure by the main support rod and the auxiliary support rod, which have excellent elasticity. For this reason, the deformation before the insertion does not have to be made so difficult, so that the insertion difficulty is reduced. In addition, the frame between the front and rear packers is significantly strengthened due to the multiple bridge beams of the main support rod and the auxiliary support rod. If the lead wire of the current-carrying pole is passed through the liquid discharge tube, it is possible to omit piercing to the packer, which is advantageous in terms of the cross-section of the packer.

【0009】[0009]

【実施例】実施例について図を参照して説明する。図1
〜図4において、前後1対のパッカー18,18′は夫
々スポンジゴム等の絶縁性の弾性材からなる所定厚の円
板体19,19′を固定円板20,20′と押え板2
1,21′とで挾着してなる。円板体19の厚さは細管
の内径の大きさによってある程度異なるが、復水器の場
合では10〜40mm程度で良い。
EXAMPLES Examples will be described with reference to the drawings. Figure 1
4, a pair of front and rear packers 18, 18 'are provided with discs 19, 19' each having a predetermined thickness and made of an insulating elastic material such as sponge rubber.
1, 21 'and clasped together. Although the thickness of the disc body 19 varies to some extent depending on the size of the inner diameter of the thin tube, it may be about 10 to 40 mm in the case of a condenser.

【0010】両パッカー18,18′は固定円板20,
20′を対向させた態様で中心に主支持棒22を貫通さ
せ、その両端ネジ部23,23′には締め付け用ナット
24,24′が装着されている。しかして、当該ナット
24,24′の締め付け操作でもって該円板体19,1
9′を挾圧径大変形させることができる。但し、ナット
24については挿入後の操作不可能であるがナット2
4′については挿入後に治具を差し込めば可能である。
Both packers 18, 18 'are fixed discs 20,
The main support bar 22 is passed through the center of the shaft 20 'in a manner facing each other, and tightening nuts 24, 24' are attached to the screw portions 23, 23 'at both ends thereof. Then, the disc bodies 19, 1 can be operated by tightening the nuts 24, 24 '.
9'can be deformed by a large diameter. However, it is impossible to operate the nut 24 after insertion, but the nut 2
4'can be done by inserting a jig after insertion.

【0011】主支持棒22はジュラコン等の比較的強度
の大きい絶縁材より成るので、不屈曲変形で蓄勢能に優
れる。さらに、固定円板20,20′間には複数の主支
持棒22と同材質よりなるところの補助支持棒25,…
が貫通しないで挟着する態様に架配されている。主支持
棒22及び補助支持棒25はジュラコンの他にPVC、
アクリル樹脂等の比較的強度の大きい絶縁材でも良い。
しかして、主支持棒22,補助支持棒25,…の不屈曲
変形は極めて大なる蓄勢力を奏する。なお、補助支持棒
25は複数本使用するのが良い。当該蓄勢力は後方のパ
ッカー18′が固定の状態で前方のパッカー18に径大
変形への力を加え続けることとなる。由って、前方のパ
ッカー18についての挿入前の径大変形は挿入作業に支
障する程にしなくとも挿入後に径大化し得るのでよい。
Since the main support bar 22 is made of an insulating material having a relatively high strength such as Duracon, it is not bent and is excellent in energy storage. Further, between the fixed discs 20, 20 ', auxiliary support rods 25, ... Made of the same material as the plurality of main support rods 22 ,.
Are arranged so as to be sandwiched without penetrating. The main support rod 22 and the auxiliary support rod 25 are made of PVC, in addition to DURACON.
An insulating material having relatively high strength such as acrylic resin may be used.
Then, the non-bending deformation of the main support rod 22, the auxiliary support rod 25, ... produces an extremely large energy storage force. It is preferable to use a plurality of auxiliary support rods 25. The stored force continues to apply a force for large-diameter deformation to the front packer 18 while the rear packer 18 'is fixed. Therefore, the large-diameter deformation of the front packer 18 before the insertion can be increased after the insertion without causing the insertion work to be hindered.

【0012】後方のパッカー18′のナット24′の操
作は治具を挿入してとり行なう(図示省略)。また、所
定局部位置への送り込みは、ネジ部23′を利用してカ
プラーを介して主支持棒22の継ぎ足し延長して押しみ
すればよい(図示省略)。
The operation of the nut 24 'of the rear packer 18' is carried out by inserting a jig (not shown). Further, the feeding to the predetermined local position may be achieved by adding the extension of the main support rod 22 through the coupler using the screw portion 23 'and extending and pushing it (not shown).

【0013】後方のパッカー18′には液入用チューブ
26,液出用チューブ27,照合電極28等が貫通取り
付けされている。通電々極29も同様に貫通取り付けさ
れるが、図示例では独自の穿孔をすることなく、該液出
用チューブの27に内装させて、穿孔を省略している。
本発明品の使用態様を示す図1において、30は定電位
装置、31はパソコン、32は電源、33は管板を夫々
示す。以下、測定例を掲げる。
A liquid inlet tube 26, a liquid outlet tube 27, a reference electrode 28, etc. are penetratingly attached to the rear packer 18 '. Similarly, the energizing pole 29 is also penetratingly attached, but in the example shown in the figure, the perforation is omitted by making it internal to the liquid discharge tube 27 without making its own perforation.
In FIG. 1 showing a mode of use of the product of the present invention, 30 is a constant potential device, 31 is a personal computer, 32 is a power source, and 33 is a tube plate. The measurement examples are given below.

【0014】測定例1 実復水器における内直径が22.91mmの細管の管端
部から100〜200mm奥の長さ100mmにわたる
部分の分極抵抗Rpを本発明によるプローブを用いて測
定した。測定対象面積は71.94cm2 とした。その結
果を表1に示す。
Measurement Example 1 The polarization resistance Rp of a portion of a narrow tube having an inner diameter of 22.91 mm in the actual condenser extending 100 to 200 mm from the tube end to a length of 100 mm was measured using the probe according to the present invention. The area to be measured was 71.94 cm 2 . The results are shown in Table 1.

【表1】 この場合のプローブは次のように製作した。円板体1
9,19′はネオプレンスポンジゴムで厚さ20mmと
し、19には主支持棒22を貫通させるため中心に直径
5.5mmの貫通孔を設け、19′にはこの貫通孔の他
に液入用チューブ26、液出用チューブ27及び照合電
極28を取り出すために所定の位置に直径3.5mmの
貫通孔を3つ設けた。固定円板20,20′はPVC製
で厚さ10mmとし、20には補助支持棒25が固定で
きるように直径4.1mm、深さ5mmの孔を所定の位
置に4つ、中心には主支持棒22のために直径6.1m
mの貫通孔をそれぞれ設け、20′にはこの補助支持棒
固定孔及び主支持棒貫通孔の他に液入用チューブ26、
液出用チューブ27及び照合電極28を取り出すために
所定の位置に直径4mmの貫通孔を3つ設けた。押え板
21、21′はPVC製で厚さ3mmとし、21には主
支持棒22を貫通させるため中心に直径6.1mmの貫
通孔を設け、21′にはこの貫通孔の他に液入用チュー
ブ26、液出用チューブ27及び照合電極28を取り出
すために所定の位置に直径4mmの貫通孔を3つ設け
た。主支持棒22はジュラコン製で、直径6mm、長さ
200mmとし、両端には長さ45mmにわたってネジ
部23、23′を設けた。補助支持棒25はジュラコン
製で、直径4mm、長さ110mmとし、プローブ1個
当たり4本使用した。なお、通電々極29は直径0.5
mmの銀線とし、液出用チューブ27内を通じて外へ取
り出し、照合電極28は塩化銀電極とした。
[Table 1] The probe in this case was manufactured as follows. Disk body 1
Numerals 9 and 19 'are neoprene sponge rubber and have a thickness of 20 mm. A through hole having a diameter of 5.5 mm is provided at the center of 19 for penetrating the main support rod 22. Three through holes each having a diameter of 3.5 mm were provided at predetermined positions in order to take out the tube 26, the liquid discharge tube 27, and the reference electrode 28. The fixed discs 20 and 20 'are made of PVC and have a thickness of 10 mm. Four holes with a diameter of 4.1 mm and a depth of 5 mm are fixed at 20 in the center so that the auxiliary support rod 25 can be fixed to the main disc 20. Diameter 6.1 m for support rod 22
m through holes are provided respectively, and in addition to the auxiliary support rod fixing hole and the main support rod through hole, a liquid inlet tube 26,
Three through holes each having a diameter of 4 mm were provided at predetermined positions in order to take out the liquid discharge tube 27 and the reference electrode 28. The pressing plates 21 and 21 'are made of PVC and have a thickness of 3 mm. A through hole having a diameter of 6.1 mm is provided at the center of the 21 to allow the main support rod 22 to penetrate therethrough. Three through holes having a diameter of 4 mm were provided at predetermined positions in order to take out the working tube 26, the liquid discharging tube 27, and the verification electrode 28. The main support rod 22 is made of Duracon, has a diameter of 6 mm and a length of 200 mm, and is provided with screw portions 23 and 23 'at both ends over a length of 45 mm. The auxiliary support rod 25 was made of Duracon and had a diameter of 4 mm and a length of 110 mm, and four probes were used for each probe. The energizing pole 29 has a diameter of 0.5.
A silver wire of mm was taken out through the liquid outlet tube 27, and the reference electrode 28 was a silver chloride electrode.

【0015】分極抵抗の測定手順は、以下ようにした行
った。 主支持棒22の両端のネジ部23、23′に締め付用
ナット24、24′を装着し、プローブを組み立てた
後、主支持棒のパッカー18′側のネジ部23′にカプ
ラーを取り付けて、このカプラーに別の主支持棒を継ぎ
足して延長し、細管の管端部から100〜200mmの
奥の位置に挿入する。 締め付用ナット24′を治具によって締め付けて、プ
ローブを固定する。 プローブ内に液入用チューブ26から液出用チューブ
27が満水になるまで海水を注入することによって、プ
ローブ内も満水になったことを確認する。 通電々極29、照合電極28及び復水器1を定電位装
置30のそれぞれの端子に接続し、定電位装置にはパソ
コン31を接続する。 細管内面の自然電位の変化が2mV/min以下の安定し
た状態になった時、自然電位から100mV陰分極させ、
10分後の電流を測定し、(1)式より分極抵抗Rpを
パソコンで算出させ、プリンターで出力させることによ
って、測定は終了する。
The polarization resistance was measured as follows. After attaching the tightening nuts 24, 24 'to the threaded portions 23, 23' at both ends of the main support rod 22 to assemble the probe, attach the coupler to the screwed portion 23 'on the packer 18' side of the main support rod. Then, another main support rod is added to this coupler to extend it, and the coupler is inserted into a position 100 to 200 mm deep from the end of the capillary. The probe is fixed by tightening the tightening nut 24 'with a jig. By injecting seawater into the probe from the liquid inlet tube 26 until the liquid outlet tube 27 becomes full, it is confirmed that the inside of the probe is also full. The energizing pole 29, the reference electrode 28, and the condenser 1 are connected to the respective terminals of the potentiostatic device 30, and the personal computer 31 is connected to the potentiostatic device. When the change in the spontaneous potential on the inner surface of the thin tube becomes stable at 2 mV / min or less, it is negatively polarized by 100 mV from the spontaneous potential,
The measurement is completed by measuring the current after 10 minutes, calculating the polarization resistance Rp from the equation (1) with a personal computer, and outputting it with a printer.

【0016】測定例2 実復水器における内直径が22.91mmの細管の管端
部から200〜300mm奥の長さ100mmにわたる
部分の分極抵抗Rpを本発明によるプローブを用いて測
定した。測定対象面積は71.94cm2 とした。その結
果を表2に示す。
Measurement Example 2 The polarization resistance Rp of a portion of a narrow tube having an inner diameter of 22.91 mm in the actual condenser 200 to 300 mm deep and 100 mm in depth was measured using the probe according to the present invention. The area to be measured was 71.94 cm 2 . The results are shown in Table 2.

【表2】 このときのプローブは、PVC製の補助支持棒を2本と
し、円板体の厚さを15mm、固定円板をアクリル樹脂
製にした以外は測定例1と同じ構造とした。
[Table 2] The probe at this time had the same structure as in Measurement Example 1 except that two PVC auxiliary support rods were used, the thickness of the disk body was 15 mm, and the fixed disk was made of acrylic resin.

【0017】測定例3 実復水器における内直径が29.26mmの細管の管端
部から300〜400mm奥の長さ100mmにわたる
部分の分極抵抗Rpを本発明によるプローブを用いて測
定した。測定対象面積は91.88cm2 とした。その結
果を表3に示す。
Measurement Example 3 The polarization resistance Rp of a portion of a narrow tube having an inner diameter of 29.26 mm in the actual condenser 300 to 400 mm deep and 100 mm deep was measured using the probe according to the present invention. The area to be measured was 91.88 cm 2 . The results are shown in Table 3.

【表3】 このときのプローブは、円板体の厚さを25mmとし、
細管の内直径が測定例1の場合より大きいので、その
分、円板体、固定円板、押え板、主支持棒及び補助支持
棒の外径を大きくした以外は測定例1と同じ構造とし
た。なお、当然固定円板の主支持棒貫通孔及び補助支持
棒固定孔も主支持棒及び補助支持棒の外径にあわせて大
きくした。
[Table 3] The probe at this time has a disc body with a thickness of 25 mm,
Since the inner diameter of the thin tube is larger than that in the measurement example 1, the structure is the same as that in the measurement example 1 except that the outer diameters of the disc body, the fixed disc, the holding plate, the main support rod and the auxiliary support rod are increased accordingly. did. Naturally, the main support rod through hole and the auxiliary support rod fixing hole of the fixed disk were also enlarged in accordance with the outer diameters of the main support rod and the auxiliary support rod.

【0018】表1、表2及び表3から、細管内面の分極
抵抗Rpは全て2×104 Ωcm2 以上あり、良好な鉄皮
膜が形成されていることがわかった。なお、測定例とし
ては復水器細管内について行ったものであるが、復水器
細管以外の細管、例えば水道水管、給排水管の内面の分
極抵抗測定に適用できることはいうまでもない。
From Table 1, Table 2 and Table 3, it was found that the polarization resistance Rp on the inner surface of the thin tube was 2 × 10 4 Ωcm 2 or more, and a good iron film was formed. Although the measurement example was performed inside the condenser thin tube, it goes without saying that it can be applied to the polarization resistance measurement of the inner surface of a thin tube other than the condenser thin tube, for example, a tap water pipe or a water supply / drainage pipe.

【0019】[0019]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。挿
入後の径大変形がし難いために挿入前に装着困難をもた
らす径大変形を与えておかねばならない前方パッカーに
ついての当該装着前の径大化処理は挿入後に径大化が可
能となったために、装着時の困難さが著しく低減した。
前後パッカー連絡架構の強度が著しく強化し、挿入作業
もし易くなった。また、細管内の任意の位置での分極抵
抗の測定が容易となった。
Since the present invention is constructed as described above, it has the following effects. Since it is difficult for the front packer to undergo large-diameter deformation after insertion, it must be given large-diameter deformation that causes difficulty in mounting before insertion. Moreover, the difficulty in mounting was significantly reduced.
The strength of the front and rear packer connection frame has been significantly strengthened, making insertion work easier. Moreover, it became easy to measure the polarization resistance at any position in the thin tube.

【図面の簡単な説明】[Brief description of drawings]

【図1】補助支持棒を図示省略して示す本発明品の使用
態様説明図である。
FIG. 1 is an explanatory view of a usage state of a product of the present invention, in which an auxiliary support rod is omitted in the drawing.

【図2】使用時の本発明品の詳示図である。FIG. 2 is a detailed view of the product of the present invention at the time of use.

【図3】図2中A−A矢視図である。FIG. 3 is a view taken along the line AA in FIG.

【図4】図2中B−B矢視図である。FIG. 4 is a view taken along the line BB in FIG.

【図5】細管内分極抵抗測定用プローブの使用説明図で
ある。
FIG. 5 is a diagram illustrating the use of a probe for measuring polarization resistance in a thin tube.

【図6】図5中B−B矢視図である。FIG. 6 is a view taken along the line BB in FIG.

【図7】従来のプローブの説明図である。FIG. 7 is an explanatory diagram of a conventional probe.

【図8】鉄イオン注入量の自動制御回路を組込んだ実機
の概略図である。
FIG. 8 is a schematic diagram of an actual machine in which an automatic control circuit of the iron ion implantation amount is incorporated.

【符号の説明】[Explanation of symbols]

1 復水器 2 細管 3 管内挿入プローブ 4 Oリング締め付けベアリングケーブル 5 液出用のシリコンゴム管 6 液入用のシリコンゴム管 7 リード線 8 吸い上げポンプ 9 試験液タンク 10 計測盤 11 電源 13,13′ Oリング 14 対極 15 亜鉛電極 16 人工海水 17 仕切り空間 18,18′ 前後1対のパッカー 19,19′ 円板体 20,20′ 固定円板 21,21′ 押え板 22 主支持棒 23,23′ ネジ部 24,24′ 締め付け用ナット 25 補助支持棒 26 液入用チューブ 27 液出用チューブ 28 照合電極 29 通電々極 30 定電位装置 31 パソコン 32 電源 33 管板 1 Condenser 2 Capillary tube 3 Pipe insertion probe 4 O-ring tightening bearing cable 5 Silicon rubber tube for liquid discharge 6 Silicon rubber tube for liquid injection 7 Lead wire 8 Suction pump 9 Test liquid tank 10 Measuring panel 11 Power supply 13, 13 'O-ring 14 Counter electrode 15 Zinc electrode 16 Artificial seawater 17 Partition space 18, 18' Front and rear pair of packers 19, 19 'Disc body 20, 20' Fixed disc 21, 21 'Presser plate 22 Main support rod 23, 23 ′ Screw part 24, 24 ′ Tightening nut 25 Auxiliary support rod 26 Liquid inlet tube 27 Liquid outlet tube 28 Reference electrode 29 Energizing pole 30 Constant potential device 31 Personal computer 32 Power supply 33 Tube plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性の弾性材からなる所定厚の円板体
を固定円板と押え板とで挟さみ付けてなる1対のパッカ
ーを、該固定円板同志を対峙させた態様にて中心に両端
にネジ部を設けた絶縁性の主支持棒を貫通架設して連結
のうえ、当該主支持棒両端に締め付け用ナットを装着
し、さらに、当該対峙固定円板間に所定数の補助支持棒
を架配し、後方のパッカーには液入用チューブ,液出用
チューブ,照合電極,通電々極を夫々貫通取り付けする
としたことを特徴とする細管内分極抵抗測定用プロー
ブ。
1. A pair of packers formed by sandwiching a disk body of a predetermined thickness made of an insulative elastic material between a fixed disk and a pressing plate, in a mode in which the fixed disk members face each other. The insulating main support rods with threaded parts at both ends in the center, and connect them, and then install the tightening nuts on both ends of the main support rods. A probe for measuring polarization resistance in a thin tube, characterized in that an auxiliary support rod is installed, and a liquid inlet tube, a liquid outlet tube, a reference electrode, and a current-carrying electrode are mounted through the back packer.
【請求項2】 通電々極を液出用チューブに内装する請
求項1記載の細管内分極抵抗測定用プローブ。
2. The probe for measuring polarization resistance in a thin tube according to claim 1, wherein the current-carrying electrode is incorporated in the liquid discharge tube.
JP02611793A 1993-01-21 1993-01-21 Probe for measuring the polarization resistance in a thin tube Expired - Fee Related JP3309343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02611793A JP3309343B2 (en) 1993-01-21 1993-01-21 Probe for measuring the polarization resistance in a thin tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02611793A JP3309343B2 (en) 1993-01-21 1993-01-21 Probe for measuring the polarization resistance in a thin tube

Publications (2)

Publication Number Publication Date
JPH06222034A true JPH06222034A (en) 1994-08-12
JP3309343B2 JP3309343B2 (en) 2002-07-29

Family

ID=12184640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02611793A Expired - Fee Related JP3309343B2 (en) 1993-01-21 1993-01-21 Probe for measuring the polarization resistance in a thin tube

Country Status (1)

Country Link
JP (1) JP3309343B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835200A (en) * 1990-04-24 1998-11-10 Gersan Establishment Method and apparatus for examining an object
CN102879321A (en) * 2012-10-22 2013-01-16 西南石油大学 Method for simulating high-temperature and high-pressure down-hole packer rubber corrosion test
CN103576207A (en) * 2012-07-27 2014-02-12 韩国地质资源研究院 Non-polarizable probe and spectral induced polarization logging device including the same
CN109298025A (en) * 2018-08-28 2019-02-01 太原理工大学 The experimental rig and method of paste body filling slurry isolation in a kind of monitoring pipeline

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987326B (en) * 2019-12-31 2021-09-17 中国海洋石油集团有限公司 Experimental device for evaluating sealing capacity of packer rubber barrel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835200A (en) * 1990-04-24 1998-11-10 Gersan Establishment Method and apparatus for examining an object
CN103576207A (en) * 2012-07-27 2014-02-12 韩国地质资源研究院 Non-polarizable probe and spectral induced polarization logging device including the same
CN102879321A (en) * 2012-10-22 2013-01-16 西南石油大学 Method for simulating high-temperature and high-pressure down-hole packer rubber corrosion test
CN109298025A (en) * 2018-08-28 2019-02-01 太原理工大学 The experimental rig and method of paste body filling slurry isolation in a kind of monitoring pipeline
CN109298025B (en) * 2018-08-28 2021-03-05 太原理工大学 Test device and method for monitoring segregation of paste filling slurry in pipeline

Also Published As

Publication number Publication date
JP3309343B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
JP2007532887A (en) An improved method for measuring local corrosion degree using a multi-electrode array sensor
US3649492A (en) Method for determining the completeness of cathodic protection of corrodible metal structure
US5419201A (en) Methods and devices for electrochemically determining metal fatigue status
CN108680492B (en) Method for measuring corrosion depth in galvanic corrosion of metal welding joint part
US4351703A (en) Cathodic protection monitoring
US2910419A (en) Energized anode holder assembly
JPH06222034A (en) Probe for measuring polarization resistance in thin pipe
Lillard et al. Modeling of the Factors Contributing to the Initiation and Propagation of the Crevice Corrosion of Alloy 625
US6960288B2 (en) Method and device for detecting microbiologically induced corrosion
US5275704A (en) Method and apparatus for measuring underdeposit localized corrosion rate or metal corrosion rate under tubercles in cooling water systems
POURBAIX Characteristics of localized corrosion of steel in chloride solutions
GB2132226A (en) Cathodic protection of aluminium articles
CN117147382A (en) Device for monitoring hydrogen atom crossing grain boundary diffusion by using SKPFM and testing method
CN114894701A (en) Accelerated corrosion test system for reinforced concrete under forced current cathodic protection
US3066082A (en) Apparatus and method for determining the condition of protective coatings
Carson et al. Time-dependent polarization behaviour of pipeline grade steel in low ionic strength environments
JP3192756B2 (en) Corrosion measuring device
Goffe et al. Internally charged palladium hydride reference electrode—Part 1: The effect of charging current density on long-term stability
JPS6342708B2 (en)
GB2365977A (en) Corrosion monitoring system for use in multiple phase solutions
US4152236A (en) Apparatus for controlled potential pitting corrosion protection of long, narrow stainless steel tubes
JP3386898B2 (en) Corrosion protection structure of the material to be protected
Yepez et al. A new concept for hydrogen permeation monitoring
Smart et al. Galvanic corrosion of copper-cast iron couples
Randle Galvanic corrosion-a kinetic study

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees