JPH06219719A - Graphite interlaminar compound - Google Patents

Graphite interlaminar compound

Info

Publication number
JPH06219719A
JPH06219719A JP2410808A JP41080890A JPH06219719A JP H06219719 A JPH06219719 A JP H06219719A JP 2410808 A JP2410808 A JP 2410808A JP 41080890 A JP41080890 A JP 41080890A JP H06219719 A JPH06219719 A JP H06219719A
Authority
JP
Japan
Prior art keywords
graphite
intercalation compound
alkali metal
aliphatic hydrocarbon
unsaturated aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2410808A
Other languages
Japanese (ja)
Other versions
JP2595383B2 (en
Inventor
Yoichi Takahashi
洋一 高橋
Kazuko Oi
和子 大井
Makoto Katsumata
信 勝亦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2410808A priority Critical patent/JP2595383B2/en
Publication of JPH06219719A publication Critical patent/JPH06219719A/en
Application granted granted Critical
Publication of JP2595383B2 publication Critical patent/JP2595383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a novel graphite interlaminar compound holding stable and high conductivity even in the atmosphere, excellent in stability against high humidity and high temperature, and suitable for utilizing as a highly conductive material. CONSTITUTION:A three component graphite interlaminar compound comprising graphite, an alkali metal and an unsaturated aliphatic hydrocarbon and represented by formula: M.Cx.Ay (M is alkali metal; C is carbon; A is unsaturated aliphatic hydrocarbon; x is 8-100; y is 0.001-3.0).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高導電性材料として利
用するに適した新規な黒鉛層間化合物に関する。
FIELD OF THE INVENTION The present invention relates to a novel graphite intercalation compound suitable for use as a highly conductive material.

【0002】[0002]

【従来の技術】黒鉛は軽量であって導電性が高いところ
から、導電性材料として各種の応用分野に利用されてい
る。更に近年は、かかる黒鉛材料の導電性を改良するた
めに種々の研究が進められており、黒鉛の結晶層間に種
々の分子、原子、イオンなど、たとえば硝酸、塩化第2
銅などを挿入して導電性の改善された層間化合物が得ら
れることが知られている。ところが、従来から知られて
いる黒鉛層間化合物の殆どは、一般に不安定であって大
気中で温度、湿度等の影響を受けて徐々に分解するとい
う問題がある。
2. Description of the Related Art Since graphite is lightweight and has high conductivity, it is used as a conductive material in various fields of application. Furthermore, in recent years, various studies have been conducted in order to improve the conductivity of such graphite materials, and various molecules, atoms, ions, etc., such as nitric acid and chloride
It is known that an intercalation compound with improved conductivity can be obtained by inserting copper or the like. However, most of the conventionally known graphite intercalation compounds are generally unstable and have a problem of gradually decomposing under the influence of temperature, humidity and the like in the atmosphere.

【0003】一方、ポリイミドフィルムを1600℃以
上の温度で熱処理して得られる黒鉛化フィルムの塩化第
2銅層間化合物が、比較的に安定であることが知られて
いる(特開平2−26820)。しかしこの層間化合物
は、常温の大気中では比較的安定であるものの200℃
程度の温度で不安定であって、分解を起こすという欠点
があった。
On the other hand, it is known that the cupric chloride intercalation compound of the graphitized film obtained by heat-treating a polyimide film at a temperature of 1600 ° C. or higher is relatively stable (JP-A-2-26820). . However, although this intercalation compound is relatively stable in normal temperature atmosphere,
It had the drawback of being unstable at moderate temperatures and causing decomposition.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、大気
中で安定した高い導電性を保持し、湿度や温度に対する
安定性が優れていて、高導電性材料として利用するに適
した新規な黒鉛層間化合物を提供することを目的とした
ものである。
Therefore, the present invention is a novel graphite suitable for use as a highly conductive material, which has a stable and highly conductive property in the atmosphere and is excellent in stability against humidity and temperature. It is intended to provide an intercalation compound.

【0005】[0005]

【課題を解決するための手段】上記のような本発明の目
的は、式M・Cx ・Ay (但し、Mはアルカリ金属、C
は炭素、Aは不飽和脂肪族炭化水素を表し、xは8〜1
00の数、yは0.001〜3.0の数を表す)で表さ
れる、黒鉛とアルカリ金属及び不飽和脂肪族炭化水素と
の3成分系黒鉛層間化合物によって達成される。
The object of the present invention as described above is represented by the formula MC x .A y (where M is an alkali metal, C
Is carbon, A is unsaturated aliphatic hydrocarbon, x is 8 to 1
This is achieved by a ternary graphite intercalation compound of graphite with an alkali metal and an unsaturated aliphatic hydrocarbon, represented by the number of 00, y represents the number of 0.001 to 3.0).

【0006】かかる本発明の3成分系黒鉛層間化合物
は、黒鉛とアルカリ金属とを真空下で加熱することによ
りアルカリ金属の蒸気を黒鉛に接触させて第1ステージ
のアルカリ金属黒鉛層間化合物を生成させ、次いで前記
黒鉛層間化合物に黒鉛を添加して真空下で加熱すること
により第2ステージのアルカリ金属黒鉛層間化合物に転
化し、更に不飽和脂肪族炭化水素の気体を50℃以下で
0.1〜100分間接触させることによって製造するこ
とができる。
In the three-component graphite intercalation compound of the present invention, the first stage alkali metal graphite intercalation compound is formed by heating the graphite and the alkali metal under vacuum to bring the vapor of the alkali metal into contact with the graphite. Next, graphite is added to the graphite intercalation compound and converted into a second stage alkali metal graphite intercalation compound by heating under vacuum, and a gas of unsaturated aliphatic hydrocarbon is further added at a temperature of 50 ° C. or lower at 0.1 to 0.1%. It can be manufactured by contacting for 100 minutes.

【0007】本発明の3成分系黒鉛層間化合物、すなわ
ち式M・Cx ・Ay (但し、Mはアルカリ金属、Cは炭
素、Aは不飽和脂肪族炭化水素を表し、xは8〜100
の数、yは0.001〜3.0の数を表す)の化合物に
おいて、これを構成するアルカリ金属すなわちMは、リ
チウム、ナトリウム、カリウム、ルビジウム又はセシウ
ムであり、また不飽和脂肪族炭化水素すなわちAは、例
えばエチレン、プロピレン、1−ブテン、ブタジエン等
の少なくも1つの炭素−炭素二重結合を有する不飽和脂
肪族炭化水素、例えばアセチレン、メチルアセチレン、
1−ブチン、2−ブチン等の少なくも1つの炭素−炭素
三重結合を有する不飽和脂肪族炭化水素、或いは例えば
ビニルアセチレン等の炭素−炭素二重結合と炭素−炭素
三重結合とを有する不飽和脂肪族炭化水素などである。
[0007] 3-component graphite intercalation compound of the present invention, i.e. Formula M · C x · A y (where, M is an alkali metal, C is carbon, A represents an unsaturated aliphatic hydrocarbon, x is 8 to 100
, Y represents a number of 0.001 to 3.0), the alkali metal constituting the compound, that is, M is lithium, sodium, potassium, rubidium or cesium, and an unsaturated aliphatic hydrocarbon. That is, A is an unsaturated aliphatic hydrocarbon having at least one carbon-carbon double bond such as ethylene, propylene, 1-butene, butadiene, etc., such as acetylene, methylacetylene,
Unsaturated aliphatic hydrocarbon having at least one carbon-carbon triple bond such as 1-butyne and 2-butyne, or unsaturated having carbon-carbon double bond and carbon-carbon triple bond such as vinylacetylene. Examples include aliphatic hydrocarbons.

【0008】本発明の3成分系黒鉛層間化合物の主材料
となる黒鉛は、天然黒鉛のほか、石油コークスなどの炭
素材料を加熱処理して得られる人造黒鉛も用いることが
できる。この黒鉛材料の形状は特に限定されるものでは
なく、フレーク状、粉末状、繊維状或いはシート状など
であってもよい。フレーク状或いは粉末状である場合、
その粒径は20〜50メッシュ程度のものから、400
メッシュ以上の細かいものまで、適宜選択して利用する
ことができる。
As the graphite which is the main material of the three-component graphite intercalation compound of the present invention, not only natural graphite but also artificial graphite obtained by heat-treating a carbon material such as petroleum coke can be used. The shape of the graphite material is not particularly limited, and may be flake, powder, fiber or sheet. In the case of flakes or powder,
The particle size is from 20 to 50 mesh, 400
It is possible to properly select and use even finer meshes.

【0009】上記のような黒鉛材料を用いて3成分系黒
鉛層間化合物を合成するにあたっては、まず第1工程と
して黒鉛とアルカリ金属とを真空下で加熱することによ
りアルカリ金属の蒸気を黒鉛に接触させて第1ステージ
のアルカリ金属黒鉛層間化合物を合成する。この際、カ
リウム、ルビジウム、セシウムなどの重アルカリ金属を
用いる場合には、2つのバルブを備えたガラス管内に黒
鉛とアルカリ金属とを所定の距離を離して装入し、例え
ば1m Pa以下の真空下で封じたのちにアルカリ金属側の
温度(Ti )よりも黒鉛側の温度(Tg )が少なくとも
低くないような関係のそれぞれ一定の温度に保持して所
定時間反応させる方法(Two-bulb法)を利用することが
できる。
In synthesizing a three-component graphite intercalation compound using the above-mentioned graphite material, first, as a first step, the graphite and the alkali metal are heated under vacuum to bring the vapor of the alkali metal into contact with the graphite. Then, the first stage alkali metal graphite intercalation compound is synthesized. At this time, when a heavy alkali metal such as potassium, rubidium, or cesium is used, graphite and alkali metal are placed at a predetermined distance in a glass tube equipped with two bulbs, for example, a vacuum of 1 mPa or less. After sealing below, the temperature (Tg) on the graphite side is not at least lower than the temperature (Ti) on the alkali metal side, and the reaction is performed for a predetermined time by keeping each temperature constant (Two-bulb method) Can be used.

【0010】ここでTi 及びTg は使用するアルカリ金
属の種類によって異なり、例えばカリウムを用いるとき
は、Ti を250℃、Tg を250〜320℃として2
4時間以上保持することができ、またルビジウムを用い
るときは、Ti を208℃、Tg を215〜330℃と
して24時間以上保持することができる。さらにセシウ
ムを用いるときは、Ti を194℃、Tg を200〜4
25℃として24時間以上保持することができる。しか
しこれらの条件は一例であって、これらに限定されるも
のではない。
Here, Ti and Tg differ depending on the kind of alkali metal used. For example, when potassium is used, Ti is set to 250 ° C. and Tg is set to 250 to 320 ° C.
It can be kept for 4 hours or longer, and when rubidium is used, it can be kept for 24 hours or longer by setting Ti to 208 ° C. and Tg to 215 to 330 ° C. Furthermore, when cesium is used, Ti is 194 ° C. and Tg is 200 to 4
It can be maintained at 25 ° C. for 24 hours or more. However, these conditions are examples and are not limited to these.

【0011】次に、上記の第1工程で合成された第1ス
テージのアルカリ金属黒鉛層間化合物を第2ステージの
黒鉛層間化合物に転換するに必要な計算量の黒鉛と混合
し、好ましくは1m Pa以下の真空下で加熱すると、均一
な組成の第2ステージのアルカリ金属黒鉛層間化合物が
得られる。
Next, the first stage alkali metal graphite intercalation compound synthesized in the above-mentioned first step is mixed with a calculated amount of graphite necessary to convert it into the second stage graphite intercalation compound, preferably 1 mPa. Heating under vacuum below yields a second stage alkali metal graphite intercalation compound of uniform composition.

【0012】こうして得られた第2ステージのアルカリ
金属黒鉛層間化合物を反応管に入れて、好ましくは1m
Pa以下の真空としたのち、−120〜50℃の温度で不
飽和脂肪族炭化水素を圧力が102 〜105 Paとなるよ
うに導入し、1分以上好ましくは10分以上反応させる
ことにより、式M・Cx ・Ay (但し、Mはアルカリ金
属、Cは炭素、Aは不飽和脂肪族炭化水素を表し、xは
8〜100の数、yは0.001〜3.0の数を表す)
で表される本発明の3成分系黒鉛層間化合物が得られ
る。
The second stage alkali metal graphite intercalation compound thus obtained was placed in a reaction tube, and preferably 1 m
After a vacuum of Pa or less, by introducing an unsaturated aliphatic hydrocarbon at a temperature of −120 to 50 ° C. so that the pressure becomes 10 2 to 10 5 Pa, and reacting for 1 minute or more, preferably 10 minutes or more. , wherein M · C x · a y (where, M is an alkali metal, C is carbon, a represents an unsaturated aliphatic hydrocarbon, x is the number of 8 to 100, y is the 0.001 to 3.0 Represents a number)
A three-component graphite intercalation compound of the present invention represented by is obtained.

【0013】[0013]

【実施例】【Example】

(第1実施例)ユニオンカーバイド社製の黒鉛フィルム
(商品名グラフォイル)0.200gと金属セシウム
(試薬特級)0.400gとをTwo-bulb法の反応容器に
装入したのち1m Pa以下の真空とし、溶封した。黒鉛側
を350℃、セシウム側を300℃となるよう加熱して
20時間反応させた。
(Example 1) 0.200 g of a graphite film (trade name: Grafoil) manufactured by Union Carbide Co., and 0.400 g of metal cesium (special grade reagent) were charged into a reaction vessel of the Two-bulb method, and then a vacuum of 1 mPa or less And then sealed. The graphite side was heated to 350 ° C. and the cesium side was heated to 300 ° C. and reacted for 20 hours.

【0014】このセシウム黒鉛層間化合物0.302g
と粉末黒鉛(試薬特級)0.254gとをガラスアンプ
ルに入れて混合し、1m Pa以下の真空として溶封したの
ち300℃に24時間保持して反応させた。この生成物
を取り出してX線回折により分析したところ、結晶のC
軸方向の繰り返し周期の長さIc は9.37Åであり、
第2ステージの黒鉛層間化合物であることがわかった。
また、重量分析を行なったところ、CsC24の組成を有
するセシウム層間化合物であることがわかった。
0.302 g of this cesium graphite intercalation compound
And 0.254 g of powdered graphite (special grade reagent) were put in a glass ampoule, mixed, sealed under a vacuum of 1 mPa or less, and then kept at 300 ° C. for 24 hours for reaction. When this product was taken out and analyzed by X-ray diffraction, C
The length I c of the repeating cycle in the axial direction is 9.37Å,
It was found to be a second stage graphite intercalation compound.
Further, a gravimetric analysis revealed that the compound was a cesium intercalation compound having a composition of CsC 24 .

【0015】次に、この第2ステージセシウム黒鉛層間
化合物をガス反応器内に装入し、反応器を0.8m Pa以
下の真空とした後エチレンを5k Paの圧力となるよう導
入して、0℃で30分間反応させた。得られた青黒色の
生成物を取り出して分析を行なったところ、CsC24
1.3 の組成を有する黒鉛層間化合物であることがわか
った。但し、Etはエチレンを意味するものである。
Next, this second stage cesium graphite intercalation compound was charged into a gas reactor, the reactor was evacuated to a vacuum of 0.8 mPa or less, and then ethylene was introduced so as to have a pressure of 5 kPa. The reaction was carried out at 0 ° C for 30 minutes. The obtained bluish black product was taken out and analyzed. As a result, CsC 24 E
It was found to be a graphite intercalation compound having a composition of t 1.3 . However, Et means ethylene.

【0016】このようにして得られた黒鉛とセシウムと
エチレンとの3成分系の層間化合物Aの電気抵抗率を直
流4端子法によって測定した。また常温の大気中に10
00時間放置した後の電気抵抗率及び400℃に加熱し
て60分間保持した後の電気抵抗率をそれぞれ測定し、
安定性を調べた。これらの結果を原料の黒鉛についての
測定結果と対比して、第1表に示した。これをみれば、
本発明の3成分系層間化合物Aは優れた安定性を有して
いることがわかる。
The electrical resistivity of the thus obtained ternary intercalation compound A of graphite, cesium and ethylene was measured by the direct current 4-terminal method. Also, in the atmosphere at room temperature, 10
The electric resistivity after standing for 00 hours and the electric resistivity after heating at 400 ° C. and holding for 60 minutes were respectively measured,
Stability was investigated. These results are shown in Table 1 in comparison with the measurement results for the raw material graphite. If you look at this,
It can be seen that the three-component intercalation compound A of the present invention has excellent stability.

【0017】(第2実施例)第1実施例と全く同様の方
法によって、結晶のC軸方向の繰り返し周期の長さIc
が9.37Åであり、CsC24の組成を有する第2ステ
ージのセシウム黒鉛層間化合物を得た。
(Second Embodiment) By the same method as in the first embodiment, the length I c of the repeating period of the crystal in the C-axis direction is determined.
Was 9.37Å and a second stage cesium graphite intercalation compound having a composition of CsC 24 was obtained.

【0018】次に、この第2ステージのセシウム黒鉛層
間化合物をガス反応器内に装入し、反応器を0.8m Pa
以下の真空とした後、第1実施例におけるエチレンに代
えてアセチレンを5k Paの圧力となるよう導入して、−
20℃で30分間反応させた。得られた青黒色の生成物
を取り出して重量分析を行なったところ、CsC24At
0.7 の組成を有する黒鉛層間化合物であることがわかっ
た。但し、Atはアセチレンを意味するものである。
Next, this second stage cesium graphite intercalation compound was charged into a gas reactor and the reactor was set to 0.8 mPa.
After the following vacuum is applied, acetylene is introduced in place of ethylene in the first embodiment so as to have a pressure of 5 kPa,
The reaction was carried out at 20 ° C for 30 minutes. The obtained bluish black product was taken out and subjected to gravimetric analysis. As a result, CsC 24 At
It was found to be a graphite intercalation compound having a composition of 0.7 . However, At means acetylene.

【0019】このようにして得られた黒鉛とセシウムと
アセチレンとの3成分系層間化合物Bの電気抵抗率を第
1実施例と全く同様の方法で測定し、また第1実施例と
全く同様にして、常温の大気中に1000時間放置した
ときの安定性を調べた。これらの結果を第1表に合わせ
て示したが、本発明の3成分系層間化合物Bは優れた安
定性を有していることがわかる。
The electrical resistivity of the thus obtained ternary intercalation compound B of graphite, cesium and acetylene was measured in the same manner as in the first embodiment, and in the same manner as in the first embodiment. Then, the stability when left for 1000 hours in the atmospheric air was examined. These results are also shown in Table 1, and it can be seen that the three-component intercalation compound B of the present invention has excellent stability.

【表1】 [Table 1]

【0020】(第3実施例)マダガスカル産フレーク状
天然黒鉛(粒径20〜40メッシュ)0.200gと金
属セシウム(試薬特級)0.400gとを第1実施例と
全く同様にして反応させ、結晶のC軸方向の繰り返し周
期の長さIc が9.37Åで、CsC24の組成を有する
第2ステージのセシウム黒鉛層間化合物を得た。
(Third Example) Flake natural graphite (particle size 20-40 mesh) from Madagascar (0.200 g) and cesium metal (special grade reagent) (0.400 g) were reacted in exactly the same manner as in the first example. A second stage cesium graphite intercalation compound having a composition of CsC 24 and a length I c of the repeating cycle in the C-axis direction of the crystal of 9.37Å was obtained.

【0021】次に、この第2ステージセシウム黒鉛層間
化合物を第1実施例と全く同様にしてエチレンと反応さ
せた。得られた青黒色の生成物を取り出して重量分析を
行なったところ、CsC24Et1.3 の組成を有する黒鉛
層間化合物であることがわかった。但し、Etはエチレ
ンを意味するものである。
Next, this second stage cesium graphite intercalation compound was reacted with ethylene in exactly the same manner as in the first embodiment. The obtained bluish black product was taken out and subjected to gravimetric analysis, and was found to be a graphite intercalation compound having a composition of CsC 24 Et 1.3 . However, Et means ethylene.

【0022】このようにして得られた黒鉛とセシウムと
エチレンとの3成分系層間化合物C50mgを採り、示差
熱天秤により室温から800℃まで昇温速度10℃/mi
n で加熱して、アルゴン気流中での示差熱分析及び重量
変化の測定を行なうとともに質量分析装置付のガスクロ
マトグラフ装置により分解生成ガスの分析を行なったと
ころ、600℃まで分解は認められず、非常に高い熱安
定性を有することがわかった。
50 mg of the ternary intercalation compound C of graphite, cesium and ethylene thus obtained was taken and heated by a differential thermal balance from room temperature to 800 ° C. at a heating rate of 10 ° C./mi.
When heated at n, the differential thermal analysis in an argon stream and the measurement of the weight change were performed, and the decomposition product gas was analyzed by a gas chromatograph equipped with a mass spectrometer. No decomposition was observed up to 600 ° C. It was found to have a very high thermal stability.

【0023】[0023]

【発明の効果】本発明の黒鉛とアルカリ金属及び不飽和
脂肪族炭化水素との3成分系黒鉛層間化合物は、従来の
炭素材料より高い導電性を有しているのみならず従来の
黒鉛層間化合物に較べて優れた安定性を有しており、導
電材料として利用するに好適なものである。
The ternary graphite intercalation compound of graphite of the present invention with alkali metal and unsaturated aliphatic hydrocarbon has not only higher conductivity than conventional carbon materials but also conventional graphite intercalation compound. It has excellent stability as compared with, and is suitable for use as a conductive material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 式M・Cx ・Ay (但し、Mはアルカリ
金属、Cは炭素、Aは不飽和脂肪族炭化水素を表し、x
は8〜100の数、yは0.001〜3.0の数を表
す)で表される、黒鉛とアルカリ金属及び不飽和脂肪族
炭化水素との3成分系黒鉛層間化合物。
1. A formula M · C x · A y (where M represents an alkali metal, C represents carbon, A represents an unsaturated aliphatic hydrocarbon, and x
Is a number of 8 to 100 and y is a number of 0.001 to 3.0), and is a three-component graphite intercalation compound of graphite with an alkali metal and an unsaturated aliphatic hydrocarbon.
JP2410808A 1990-12-15 1990-12-15 Graphite intercalation compound Expired - Fee Related JP2595383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410808A JP2595383B2 (en) 1990-12-15 1990-12-15 Graphite intercalation compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410808A JP2595383B2 (en) 1990-12-15 1990-12-15 Graphite intercalation compound

Publications (2)

Publication Number Publication Date
JPH06219719A true JPH06219719A (en) 1994-08-09
JP2595383B2 JP2595383B2 (en) 1997-04-02

Family

ID=18519909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410808A Expired - Fee Related JP2595383B2 (en) 1990-12-15 1990-12-15 Graphite intercalation compound

Country Status (1)

Country Link
JP (1) JP2595383B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034825A1 (en) * 1995-05-05 1996-11-07 Etienne Lacroix Tous Artifices S.A. Intercalation compounds, method for preparing them and use thereof, particularly in pyrotechnics
JP2011144218A (en) * 2010-01-12 2011-07-28 Toyota Central R&D Labs Inc Olefin organic graphite material and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172609A (en) * 1984-09-14 1986-04-14 Michio Inagaki Production of swollen graphite
JPH0297411A (en) * 1988-09-30 1990-04-10 Kobe Steel Ltd Production of expanded graphite
JPH03153511A (en) * 1989-11-10 1991-07-01 Rikagaku Kenkyusho Method for finely flaking graphite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172609A (en) * 1984-09-14 1986-04-14 Michio Inagaki Production of swollen graphite
JPH0297411A (en) * 1988-09-30 1990-04-10 Kobe Steel Ltd Production of expanded graphite
JPH03153511A (en) * 1989-11-10 1991-07-01 Rikagaku Kenkyusho Method for finely flaking graphite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034825A1 (en) * 1995-05-05 1996-11-07 Etienne Lacroix Tous Artifices S.A. Intercalation compounds, method for preparing them and use thereof, particularly in pyrotechnics
AU692710B2 (en) * 1995-05-05 1998-06-11 Etienne Lacroix Tous Artifices S.A. Intercalation compounds, method for preparing them and use thereof, particularly in pyrotechnics
JP2011144218A (en) * 2010-01-12 2011-07-28 Toyota Central R&D Labs Inc Olefin organic graphite material and method for producing the same

Also Published As

Publication number Publication date
JP2595383B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
Asher A lamellar compound of sodium and graphite
US4729884A (en) Process for the preparation of a graphite intercalation compound
EP0042660B1 (en) Process for producing metallic carbonitride
US3705937A (en) Producing diamonds synthetically
Takahashi et al. Low temperature deposition of a refractory aluminium compound by the thermal decomposition of aluminium dialkylamides
JPH0413289B2 (en)
JP2595383B2 (en) Graphite intercalation compound
US4515709A (en) Ternary intercalation compound of a graphite with an alkali metal fluoride and fluorine, a process for producing the same, and an electrically conductive material comprising the ternary intercalation compound
US4645620A (en) Intercalation compounds of graphite
Cullis et al. The structure and crystal growth of carbon deposits formed by pyrolysis of some hydrocarbons and chlorohydrocarbons
JPH0329002B2 (en)
Tsang et al. Gas-phase concentration measurements and diamond film composition from chlorine assisted CVD
JPH05502656A (en) Method for preparing graphite flakes and films by low temperature pyrolysis
Gotoh et al. Preparation of air-stable and highly conductive potassium-intercalated graphite sheet
US2985510A (en) Process for preparing diborane
JP2595394B2 (en) Conductive resin composition
Jegoudez et al. A study of some alkali metal-furangraphite compounds and of their charge transfer characteristics
CA1162400A (en) Intercalation compound of a graphite with a thiazyl salt, a process for producing the same, and an electrically conductive material comprising the intercalation compound of a graphite with a thiazyl salt
US4906324A (en) Method for the preparation of silicon carbide platelets
JP7407422B2 (en) Method for producing oxygen-containing carbon material with selectively introduced furan ring
Akuzawa et al. Potassium-graphite intercalation compounds prepared from carbon materials of different heat-treatment temperature and their reaction with water vapor
Tattershall et al. Redetermination of the structure of α-tetraphosphorus trisulfide diiodide at 180 K
US4492652A (en) Reactions of aromatic compounds having two or more fused rings
JP7442133B2 (en) Nitrogen-containing carbon material into which basal nitrogen is selectively introduced and method for producing the same
Moore et al. Structure of manganese (II) iodide tetrahydrate, MnI2. 4H2O

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961029

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees