JPH06221774A - Method and device for smelting molten metal - Google Patents

Method and device for smelting molten metal

Info

Publication number
JPH06221774A
JPH06221774A JP1085993A JP1085993A JPH06221774A JP H06221774 A JPH06221774 A JP H06221774A JP 1085993 A JP1085993 A JP 1085993A JP 1085993 A JP1085993 A JP 1085993A JP H06221774 A JPH06221774 A JP H06221774A
Authority
JP
Japan
Prior art keywords
lance
refining
molten metal
blowing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1085993A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takahashi
清志 高橋
Nobumoto Takashiba
信元 高柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1085993A priority Critical patent/JPH06221774A/en
Publication of JPH06221774A publication Critical patent/JPH06221774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To reduce the use of flux in amount and improve the productivity by rotating a powder-ejecting lance on its axis while flux is being blown into the melt from the nozzle in directions crossing the axis of the lance. CONSTITUTION:When a powder-ejecting lance 1 is rotated on its axis while flux is being blown into the melt in directions crossing the axis of the lance 1, the air bubbles 4 produced thereby can be finely divided by the action of shearing forces on the air bubbles 4 and the air bubbles 4 can be dispersed throughout inside the container 2. To make the air bubbles fine and uniform, it is desirable for the difference in relative speed between the surface of the lance and the melt to be 0.5 m/s or more. The diameter of the lance should preferably be in the order of 200-500mmphi. Therefore, the suitable number of revolutions of the lance should be in the order of 50-300 r.p.m. For the flux the use of CaO, soda ash, Mg, etc., is suited advantageously to removal of S and the use of Cab, CaF2, iron oxide, etc., to removal of P.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】高炉で作られた溶銑中には、S,
P等の不純物元素が多量に含まれているが、かかる不純
物元素は次の製鋼工程における精錬能率や鋼の品質に大
きく影響することから、一般に製鋼処理に先立ち、かよ
うな不純物を除去するため溶銑の予備処理が行われる。
また、転炉精錬などの一次精錬後においても、必要に応
じ、脱Sや鋼中Oの低減を図る目的で、二次精錬が行わ
れる。この発明は、上記したような溶銑の予備処理や二
次精錬に用いて好適な溶湯の精錬方法及び精錬装置に関
し、とくに精錬用粉体(以下フラックスという)の反応
効率を向上させることにより、フラックス原単位の低減
と共に生産性の向上を図ろうとするものである。
[Industrial application] S, in the hot metal made in the blast furnace,
Although a large amount of impurity elements such as P are contained, since such impurity elements greatly affect the refining efficiency and the quality of steel in the next steelmaking process, in general, such impurities are removed prior to the steelmaking process. Pretreatment of hot metal is performed.
Further, even after the primary refining such as converter refining, the secondary refining is performed as necessary for the purpose of reducing S and reducing O in the steel. The present invention relates to a molten metal refining method and a refining apparatus suitable for use in the pretreatment and secondary refining of molten pig iron as described above, and particularly by improving the reaction efficiency of refining powder (hereinafter referred to as flux), It aims to reduce productivity and improve productivity.

【0002】[0002]

【従来の技術】溶銑の予備処理法や二次精錬法の一つと
して、溶湯中にフラックスをキャリアガスと共に吹き込
み、かかる粉体を含む気泡が溶湯中を上昇する過程で、
気−液反応を行わせることによって脱S等を行う、いわ
ゆるインジェクション方式がある。かようなインジェク
ション方式において、反応効率を向上させるためには、
気泡径を小さくして、浮上時間を長くすると共にフラッ
クス−気泡界面積を大きくすることが肝要である。
2. Description of the Related Art As one of hot metal pretreatment method and secondary refining method, a flux is blown into a molten metal together with a carrier gas, and bubbles containing such powder rise in the molten metal.
There is a so-called injection method in which S-removal and the like is performed by causing a gas-liquid reaction. In such an injection method, in order to improve the reaction efficiency,
It is important to reduce the bubble diameter, increase the floating time, and increase the flux-bubble interface area.

【0003】上記したインジェクション方式の精錬方法
としては、たとえば、 第143, 144回西山記念技術講座 P. 87(日本鉄鋼協
会)には、2本ランス吹込み法が、また 特開昭58-34126号公報には、回転攪拌装置にて不活性
ガスをキャリアガスとしてフラックス(CaO, CaCO3, C
aF2, CaCl2, Ca)等を吹込み、溶鋼の脱ガス、脱介在物
を行う方法が、さらに 特公昭63-26169号公報には、回転又は移動磁界と浸漬
回転攪拌体とによって、0.8 m/s以上の溶鋼流速を
得、この溶鋼流にガス及び精錬剤を添加する溶鋼の清浄
化方法が、それぞれ報告されている。
As the above-mentioned injection refining method, for example, in the 143rd and 144th Nishiyama Memorial Technology Course P. 87 (Japan Iron and Steel Institute), a two-lance blowing method is used, and JP-A-58-34126 is also used. In the publication, the flux (CaO, CaCO 3 , C
aF 2 , CaCl 2 , Ca) etc., and degassing and deinclusions of molten steel are further described in Japanese Patent Publication No. 63-26169. A method for cleaning molten steel by obtaining a molten steel flow velocity of m / s or more and adding a gas and a refining agent to the molten steel flow has been reported.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記
の2本ランス吹込み法では、2本のランスからの同時浸
漬吹込みが必要なため、操作が煩雑なだけでなく、ラン
スコストや設備費が高価につくなどの問題があった。ま
た、, の方法では、十分満足がいくほどの脱Sや脱
Pは行えないところに問題を残していた。この発明は、
上記の問題を有利に解決するもので、フラックス吹込み
による脱S,P処理の反応効率を効果的に向上させ、も
ってフラックス原単位の低減及び生産性の向上を実現す
ることができる溶湯の精錬方法を、その実施に直接用い
て好適な精錬装置と共に提案することを目的とする。
However, in the above-mentioned two-lance lance blowing method, since simultaneous immersion blowing from two lances is required, not only the operation is complicated, but also the lance cost and the equipment cost are increased. There were problems such as being expensive. In addition, the method of, left a problem in that it could not perform S-removal and P-removal to the extent that it was sufficiently satisfactory. This invention
The above-mentioned problems are advantageously solved, and the refining of the molten metal can effectively improve the reaction efficiency of the de-S and P treatments by the flux injection, thereby reducing the flux basic unit and improving the productivity. The aim is to propose the method directly for its implementation with suitable refining equipment.

【0005】[0005]

【課題を解決するための手段】フラックスの反応効率
は、反応容器が同一であれば、吹込みにより生成する気
泡径を小さく、かつ広い領域に分散させるのが効果的で
あることは、前述したとおりである。そこで発明者ら
は、かかる気泡の微細分散化方法について鋭意研究を重
ねたところ、吹込みランスをその軸心を中心に回転させ
てやれば、吹込みノズルから生成する気泡(気泡中には
フラックス粉体を包含している)に剪断力が付与される
結果、気泡径が効果的に小さくなること、また加えて、
容器底部付近(吹込みランスノズル付近)に、回転磁界
によりランス回転方向とは逆方向の溶湯流動を与えるこ
とにより、剪断力が一層大きくなり、気泡径をより小さ
くできることの知見を得た。この発明は、上記の知見に
立脚するものである。
As for the reaction efficiency of the flux, it is effective to disperse the bubble diameter generated by blowing into a wide area when the reaction vessels are the same. It is as follows. Therefore, the inventors conducted extensive research on such a method of finely dispersing bubbles, and found that if the blowing lance was rotated around its axis, bubbles generated from the blowing nozzle (flux in the bubbles (Including the powder), the effect of applying a shearing force is that the bubble size is effectively reduced, and in addition,
It was found that the shearing force can be further increased and the bubble diameter can be made smaller by applying a molten metal flow in the direction opposite to the lance rotation direction by a rotating magnetic field near the bottom of the container (near the blowing lance nozzle). The present invention is based on the above findings.

【0006】すなわちこの発明の、要旨構成は次のとお
りである。 1.粉体吹込み用ランスを溶湯中に浸漬し、該ランス先
端の吹込みノズルからフラックスをキャリアガスと共に
吹込んで不純物元素を除去する精錬方法において、該吹
き込みノズルから、粉体吹込み用ランスの軸線と交差す
る方向にフラックスを吹込みつつ、該ランス自身をその
軸線を中心として回転させることを特徴とする溶湯の精
錬方法(第1発明)。
That is, the gist of the present invention is as follows. 1. In a refining method in which a powder blowing lance is immersed in a molten metal, and a flux is blown together with a carrier gas from a blowing nozzle at the tip of the lance to remove impurity elements, the axis of the powder blowing lance is fed from the blowing nozzle. A method for refining a molten metal (first invention), characterized in that the lance itself is rotated about its axis while blowing a flux in a direction intersecting with.

【0007】2.上記第1発明において、磁界発生コイ
ルにより、吹込みノズル周辺の溶湯に、吹込み用ランス
の回転の向きとは逆向きの回転流動を与えることを特徴
とする溶湯の精錬方法(第2発明)。
2. In the first invention, the magnetic field generating coil imparts a rotational flow in a direction opposite to the direction of rotation of the blowing lance to the molten metal around the blowing nozzle (second invention). .

【0008】3.上記第1又は第2発明において、フラ
ックスが、Mg, CaO, Na2O, Na2CO3,酸化鉄のうちから
選んだ一種又は二種以上である溶湯の精錬方法(第3発
明)。
3. The method for refining a molten metal according to the first or second invention, wherein the flux is one or more selected from Mg, CaO, Na 2 O, Na 2 CO 3 , and iron oxide (third invention).

【0009】4.精錬容器に満たされた溶湯中に、粉体
吹込み用ランスを浸漬し、該ランス先端の吹込みノズル
からフラックスをキャリアガスと共に吹込んで不純物元
素を除去する精錬装置であって、該ランスはその先端
に、ランス軸線と交差する向きに開口するノズルを有
し、また該ランスをその軸線を中心として回転させる駆
動装置をそなえ、かつ容器底部には溶湯の回転流動を司
る磁界発生コイルを配設したことを特徴とする溶湯の精
錬装置(第4発明)。
4. A refining device for immersing a powder blowing lance in a molten metal filled in a refining vessel and blowing a flux together with a carrier gas from a blowing nozzle at the tip of the lance to remove an impurity element, the lance being The tip has a nozzle that opens in a direction that intersects the lance axis, a drive device that rotates the lance about the axis is provided, and a magnetic field generating coil that controls the rotational flow of the molten metal is provided at the bottom of the container. An apparatus for refining molten metal characterized in that (4th invention).

【0010】[0010]

【作用】図1(a),(b)に、従来の一般的なインジ
ェクション要領を模式で示す。図中、番号1は粉体吹込
みランス、2は精錬容器、3は溶湯、4は発生気泡、5
は溶湯の流動方向を示す矢印である。さて従来の方式で
は、吹き込み領域が限定される、すなわち気泡の上昇領
域と下降流領域とに明確に分かれるだけでなく、気泡同
士が合体して大きな気泡となり易いため、気泡の上昇速
度が大きく(浮上時間が短い)、しかもフラックス−気
泡界面積が小さいことから、精錬剤と溶湯との間で十分
な反応は望み得なかった。
1 (a) and 1 (b) schematically show a conventional general injection procedure. In the figure, number 1 is a powder blowing lance, 2 is a refining vessel, 3 is molten metal, 4 is generated bubbles, 5
Is an arrow indicating the flowing direction of the molten metal. Now, in the conventional method, the blowing area is limited, that is, not only the rising area and the downflow area of the bubble are clearly separated, but also the bubbles are likely to be combined into a large bubble, so that the rising speed of the bubble is large ( Since the floating time was short) and the flux-bubble interface area was small, a sufficient reaction could not be expected between the refining agent and the molten metal.

【0011】これに対し、図2(a),(b)に示すよ
うに、この発明に従いフラックスを粉体吹込み用ランス
の軸線と交差する方向に吹込みつつ、該ランス自身をそ
の軸線を中心として回転させてやると、発生気泡に剪断
力が作用することから、気泡を微細化でき、また容器内
全域に気泡を分散させることができるので、従来に較
べ、反応効率を格段に向上させることができるのであ
る。なお図中6は粉体吹込みランスの回転方向を示す矢
印である。
On the other hand, as shown in FIGS. 2 (a) and 2 (b), according to the present invention, while the flux is being blown in the direction intersecting with the axis of the powder blowing lance, the lance itself is moved along its axis. When it is rotated around the center, the shearing force acts on the generated bubbles, which makes it possible to make the bubbles finer and to disperse the bubbles throughout the container, thus significantly improving the reaction efficiency compared to the conventional method. It is possible. In the figure, 6 is an arrow indicating the rotation direction of the powder blowing lance.

【0012】ここに、微細かつ均一な気泡を得る上で
は、ランス表面と溶鋼との相対速度差は0.5 m/s以上
(好ましくは3m/s以下)とすることが望ましい。ま
た、ランスの直径は 200〜500 mmφ程度が好ましい。従
って、好適ランス回転数は50〜300 r.p.m 程度となる。
さらにフラックスとしては、脱S用には、CaOやソーダ
灰(Na2CO3),Mgなどが、また脱P用には、CaO, Ca
F2, 酸化鉄などが有利に適合する。
Here, in order to obtain fine and uniform bubbles, it is desirable that the relative velocity difference between the lance surface and the molten steel is 0.5 m / s or more (preferably 3 m / s or less). The diameter of the lance is preferably about 200 to 500 mmφ. Therefore, the preferred lance rotation speed is about 50 to 300 rpm.
Further, as flux, CaO, soda ash (Na 2 CO 3 ), Mg, etc. for de-S removal, and CaO, Ca for de-P removal.
F 2, iron oxide is advantageously suited.

【0013】次に、図3に、この発明に従う精錬装置の
好適例を模式で示す。装置の基本構成は、前掲図2に示
したものと共通するので、同一の番号を付して示し、番
号7が吹込みランス1の先端部に設けた吹込みノズルで
あり、8は粉体輸送ホース、9は粉体輸送配管、10はラ
ンス回転装置、11はランス昇降装置、12はランス昇降ポ
スト、13はスイベルジョイント、14はホース自動着脱装
置、そして15が交流磁界発生コイルである。上図に示し
たところにおいて、溶湯3中に粉体吹込み用ランス1を
浸漬し、該ランス1を回転させることにより、発生気泡
4は剪断力によって微細化される結果、単位粉体重量当
りの気泡表面積が増大し、粉体と溶湯4との接触面積が
大きくなることから、反応効率が向上するのである。
Next, FIG. 3 schematically shows a preferred example of the refining apparatus according to the present invention. Since the basic structure of the apparatus is the same as that shown in FIG. 2 above, the same reference numerals are given, the reference numeral 7 is a blowing nozzle provided at the tip of the blowing lance 1, and 8 is a powder. A transport hose, 9 is a powder transport pipe, 10 is a lance rotating device, 11 is a lance lifting device, 12 is a lance lifting post, 13 is a swivel joint, 14 is an automatic hose attaching / detaching device, and 15 is an AC magnetic field generating coil. As shown in the above figure, by immersing the powder blowing lance 1 in the molten metal 3 and rotating the lance 1, the generated bubbles 4 are miniaturized by the shearing force. Since the bubble surface area of No. 2 increases and the contact area between the powder and the molten metal 4 increases, the reaction efficiency improves.

【0014】なお、気泡をより微細化するためには、粉
体吹込ノズルと溶湯との相対速度を増加させることが有
効である。これを達成する手段として、ランス直径を大
きくしたり、回転数を上げることが考えられるが、ラン
ス直径を大きくしたり、回転数を上げたりすると、溶湯
の流動3も大きくなるので、相対速度の効果的な向上は
望み難い。そこでこの発明では、粉体吹込ノズルと溶湯
との相対速度を一層増加する手段として、容器底部に磁
界発生コイル15を配設し、この磁界発生コイル15によ
り、吹込みノズル周辺の溶湯に、吹込み用ランスの回転
の向きとは逆向きの回転流動を与えるのである。かくし
て、相対速度が増大すると、気泡はより微細化され、そ
の結果、反応効率の一層の向上が実現されるのである。
In order to make the bubbles finer, it is effective to increase the relative speed between the powder injection nozzle and the molten metal. As a means for achieving this, it is conceivable to increase the diameter of the lance or increase the number of revolutions. However, if the diameter of the lance is increased or the number of revolutions is increased, the flow 3 of the molten metal also increases. It is hard to hope for effective improvement. Therefore, in the present invention, as a means for further increasing the relative speed between the powder blowing nozzle and the molten metal, a magnetic field generating coil 15 is provided at the bottom of the container, and the magnetic field generating coil 15 blows the molten metal around the blowing nozzle. It imparts a rotational flow in the opposite direction to the direction of rotation of the jamming lance. Thus, as the relative velocity increases, the bubbles become smaller, resulting in a further improvement in reaction efficiency.

【0015】[0015]

【実施例】トピードで脱P(酸化鉄,CaO)後, 溶銑鍋
に払い出したC含有量:4.5 %,温度:1300℃の溶銑
に、図3に示した精錬装置を用いて、CaO,Mgによる脱
S処理を行った。その他の条件は次のとおりである。 ・溶銑鍋容積:200 t ・溶湯深さ :3m ・浴面からランスノズルまでの距離:2.5 m ・ランス直径:200 mmφ ・回転数:50rpm 〜300 rpm (周速 0.5m/s) ・粉体吹込み速度:100 kg/min
[Examples] After de-Ping (iron oxide, CaO) in a topeed, the C content discharged to the hot metal ladle was 4.5% and the temperature was 1300 ° C. S removal treatment was performed. Other conditions are as follows.・ Hot metal pot volume: 200 t ・ Melting metal depth: 3 m ・ Distance from bath surface to lance nozzle: 2.5 m ・ Lance diameter: 200 mmφ ・ Rotation speed: 50 rpm to 300 rpm (peripheral speed 0.5 m / s) ・ Powder Blowing speed: 100 kg / min

【0016】精錬後の脱S効率を表1に示す。なお、脱
S効率は、従来法で脱S処理を施した場合の脱S効率を
1とし、その相対比で評価した。
Table 1 shows the S removal efficiency after refining. In addition, the S removal efficiency was evaluated by the relative ratio of the S removal efficiency when the S removal treatment was performed by the conventional method as 1.

【表1】 [Table 1]

【0017】同表から明らかなように、この発明に従い
処理した場合には、従来に較べ、反応効率を 2.5倍も向
上させることができた。
As is clear from the table, when the treatment is carried out according to the present invention, the reaction efficiency can be improved by 2.5 times as compared with the conventional case.

【0018】[0018]

【発明の効果】かくしてこの発明によれば、インジェク
ション方式による溶銑の予備処理及び二次精錬におい
て、フラックスの反応効率を従来に較べて格段に向上さ
せることができ、ひいてはフラックス原単位の低減及び
生産性の向上が実現できる。
As described above, according to the present invention, in the pretreatment and secondary refining of molten pig iron by the injection method, the reaction efficiency of the flux can be remarkably improved as compared with the conventional method, and the flux basic unit can be reduced and the production can be improved. It is possible to improve the sex.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来法に従って精錬剤を溶湯中に吹込んだ場合
における、気泡の発生状況を示した図である。
FIG. 1 is a diagram showing the generation of bubbles when a refining agent is blown into a molten metal according to a conventional method.

【図2】この発明に従って精錬剤を溶湯中に吹込んだ場
合における、気泡の発生状況を示した図である。
FIG. 2 is a diagram showing a bubble generation state when a refining agent is blown into a molten metal according to the present invention.

【図3】この発明に従う好適精錬装置の模式図で。FIG. 3 is a schematic view of a preferred refining device according to the present invention.

【符号の説明】[Explanation of symbols]

1 粉体吹込みランス 2 精錬容器 3 溶湯 4 発生気泡 5 溶湯の流動方向を示す矢印 6 ランスの回転方向を示す矢印 7 吹込みノズル 8 粉体輸送ホース 9 粉体輸送配管 10 ランス回転装置 11 ランス昇降装置 12 ランス昇降ポスト 13 スイベルジョイント 14 ホース自動着脱装置 15 交流磁界発生コイル 1 Powder injection lance 2 Refining vessel 3 Molten metal 4 Generated bubbles 5 Arrow indicating the flow direction of the molten metal 6 Arrow indicating the rotation direction of the lance 7 Injection nozzle 8 Powder transportation hose 9 Powder transportation piping 10 Lance rotation device 11 Lance Lifting device 12 Lance lifting post 13 Swivel joint 14 Hose automatic attaching / detaching device 15 AC magnetic field generating coil

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粉体吹込み用ランスを溶湯中に浸漬し、
該ランス先端の吹込みノズルから精錬用粉体をキャリア
ガスと共に吹込んで不純物元素を除去する精錬方法にお
いて、 該吹き込みノズルから、粉体吹込み用ランスの軸線と交
差する方向に精錬用粉体を吹込みつつ、該ランス自身を
その軸線を中心として回転させることを特徴とする溶湯
の精錬方法。
1. A powder blowing lance is immersed in a molten metal,
In a refining method of removing impurity elements by blowing a refining powder together with a carrier gas from a blowing nozzle at the tip of the lance, the refining powder is fed from the blowing nozzle in a direction intersecting the axis of the powder blowing lance. A method for refining a molten metal, which comprises rotating the lance itself about its axis while blowing.
【請求項2】 請求項1において、磁界発生コイルによ
り、吹込みノズル周辺の溶湯に、吹込み用ランスの回転
の向きとは逆向きの回転流動を与えることを特徴とする
溶湯の精錬方法。
2. The method for refining a molten metal according to claim 1, wherein the magnetic field generating coil imparts a rotational flow to the molten metal around the blowing nozzle in a direction opposite to the direction of rotation of the blowing lance.
【請求項3】 請求項1又は2において、精錬用粉体
が、Mg, CaO, CaF2,Na2O, Na2CO3及び酸化鉄のうちか
ら選んだ一種又は二種以上である溶湯の精錬方法。
3. The molten metal according to claim 1 or 2, wherein the refining powder is one or more selected from Mg, CaO, CaF 2 , Na 2 O, Na 2 CO 3 and iron oxide. Refining method.
【請求項4】 精錬容器に満たされた溶湯中に、粉体吹
込み用ランスを浸漬し、該ランス先端の吹込みノズルか
ら精錬用粉体をキャリアガスと共に吹込んで不純物元素
を除去する精錬装置であって、 該ランスはその先端に、ランス軸線と交差する向きに開
口するノズルを有し、また該ランスをその軸線を中心と
して回転させる駆動装置をそなえ、かつ容器底部には溶
湯の回転流動を司る磁界発生コイルを配設したことを特
徴とする溶湯の精錬装置。
4. A refining device for immersing a powder blowing lance in a molten metal filled in a refining vessel and blowing the refining powder together with a carrier gas from a blowing nozzle at the tip of the lance to remove an impurity element. The lance has at its tip a nozzle that opens in a direction that intersects with the lance axis, has a drive device that rotates the lance about the axis, and the bottom of the container has a rotary flow of molten metal. A refining apparatus for molten metal, characterized in that a magnetic field generating coil for controlling the above is provided.
JP1085993A 1993-01-26 1993-01-26 Method and device for smelting molten metal Pending JPH06221774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1085993A JPH06221774A (en) 1993-01-26 1993-01-26 Method and device for smelting molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1085993A JPH06221774A (en) 1993-01-26 1993-01-26 Method and device for smelting molten metal

Publications (1)

Publication Number Publication Date
JPH06221774A true JPH06221774A (en) 1994-08-12

Family

ID=11762089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1085993A Pending JPH06221774A (en) 1993-01-26 1993-01-26 Method and device for smelting molten metal

Country Status (1)

Country Link
JP (1) JPH06221774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398399B1 (en) * 1999-12-07 2003-09-19 주식회사 포스코 Method for enhancing desulfurization efficiency
WO2006021066A1 (en) 2004-08-27 2006-03-02 De Castro Marcio Moraes System of gas and/or gas and powders injection in liquid metals throough rotary refractory lance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398399B1 (en) * 1999-12-07 2003-09-19 주식회사 포스코 Method for enhancing desulfurization efficiency
WO2006021066A1 (en) 2004-08-27 2006-03-02 De Castro Marcio Moraes System of gas and/or gas and powders injection in liquid metals throough rotary refractory lance

Similar Documents

Publication Publication Date Title
JP6645374B2 (en) Melting method of ultra low sulfur low nitrogen steel
JP4715369B2 (en) Hot metal desulfurization treatment method
JPH11279630A (en) Method for smelting highly cleaned steel
JPH06221774A (en) Method and device for smelting molten metal
US3672869A (en) Continuous metallurgical process
JP5906664B2 (en) Hot metal desulfurization method
JPH02179813A (en) Method for refining molten metal into high purity and high cleanliness
JPH06299261A (en) Method for cleaning copper or copper alloy
JPH07331313A (en) Method and apparatus for refining molten metal
JPS63290242A (en) Method, converter and lance for producing low carbon/low silicon ferromanganese
JP3835358B2 (en) Method for refining molten metal
JPH0741825A (en) Top blowing lange device in vacuum degassing equipment
KR100336855B1 (en) Flux wire for use in the manufacture of high purity aluminum deoxidized steel
JP2889901B2 (en) Liquid steel bath reheating method
EP0134351A1 (en) Recovery of vanadium oxide
RU2095429C1 (en) Method of producing roller-bearing steel
JP3168437B2 (en) Vacuum refining method
JP3371559B2 (en) Heat refining method of molten steel
JPH0892618A (en) Prerefining method
JP2684113B2 (en) Dephosphorization method of chromium-containing hot metal
JP2005146335A (en) Method for dephosphorizing molten pig iron
JP3282530B2 (en) Method for producing high cleanliness low Si steel
WO2021229422A1 (en) Stirring method of liquid metal and associated device
JP2015040325A (en) Preliminary treatment method of molten iron
JP2005248219A (en) Molten iron pretreatment method