JPH0621746A - Quartz oscillator and its manufacture - Google Patents

Quartz oscillator and its manufacture

Info

Publication number
JPH0621746A
JPH0621746A JP17660592A JP17660592A JPH0621746A JP H0621746 A JPH0621746 A JP H0621746A JP 17660592 A JP17660592 A JP 17660592A JP 17660592 A JP17660592 A JP 17660592A JP H0621746 A JPH0621746 A JP H0621746A
Authority
JP
Japan
Prior art keywords
crystal
holding
plate
silicon substrate
crystal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17660592A
Other languages
Japanese (ja)
Other versions
JP3164893B2 (en
Inventor
Akihiro Kanahoshi
章大 金星
Tetsuyoshi Ogura
哲義 小掠
Yutaka Taguchi
豊 田口
Kazuo Eda
和生 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17660592A priority Critical patent/JP3164893B2/en
Priority to EP93109905A priority patent/EP0575948B1/en
Priority to DE69310031T priority patent/DE69310031T2/en
Priority to KR1019930011384A priority patent/KR0157331B1/en
Priority to US08/182,561 priority patent/US5747857A/en
Publication of JPH0621746A publication Critical patent/JPH0621746A/en
Priority to US08/473,932 priority patent/US5668057A/en
Application granted granted Critical
Publication of JP3164893B2 publication Critical patent/JP3164893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain the crystal vibrator with a superior temperature characteristic by fixing an oscillation use crystal plate on a holding quartz plate through direct bonding and fixing the holding quartz plate onto a silicon substrate through direct bonding. CONSTITUTION:An oscillation use quartz plate 11 is fixed to a holding quartz plate 12 through direct bonding and then the holding quartz plate 12 is fixed onto a silicon substrate 13 through direct bonding. Since the thermal expansion rate of the oscillation use quartz plate 11 is equal to that of the holding quartz plate 12, no thermal stress is generated on the bonded part. A difference of the thermal expansion rate between the holding quartz plate 12 and the silicon substrate 13 is almost concentrated onto the holding quartz plate 12. Thus, the stress is not almost exerted to the oscillation use quartz plate 11 and the temperature frequency characteristic is improved. Furthermore, since no adhesives are employed, the stability for the strength and heat is improved and since no gas is generated, the reliability is improved and the quartz oscillator with a superior temperature characteristic is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水晶振動子およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal oscillator and a method for manufacturing the same.

【0002】[0002]

【従来の技術】水晶振動子は、その高い安定性により、
情報通信に欠かせない重要なデバイスとして用いられて
いる。近年衛星通信や携帯電話などの発達にともない、
各デバイスの小型化、高性能化が一つの大きな目標とさ
れているが、水晶振動子も例外ではない。
2. Description of the Related Art Crystal oscillators have high stability,
It is used as an important device indispensable for information communication. With the development of satellite communication and mobile phones in recent years,
One of the major goals is to reduce the size and increase the performance of each device, but crystal units are no exception.

【0003】水晶振動子には、厳しい周波数安定性が要
求される。水晶振動子の周波数は、振動用水晶板に応力
が加わることによって変化するので、前記振動用水晶板
に加わる応力を軽減する工夫が様々なされている。
Crystal oscillators are required to have strict frequency stability. Since the frequency of the crystal unit changes when stress is applied to the vibrating crystal plate, various measures have been taken to reduce the stress applied to the vibrating crystal plate.

【0004】図5に、従来の水晶振動子の構造の一例を
示す。図5において、51は振動用水晶板、52は金属
保持部、53は励起電極、54はケース、55は導電性
接着剤である。振動用水晶板51は、その熱膨張率の差
に起因する応力が加わりにくい様に弾性的な構造を持つ
金属保持部52に導電性接着剤55で固定されている。
FIG. 5 shows an example of the structure of a conventional crystal oscillator. In FIG. 5, 51 is a vibrating crystal plate, 52 is a metal holding part, 53 is an excitation electrode, 54 is a case, and 55 is a conductive adhesive. The vibrating crystal plate 51 is fixed with a conductive adhesive 55 to the metal holding portion 52 having an elastic structure so that stress due to the difference in the coefficient of thermal expansion is less likely to be applied.

【0005】しかしながら、金属保持部52や、導電性
接着剤55などと振動用水晶板51との熱膨張率の差に
起因する応力が振動用水晶板51に加わることを避けら
れないため、温度に対する周波数安定性は十分でなかっ
た。
However, the stress due to the difference in the coefficient of thermal expansion between the vibrating crystal plate 51 and the metal holding part 52 or the conductive adhesive 55 is unavoidably applied to the vibrating crystal plate 51, so that the temperature of the vibrating crystal plate 51 cannot be avoided. The frequency stability against was not sufficient.

【0006】導電性接着剤55を用いることによる問題
も生じる。まず振動用水晶板51の振動をできるだけ阻
害しない様に接着面積を小さくしているために、機械的
に強度が十分でない。また耐熱性が十分でない為、この
構造の水晶振動子を基板に半田付けするような場合の条
件が非常に厳しくなる。更に硬化の際に放出される気体
が封止後にも放出され、振動特性の劣化の原因となると
いう様に多くの問題があった。
A problem also occurs due to the use of the conductive adhesive 55. First, since the bonding area is made small so as not to disturb the vibration of the vibrating crystal plate 51 as much as possible, the mechanical strength is not sufficient. Moreover, since the heat resistance is not sufficient, the conditions for soldering the crystal resonator of this structure to the substrate become very strict. Further, there are many problems that the gas released during curing is released even after sealing, which causes deterioration of vibration characteristics.

【0007】また、振動用水晶板51と、ケース54と
の間の位置関係は、導電性接着剤55によって金属保持
部に52固定することにより個々に大きく変化するため
に、振動用水晶板51の振動を妨げないためには振動用
水晶板51とケース54との空間を大きく開ける必要が
ある。このため、振動用水晶板自体の大きさは小さくで
きても、ケースを含んだ水晶振動子全体としての小型化
は、非常に困難であった。
Further, the positional relationship between the vibrating crystal plate 51 and the case 54 is largely changed individually by fixing the vibrating crystal plate 51 to the metal holding portion 52 with the conductive adhesive 55. In order not to hinder the vibration of No. 3, it is necessary to open a large space between the vibrating crystal plate 51 and the case 54. For this reason, even if the size of the vibrating crystal plate itself can be reduced, it is very difficult to reduce the size of the entire crystal unit including the case.

【0008】振動用水晶板に加わる熱膨張率の差に起因
する応力を緩和する目的で保持用水晶板によって振動用
水晶板を保持すると言う方法がある(特公平02−29
1710号)。図6に、その外観図を示す。図6におい
て、61は振動用水晶片、62は保持用水晶片、63は
励起電極、64は基台、65は接着剤、66は導電性接
着剤である。この方法は、基台64と保持用水晶片62
との固着方向と、保持用水晶片62と振動用水晶片61
との固着方向とを直交させた構造とすることによって、
振動用水晶片61に加わる温度変化に起因した応力によ
る周波数変化を抑えようとするものである。
There is a method of holding the vibrating crystal plate by the holding crystal plate for the purpose of relaxing the stress caused by the difference in the coefficient of thermal expansion applied to the vibrating crystal plate (Japanese Patent Publication No. 02-29).
1710). The external view is shown in FIG. In FIG. 6, 61 is a vibrating crystal piece, 62 is a holding crystal piece, 63 is an excitation electrode, 64 is a base, 65 is an adhesive, and 66 is a conductive adhesive. This method uses a base 64 and a holding crystal piece 62.
The fixing direction with the holding crystal piece 62 and the vibrating crystal piece 61.
By having a structure in which the fixing direction with
It is intended to suppress the frequency change due to the stress caused by the temperature change applied to the vibrating crystal piece 61.

【0009】しかしながら、この場合においても振動用
水晶片61と保持用水晶片62とを固着している導電性
接着剤66の熱膨張率の影響が無視できず、温度に対す
る周波数安定性は十分でなかった。そのうえ、この方法
で効果を十分上げるためには、原理的に接着剤65や導
電性接着剤66の接着面積は十分小さくなければなら
ず、接着強度に問題があった。更に上記の例と同様に、
接着剤を用いている問題は依然残っており、この方法は
十分な解決策とは言えなかった。
However, even in this case, the effect of the coefficient of thermal expansion of the conductive adhesive 66 fixing the vibrating crystal piece 61 and the holding crystal piece 62 cannot be ignored, and the frequency stability with respect to temperature was not sufficient. . Moreover, in order to sufficiently enhance the effect by this method, the adhesive area of the adhesive 65 or the conductive adhesive 66 must be sufficiently small in principle, and there was a problem in the adhesive strength. Further similar to the example above,
The problem of using adhesives still remained and this method was not a sufficient solution.

【0010】また、水晶振動子の応用製品として、水晶
発振器や温度補償水晶発振器(TCXO)、電圧制御水
晶発振器(VCXO)などの製品が作られているが、こ
れらの製品も、その小型化が重要な開発目標となってい
る。図7に、一般的に得られているTCXOの外観図を
示す。なおここでは、理解しやすいように、ケースの一
部を取り除いた様子を示している。この図に於て、71
は水晶振動子、72は発振回路や電圧制御回路、温度セ
ンサーなどを含む制御回路部、73はケースである。水
晶振動子71と、制御回路部72とは、各々別々に作ら
れたものが、組み合わされ、ケースに納められる。この
ため、全体としての大きさを小型化するのは非常に困難
であった。
Further, products such as crystal oscillators, temperature-compensated crystal oscillators (TCXO), and voltage-controlled crystal oscillators (VCXO) have been made as applied products of crystal oscillators, but these products are also downsized. It is an important development goal. FIG. 7 shows an external view of a generally obtained TCXO. Here, for ease of understanding, a state in which a part of the case is removed is shown. In this figure, 71
Is a crystal oscillator, 72 is a control circuit unit including an oscillation circuit, a voltage control circuit, a temperature sensor, and the like, and 73 is a case. The crystal oscillator 71 and the control circuit unit 72, which are separately manufactured, are combined and housed in a case. For this reason, it is very difficult to reduce the size as a whole.

【0011】[0011]

【発明が解決しようとする課題】上記の様に、従来の水
晶振動子においては、振動用水晶板と熱膨張率が異なる
もの、例えば金属保持部や、接着剤などが振動用水晶板
に固着しているために温度に対する周波数安定性が劣化
している。また振動用水晶板を接着剤で固定することに
起因する、振動などに対する接着強度低下の問題、半田
付けの際の加熱に対する信頼性の問題、気体放出の問題
等も存在する。更に水晶振動子やそれを応用した製品の
小型化には、その構造に起因した基本的な問題が存在す
る。
As described above, in the conventional crystal unit, one having a coefficient of thermal expansion different from that of the vibrating crystal plate, such as a metal holding portion or an adhesive, is fixed to the vibrating crystal plate. Therefore, the frequency stability with respect to temperature is deteriorated. In addition, there are problems such as a decrease in adhesive strength against vibration and the like, a problem of reliability against heating during soldering, a problem of gas release, etc. due to fixing the vibrating crystal plate with an adhesive. Further, there is a fundamental problem due to the structure of a crystal unit or a product to which the unit is applied, which is miniaturized.

【0012】[0012]

【課題を解決するための手段】上記にような問題点を解
決するために、本発明の水晶振動子は、振動用水晶板
が、直接接合された保持用水晶板により保持され、シリ
コン基板からの応力が振動用水晶板に加わりにくい形
で、保持用水晶板がシリコン基板に直接接合によって固
定されたことを特徴とするものであり、またその製造方
法は、振動用水晶板と保持用水晶板とシリコン基板の表
面を、親水処理を施して接触させ、そのまま熱処理後に
おいても水晶が圧電性を示す温度範囲内において熱処理
することにより、振動用水晶板と保持用水晶板とシリコ
ン基板を直接接合させたことを特徴とするものである。
In order to solve the above problems, in the crystal unit of the present invention, the vibrating crystal plate is held by the holding crystal plate directly bonded to Is characterized by the fact that the holding crystal plate is fixed to the silicon substrate by direct bonding, and the manufacturing method is the vibration crystal plate and the holding crystal. The vibrating crystal plate, the holding crystal plate, and the silicon substrate are directly contacted by applying hydrophilic treatment to the surfaces of the plate and the silicon substrate, and then performing heat treatment within the temperature range in which the crystal exhibits piezoelectricity even after the heat treatment. It is characterized by being joined.

【0013】[0013]

【作用】上記のような方法を用いることにより、振動用
水晶板には、温度に起因する応力が加わりにくく、温度
に対する周波数安定性が向上する。振動用水晶板と保持
用水晶板とは共に等しい熱膨張率を有する水晶で形成さ
れているので、振動用水晶板と保持用水晶板には温度に
起因する応力は全く生じない。また振動用水晶板は接着
剤を用いず直接接合によって固定されるので、その接着
強度は強固で、振動などに対する安定性が向上し、半田
付けなどによる熱に対しても安定で劣化が生じず、気体
の発生もないので振動特性の劣化もない。しかも振動用
水晶板は保持用水晶板と共にシリコン基板に正確な位置
に固定されるので、封止の際の空間を小さくでき、水晶
振動子全体としての小型化が容易である。更に振動用水
晶板と保持用水晶板とはシリコン基板に固定されてお
り、シリコン基板に制御回路などを組み込み、一体化す
ることができるので、ワンチップ化された水晶発振器、
TCXOやVCXOの作製が可能になるため、これらの
製品を容易に小型化できる。
By using the above method, stress due to temperature is less likely to be applied to the vibrating crystal plate, and the frequency stability with respect to temperature is improved. Since the vibrating crystal plate and the holding crystal plate are both formed of quartz having the same coefficient of thermal expansion, no stress due to temperature is generated in the vibrating crystal plate and the holding crystal plate. In addition, since the vibrating crystal plate is fixed by direct bonding without using an adhesive, its adhesive strength is strong, its stability against vibration is improved, and it is stable against heat from soldering and does not cause deterioration. Since no gas is generated, the vibration characteristics are not deteriorated. Moreover, since the vibrating crystal plate is fixed to the silicon substrate at the correct position together with the holding crystal plate, the space for sealing can be reduced, and the crystal unit as a whole can be easily miniaturized. Further, the vibrating crystal plate and the holding crystal plate are fixed to a silicon substrate, and since a control circuit and the like can be incorporated and integrated into the silicon substrate, a crystal oscillator in one chip,
Since TCXO and VCXO can be manufactured, these products can be easily miniaturized.

【0014】[0014]

【実施例】(実施例1)以下、本発明の第1の実施例に
ついて、図面を用いて詳しく説明する。
(Embodiment 1) A first embodiment of the present invention will be described in detail below with reference to the drawings.

【0015】図1(a)は本実施例における水晶振動子
の外観図である。図1(a)において、11は振動用水
晶板、12は保持用水晶板、13はシリコン基板、14
は励起電極、15は電極引出し部、16は端子である。
FIG. 1A is an external view of a crystal unit according to this embodiment. In FIG. 1A, 11 is a vibrating quartz plate, 12 is a holding quartz plate, 13 is a silicon substrate, and 14 is a quartz substrate.
Is an excitation electrode, 15 is an electrode lead-out portion, and 16 is a terminal.

【0016】本実施例において、振動用水晶板11の周
辺近傍の一部は、振動用水晶板11の振動をできるだけ
妨げないような形状で、保持用水晶板12に直接接合に
よって固定され、保持用水晶板12の振動用水晶板11
が固着されていない側の一部は、シリコン基板13に直
接接合によって固着されている。
In this embodiment, a part of the vibrating crystal plate 11 in the vicinity of the periphery is shaped so as not to hinder the vibration of the vibrating crystal plate 11 as much as possible, and is fixed to the holding crystal plate 12 by direct bonding and holding. Crystal plate 12 for vibration
A part of the side where is not fixed is fixed to the silicon substrate 13 by direct bonding.

【0017】ここで、直接接合について説明する。直接
接合とは、シリコン基板どうし、シリコン基板と水晶
板、または水晶板どうしを、接着剤を介在させずに基板
の非固着面上の結晶表面構成原子と他方の基板の結晶表
面構成原子との間の共有結合を用いて直接的に固着させ
るという技術で、研磨、洗浄、親水基形成処理を行なっ
たシリコン基板や水晶板などを清浄雰囲気中で接触さ
せ、加熱処理を行い、強固な固着を得るというものであ
る。この固着強度は、親水基形成処理後接触させられた
だけの初期段階においても数十kgw/cm2程度の値を
示すが、加熱処理を施すことによってその値は数百kg
w/cm2以上に上昇する。具体的にこのような結合は以
下のようにして形成される。親水基形成処理後接触させ
られただけの初期段階において、非接着基板どうしは、
その表面に形成される親水基と、非接着面間に存在する
水分子との水素結合を介して結合されている。この状態
から加熱処理を行なうことによって、界面に存在する水
分子は界面から除去され、水分子を介しての結合は、次
第に結晶構成原子間の強固な共有結合に変化する。この
ため、直接接合を用いた固定においては、固着強度が高
く、接着剤を一切用いていないので熱処理、振動などに
強く、不要な気体が放出されることもない。
Here, the direct joining will be described. Direct bonding means that the silicon substrate and the quartz plate, or the quartz plates are bonded to each other with the crystal surface constituting atoms on the non-fixed surface of the substrate and the crystal surface constituting atoms of the other substrate, without interposing an adhesive. With the technique of directly fixing using a covalent bond between the two, a silicon substrate or crystal plate that has been subjected to polishing, washing, and hydrophilic group formation treatment is brought into contact in a clean atmosphere, and heat treatment is performed to achieve strong fixation. To get it. This fixing strength shows a value of about several tens of kgw / cm 2 even in the initial stage just after being contacted after the hydrophilic group formation treatment, but the value is several hundred kg by heat treatment.
w / cm 2 or higher. Specifically, such a bond is formed as follows. In the initial stage where the hydrophilic groups were formed, the non-bonded substrates were
The hydrophilic groups formed on the surface and the water molecules existing between the non-adhesive surfaces are bonded via hydrogen bonds. By performing heat treatment from this state, the water molecules existing at the interface are removed from the interface, and the bond via the water molecule gradually changes to a strong covalent bond between the crystal constituent atoms. For this reason, in fixing using direct bonding, the fixing strength is high, and since no adhesive is used at all, it is resistant to heat treatment, vibration, etc., and unnecessary gas is not emitted.

【0018】振動用水晶板11、保持用水晶板12及び
シリコン基板13は、全体として周囲の温度変化により
生じる応力が振動用水晶板11に加わりにくいような形
状で固定されている。具体的には、本実施例の場合、振
動用水晶板11の厚さに比べて保持用水晶板12の厚さ
が薄くしてある。
The vibrating crystal plate 11, the holding crystal plate 12 and the silicon substrate 13 are fixed in such a shape that the stress caused by a change in ambient temperature is unlikely to be applied to the vibrating crystal plate 11. Specifically, in the case of this embodiment, the thickness of the holding crystal plate 12 is smaller than the thickness of the vibrating crystal plate 11.

【0019】水晶は異方性の結晶であるために結晶軸に
対する方向によって熱膨張率は異なる。従って、振動用
水晶板11の結晶軸の方向と、保持用水晶板12の結晶
軸の方向を一致させれば、振動用水晶板11と保持用水
晶板12との接合部での熱膨張率は正確に一致するので
温度変化による応力は零で、まったく生じない。またシ
リコン基板13と振動用水晶板11との熱膨張率の違い
による応力は、そのほとんどが保持用水晶板12に集中
するために、振動用水晶板11には、シリコン基板13
からの応力は加わりにくい。従って、温度変化に起因す
る応力による周波数の変化を非常に小さく抑えることが
でき、周波数安定性が向上する。
Since quartz is an anisotropic crystal, the coefficient of thermal expansion differs depending on the direction with respect to the crystal axis. Therefore, if the direction of the crystal axis of the vibrating crystal plate 11 and the direction of the crystal axis of the holding crystal plate 12 are made to coincide with each other, the coefficient of thermal expansion at the joint portion between the vibrating crystal plate 11 and the holding crystal plate 12 is increased. Since is exactly the same, the stress due to temperature change is zero and does not occur at all. Further, most of the stress due to the difference in thermal expansion coefficient between the silicon substrate 13 and the vibrating crystal plate 11 concentrates on the holding crystal plate 12, so that the vibrating crystal plate 11 has a silicon substrate 13
Is less likely to be stressed. Therefore, the frequency change due to the stress caused by the temperature change can be suppressed to a very small level, and the frequency stability is improved.

【0020】水晶振動子の温度特性は、水晶板のカット
角で決定される。ATカット水晶板の場合には、基準と
なる温度(通常25℃)における周波数f0に対するあ
る温度における周波数fの変化(f−f0)/f0をp
pmで表せば、−20℃から70℃の温度範囲で通常±
5ppm程度である。しかしながら従来の水晶振動子の
場合、金属保持部や導電性接着剤からの応力が振動用水
晶板に加わるために、実際の温度特性はこれより悪化す
る。これに対し、上記のような理由から本実施例の構造
の水晶振動子の周波数の温度特性は大きく改善される。
例えば、具体的な例として振動用水晶板の大きさとして
1mm×3mm、保持用水晶板の大きさとして1mm×
1mm、シリコン基板の大きさとして3mm×4.5m
mとした本実施例記載の構造の水晶振動子を作製し、比
較のために1mm×3mmの大きさの振動用水晶板を従
来の金属保持部に導電性接着剤によって接着した構造の
比較用水晶振動子も作製して、水晶振動子と比較用水晶
振動子の周波数の温度変化を−20℃から70℃まで測
定して比較した結果、15ppmの改善がみられた。
The temperature characteristic of the crystal unit is determined by the cut angle of the crystal plate. In the case of an AT-cut quartz crystal plate, the change in frequency f at a certain temperature (f-f0) / f0 with respect to the frequency f0 at the reference temperature (usually 25 ° C.)
Expressed in pm, it is usually within ± 20 ° C to 70 ° C.
It is about 5 ppm. However, in the case of the conventional crystal resonator, the stress from the metal holding portion or the conductive adhesive is applied to the vibrating crystal plate, and the actual temperature characteristics are worse than this. On the other hand, for the reasons described above, the temperature characteristics of the frequency of the crystal resonator having the structure of this embodiment are greatly improved.
For example, as a concrete example, the size of the vibrating crystal plate is 1 mm × 3 mm, and the size of the holding crystal plate is 1 mm ×
1 mm, the size of the silicon substrate is 3 mm x 4.5 m
For comparison, a crystal unit having the structure described in the present example with a size of m was prepared, and for comparison, a vibrating crystal plate having a size of 1 mm × 3 mm was bonded to a conventional metal holding portion with a conductive adhesive. As a result of making a crystal oscillator and measuring the temperature change of the frequency of the crystal oscillator and the crystal oscillator for comparison from −20 ° C. to 70 ° C. and comparing them, an improvement of 15 ppm was observed.

【0021】また、振動用水晶板の固定には直接接合を
用いており、導電性接着剤などを用いた場合に比べて固
着強度が高く、また振動などに強く、不要な気体が放出
されることもないため長期安定性が向上した。さらに熱
処理に対して安定であるので、従来は不可能であった高
温での半田付け処理も可能になった。
Further, direct bonding is used for fixing the vibrating crystal plate, and the fixing strength is higher than that in the case where a conductive adhesive or the like is used, and it is resistant to vibrations and releases unnecessary gas. As a result, long-term stability has improved. Furthermore, since it is stable against heat treatment, it has become possible to perform soldering treatment at high temperature, which was impossible in the past.

【0022】更にシリコン基板には振動用水晶板を駆
動、制御するための回路を組み込むことができるので、
ワンチップ化された水晶発振器、TCXOやVCXOの
作製が可能になる。図1(b)に、ワンチップ化された
TCXOの外観図を示す。図1(b)において、11は
振動用水晶板、12は保持用水晶板、13はシリコン基
板、14は励起電極、15は電極引出し部、17は制御
回路である。
Furthermore, since a circuit for driving and controlling the vibrating crystal plate can be incorporated in the silicon substrate,
It becomes possible to manufacture a one-chip crystal oscillator, TCXO or VCXO. FIG. 1B shows an external view of the TCXO that is made into one chip. In FIG. 1B, 11 is a vibrating crystal plate, 12 is a holding crystal plate, 13 is a silicon substrate, 14 is an excitation electrode, 15 is an electrode lead portion, and 17 is a control circuit.

【0023】(実施例2)以下、本発明の第2の実施例
について、図面を用いて詳しく説明する。
(Second Embodiment) A second embodiment of the present invention will be described in detail below with reference to the drawings.

【0024】図2(a)〜(f)は、本発明の製造方法
の手順を示す図である。これらの図において21は振動
用水晶板、22は保持用水晶板、23はシリコン基板、
24は励起電極、25は電極引出し部、26は端子、2
7、28は水晶素板である。
2A to 2F are views showing the procedure of the manufacturing method of the present invention. In these figures, 21 is a vibrating crystal plate, 22 is a holding crystal plate, 23 is a silicon substrate,
24 is an excitation electrode, 25 is an electrode lead-out part, 26 is a terminal, 2
Reference numerals 7 and 28 are crystal blanks.

【0025】本実施例では、水晶素板27、28には厚
さ350μm、大きさ3インチのATカット水晶素板、
シリコン基板23には面方位(100)、厚さ450μ
m、大きさ3インチのP型単結晶シリコン基板を用い
た。
In this embodiment, the quartz crystal plates 27 and 28 are AT-cut quartz crystal plates having a thickness of 350 μm and a size of 3 inches.
The silicon substrate 23 has a plane orientation (100) and a thickness of 450 μm.
A P-type single crystal silicon substrate having a size of m and a size of 3 inches was used.

【0026】水晶素板27は、振動用水晶板21の形状
を多数残して深さ80μmまでエッチングによって削
り、水晶素板28は、保持用水晶板22の形状を多数残
して深さ50μmまでエッチングによって削った。この
とき、水晶素板27上に残っている全ての振動用水晶板
21と水晶素板28上に残っている全ての保持用水晶板
22とが、互いに希望の位置で接触できるように各々の
位置を決定した。水晶素板27と水晶素板28との表面
を鏡面に研磨し、アンモニア水と過酸化水素水と水の混
合液を60℃に加熱した溶液を用いて表面を親水化処理
し、水洗いした。その後注意深く洗浄して振動用水晶板
21と保持用水晶板22とが接触する部分にはゴミが存
在しないようにした。次に、水晶素板27と水晶素板2
8とを、表面を清浄に保ったまま接触させた。このまま
でもかなりの接着強度があるが、後に行なう研磨ができ
るまでの強度以上にするために、加熱処理を施した。こ
の状態を図2(a)に示す。なお、870℃に水晶の結
晶転移温度があるので、水晶をこの温度以上に加熱処理
すると室温に戻したとき圧電性を示さなくなる。このた
め加熱処理温度は870℃以上にすることはできない。
このため本実施例では、加熱処理温度を例えば500℃
とした。
The quartz crystal plate 27 is etched to a depth of 80 μm, leaving many shapes of the vibrating quartz plate 21, and the quartz crystal plate 28 is etched to a depth of 50 μm, leaving many shapes of the holding quartz plate 22. Shaved by. At this time, all the vibrating crystal plates 21 remaining on the crystal element plate 27 and all the retaining crystal plates 22 remaining on the crystal element plate 28 are made to contact each other at desired positions. The position was determined. The surfaces of the quartz crystal plates 27 and 28 were mirror-polished, and the surfaces were hydrophilized using a solution obtained by heating a mixed solution of ammonia water, hydrogen peroxide solution and water to 60 ° C., and washed with water. After that, it was carefully washed so that dust was not present in the portion where the vibrating crystal plate 21 and the holding crystal plate 22 were in contact with each other. Next, the crystal blank 27 and the crystal blank 2
8 was contacted with the surface kept clean. Although it has a considerable adhesive strength as it is, it was subjected to a heat treatment so as to have a strength not lower than the strength at which polishing can be performed later. This state is shown in FIG. Since the crystal transition temperature of the crystal is 870 ° C., if the crystal is heated above this temperature, it will not exhibit piezoelectricity when returned to room temperature. Therefore, the heat treatment temperature cannot be 870 ° C. or higher.
Therefore, in this embodiment, the heat treatment temperature is, for example, 500 ° C.
And

【0027】保持用水晶板22を一つ一つ分離するため
に、水晶素板27に直接接合された水晶素板28を、水
晶素板27を保持して研磨した。この状態を図2(b)
に示す。
In order to separate the holding quartz plates 22 one by one, the quartz plate 28 directly bonded to the quartz plate 27 was polished while holding the quartz plate 27. This state is shown in Fig. 2 (b).
Shown in.

【0028】シリコン基板23と水晶素板27上に形成
された保持用水晶板22とを直接接合させるために、こ
れらの表面を鏡面に研磨し、更にアンモニア水と過酸化
水素水と水の混合液を60℃に加熱した溶液を用いて表
面を親水化処理し、水洗いした。その後、注意深く洗浄
して水晶素板27上に形成された保持用水晶板22とシ
リコン基板23の表面にはゴミが存在しないようにし
た。次に、シリコン基板23と水晶素板27上に形成さ
れた保持用水晶板22とを、表面を清浄に保ったまま接
触させた。このままでもかなりの接着強度があるが、後
に行なう研磨ができるまでの強度以上にするために、加
熱処理を施した。この状態を図2(c)に示す。なお、
上記と同様の理由から、加熱処理温度は870℃以上に
加熱することはできない。さらにシリコンと水晶の熱膨
張率が異なるために、急激な温度差を加えることができ
ない。このため本実施例では、加熱処理温度を例えば5
00℃とした。
In order to directly bond the silicon substrate 23 and the holding crystal plate 22 formed on the crystal element plate 27, their surfaces are mirror-polished and further mixed with ammonia water, hydrogen peroxide water and water. The surface was hydrophilized using a solution obtained by heating the solution to 60 ° C. and washed with water. Then, it was carefully washed so that dust was not present on the surfaces of the holding crystal plate 22 and the silicon substrate 23 formed on the crystal element plate 27. Next, the silicon substrate 23 and the holding crystal plate 22 formed on the crystal element plate 27 were brought into contact with each other while keeping their surfaces clean. Although it has a considerable adhesive strength as it is, it was subjected to a heat treatment so as to have a strength not lower than the strength at which polishing can be performed later. This state is shown in FIG. In addition,
For the same reason as above, the heat treatment temperature cannot be heated to 870 ° C. or higher. Further, since the coefficient of thermal expansion of silicon is different from that of quartz, a rapid temperature difference cannot be applied. Therefore, in this embodiment, the heat treatment temperature is set to, for example, 5
It was set to 00 ° C.

【0029】水晶素板27に直接接合された保持用水晶
板22によって固定されたシリコン基板23を水晶素板
27を保持することによって研磨し、更にシリコン基板
23の保持用水晶板22が直接接合されていない側から
エッチングをおこなって開口部を設けた。その様子を図
2(d)に示す。
The silicon substrate 23 fixed by the holding quartz plate 22 directly joined to the quartz substrate 27 is polished by holding the quartz substrate 27, and the holding quartz plate 22 of the silicon substrate 23 is directly joined. The opening was provided by etching from the side not exposed. The situation is shown in FIG.

【0030】その後、シリコン基板23に直接接合され
た保持用水晶板22によって固定された水晶素板27を
シリコン基板23を保持することによって研磨し、振動
用水晶板21を個々に分離した。その様子を図2(e)
に示す。
After that, the quartz crystal plate 27 fixed by the holding quartz plate 22 directly bonded to the silicon substrate 23 was polished by holding the silicon substrate 23, and the vibrating quartz plates 21 were individually separated. Figure 2 (e)
Shown in.

【0031】水晶素板27の振動用水晶板21のほぼ中
央付近に対向するように一対の励起電極24を形成し
た。このとき、同時に電極引出し部、及び端子も形成し
た。本実施例の場合、これらはクロムを厚さ200Å、
金を厚さ500Åに真空蒸着して形成した。その様子を
図2(f)に示す。
A pair of excitation electrodes 24 are formed so as to oppose the vibrating crystal plate 21 of the crystal element plate 27 substantially in the vicinity of the center thereof. At this time, the electrode lead-out portion and the terminal were simultaneously formed. In the case of this embodiment, these are made of chromium having a thickness of 200Å,
It was formed by vacuum vapor deposition of gold to a thickness of 500Å. This is shown in FIG. 2 (f).

【0032】最後に、シリコン基板23を一つ一つ切り
離し、実施例1記載の構造の水晶振動子を得た。
Finally, the silicon substrates 23 were separated one by one to obtain a crystal resonator having the structure described in Example 1.

【0033】振動用水晶板21、保持用水晶板22、及
びシリコン基板23は、フォトリソグラフィーやエッチ
ングなどの半導体加工技術を応用することによってその
寸法を非常に精密に加工しているために、非常に小型で
精度がよく、高性能な水晶振動子が得られる。
The vibration crystal plate 21, the holding crystal plate 22, and the silicon substrate 23 are extremely precise in size because they are processed by applying semiconductor processing techniques such as photolithography and etching. A compact, highly accurate, and high-performance crystal unit can be obtained.

【0034】(実施例3)以下、本発明の第3の実施例
について、図面を用いて詳しく説明する。図3は、本発
明の製造方法によって得られた水晶振動子の断面図であ
る。図3において、31は振動用水晶板、32は保持用
水晶板、33はシリコン基板、34は励起電極、35は
電極引出し部、36は端子、37は蓋用シリコン基板、
38は基台用シリコン基板、39は低融点ガラスであ
る。
(Third Embodiment) A third embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 3 is a cross-sectional view of a crystal resonator obtained by the manufacturing method of the present invention. In FIG. 3, 31 is a vibrating crystal plate, 32 is a holding crystal plate, 33 is a silicon substrate, 34 is an excitation electrode, 35 is an electrode lead portion, 36 is a terminal, 37 is a lid silicon substrate,
Reference numeral 38 is a base silicon substrate, and 39 is a low melting point glass.

【0035】本実施例において、振動用水晶板31、保
持用水晶板32、シリコン基板33及び励起電極34
は、実施例1記載の水晶振動子と同じ構成である。ま
た、振動用水晶板31は、蓋用シリコン基板37と基台
用シリコン基板38とによってシリコン基板33を挟み
込むようにして真空、あるいは不活性気体による封止が
なされている。封止の方法としては、本実施例では、例
えば電極引出し部35の周辺部分のみを低融点ガラス3
9で、それ以外は直接接合によって封止した蓋用シリコ
ン基板37と基台用シリコン基板38とによって窒素ガ
スによる封止がなされている。
In this embodiment, a vibrating crystal plate 31, a holding crystal plate 32, a silicon substrate 33 and an excitation electrode 34.
Has the same configuration as the crystal unit described in the first embodiment. The vibrating crystal plate 31 is vacuumed or sealed with an inert gas so that the silicon substrate 33 is sandwiched between the lid silicon substrate 37 and the base silicon substrate 38. As a sealing method, in this embodiment, for example, only the peripheral portion of the electrode lead-out portion 35 is made into the low melting point glass 3
In FIG. 9, other than that, the lid silicon substrate 37 and the base silicon substrate 38, which are sealed by direct bonding, seal with nitrogen gas.

【0036】このように、蓋部及び基台部もシリコン基
板に直接接合する構成にすることにより、上記実施例1
及び2で示した効果以外に、振動用水晶板31と蓋用シ
リコン基板37及び基台用シリコン基板38との位置関
係を絶対的に決定することができ、振動用水晶板31の
振動を妨げることなく、なおかつ封止に必要な空間を非
常に小さくできるので、水晶振動子全体の大きさを非常
に小さくすることができるという効果が得られる。例え
ば、具体的な例として、振動用水晶板の大きさとして1
mm×3mmとしたとき、従来の方法で作製した水晶振
動子の大きさは、空間として3mm×6mm、更にケー
スの厚みが1mm必要であるので全体として4mm×7
mmの大きさになってしまう。これに対して、本実施例
の構造の水晶振動子の場合、前記振動用水晶板の大きさ
として同じく1mm×3mm、保持用水晶板の大きさと
して1mm×1mm、シリコン基板の大きさとして2m
m×5mmとした場合、空間の大きさはほとんど振動用
水晶板の大きさでよく、蓋用シリコン基板37および基
台用シリコン基板38の大きさは2mm×4.5mmで
よいので、小型化に非常に有効である。
In this way, the lid portion and the base portion are also directly joined to the silicon substrate, so that the first embodiment described above is adopted.
In addition to the effects shown in 2 and 2, the positional relationship among the vibrating crystal plate 31, the lid silicon substrate 37, and the base silicon substrate 38 can be absolutely determined, and the vibration of the vibrating crystal plate 31 is prevented. In addition, since the space required for sealing can be made very small, the size of the entire crystal unit can be made very small. For example, as a concrete example, the size of the vibrating crystal plate is 1
When the size is set to mm × 3 mm, the size of the crystal resonator manufactured by the conventional method is 3 mm × 6 mm as a space, and the thickness of the case is 1 mm, so the total size is 4 mm × 7.
The size becomes mm. On the other hand, in the case of the crystal unit having the structure of the present embodiment, the size of the vibrating crystal plate is also 1 mm × 3 mm, the size of the holding crystal plate is 1 mm × 1 mm, and the size of the silicon substrate is 2 m.
In the case of m × 5 mm, the size of the space may be almost the size of the vibrating crystal plate, and the size of the lid silicon substrate 37 and the base silicon substrate 38 may be 2 mm × 4.5 mm, so that the size is reduced. Is very effective for.

【0037】また、半導体であるシリコンを基板とし、
またそれを用いて封止するため、集積回路との整合性が
良く、発振器との一体化などに応用することが容易であ
ることは、実施例1に記載した通りである。
Also, using silicon, which is a semiconductor, as a substrate,
Moreover, as described in the first embodiment, since the sealing is performed by using it, the compatibility with the integrated circuit is good and the application to the integration with the oscillator is easy.

【0038】(実施例4)以下、本発明の第4の実施例
について、図面を用いて詳しく説明する。図4は本実施
例における水晶振動子の外観図である。この図におい
て、41は振動用水晶板、42は保持用水晶板、43は
シリコン基板、44は励起電極、45は電極引出し部、
46は端子である。
(Fourth Embodiment) The fourth embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 4 is an external view of the crystal unit in this embodiment. In this figure, 41 is a vibrating crystal plate, 42 is a holding crystal plate, 43 is a silicon substrate, 44 is an excitation electrode, 45 is an electrode lead portion,
46 is a terminal.

【0039】本実施例において、全体の構造はほぼ実施
例1と同様であるが、保持用水晶板42の形状を、弾性
的変化がしやすいような形状に加工している。このよう
な構造とした結果、シリコン基板43と保持用水晶板4
2との熱膨張率の違いによる応力は、そのほとんどが保
持用水晶板42が変形することによって緩和されるため
に、振動用水晶板41には、シリコン基板43からの応
力はほとんど加わらない。従って、温度変化に起因する
応力による周波数の変化を小さく抑える効果は、実施例
1の場合に比較して更に向上させることができるので、
周波数安定性はさらに向上する。
In this embodiment, the overall structure is almost the same as that of the first embodiment, but the holding crystal plate 42 is processed into a shape that is easily elastically changed. As a result of such a structure, the silicon substrate 43 and the holding crystal plate 4
Most of the stress due to the difference in the coefficient of thermal expansion from that of No. 2 is relieved by the deformation of the holding crystal plate 42, and thus the stress from the silicon substrate 43 is hardly applied to the vibration crystal plate 41. Therefore, the effect of suppressing the change in frequency due to the stress caused by the temperature change can be further improved as compared with the case of the first embodiment.
Frequency stability is further improved.

【0040】[0040]

【発明の効果】上記のように、振動用水晶板と保持用水
晶板とは共に水晶で、その熱膨張率は同じであり、固定
には接着剤などを用いていないために、この部分で応力
は全く発生しない。またシリコン基板と振動用水晶板と
の熱膨張率の違いによる応力はそのほとんどが保持用水
晶板に集中する。従って、振動用水晶板には、シリコン
基板からの応力は加わりにくく、温度変化に起因する応
力による周波数の変化を非常に小さく抑えることがで
き、周波数安定性が向上する。
As described above, both the vibrating crystal plate and the holding crystal plate are made of crystal and have the same coefficient of thermal expansion, and no adhesive or the like is used for fixing. No stress is generated. Most of the stress due to the difference in thermal expansion coefficient between the silicon substrate and the vibrating crystal plate concentrates on the holding crystal plate. Therefore, stress from the silicon substrate is less likely to be applied to the vibrating crystal plate, the change in frequency due to stress due to temperature change can be suppressed to a very small level, and frequency stability is improved.

【0041】また、振動用水晶板の固定には直接接合を
用いており、導電性接着剤などを用いた場合に比べて固
着強度が高く、また振動などに強く、不要な気体が放出
されることもないため長期安定性が向上する。さらに熱
処理に対して安定であるので、従来は不可能であった高
温での半田付け処理も可能である。
Further, direct bonding is used for fixing the vibrating crystal plate, and the fixing strength is higher than that in the case where a conductive adhesive or the like is used, and it is strong against vibrations and releases unnecessary gas. As a result, long-term stability is improved. Furthermore, since it is stable against heat treatment, it is possible to perform soldering treatment at high temperature, which was impossible in the past.

【0042】更にシリコン基板には振動用水晶板を駆
動、制御するための回路を組み込むことができるので、
ワンチップ化された水晶発振器、TCXOやVCXOの
作製が可能になる。また振動用水晶板、水晶保持部、及
びシリコン基板は、半導体加工技術を応用することによ
ってその寸法を精密に加工できるために、非常に小型で
精度がよく、高性能な水晶振動子が得られる。
Furthermore, since a circuit for driving and controlling the vibrating crystal plate can be incorporated in the silicon substrate,
It becomes possible to manufacture a one-chip crystal oscillator, TCXO or VCXO. Further, since the crystal plate for vibration, the crystal holder, and the silicon substrate can be precisely processed by applying semiconductor processing technology, a very small and highly accurate crystal oscillator with high accuracy can be obtained. .

【0043】なお、本実施例では、振動用水晶板と保持
用水晶板との結晶方位を完全に一致させた例について述
べているが、これに限るものではなく、例えば結晶方位
が完全に一致していなくても振動用水晶板と保持用水晶
板との熱膨張率がほとんど同じであれば、同様の効果が
得られることは明らかである。
The present embodiment describes an example in which the crystal orientations of the vibrating crystal plate and the holding crystal plate are completely the same, but the present invention is not limited to this. For example, the crystal orientations are completely the same. Even if not done, if the vibrating crystal plate and the holding crystal plate have substantially the same coefficient of thermal expansion, it is clear that the same effect can be obtained.

【0044】また、本実施例では、直接接合における加
熱処理温度として500℃とした例に付いて述べている
が、これに限るものではない。100℃〜350℃、3
50℃〜500℃、500℃〜570℃、570℃〜8
60℃においても水晶やシリコンの接着強度を調べた
が、高温になればなるほど接着強度は大きくなるので、
熱処理後においても水晶が圧電性を示す温度範囲内にお
いて実施しやすい加熱処理温度を選べばよい。
In this embodiment, the heat treatment temperature in the direct joining is set to 500 ° C., but the present invention is not limited to this. 100 ° C-350 ° C, 3
50 ° C to 500 ° C, 500 ° C to 570 ° C, 570 ° C to 8
The adhesive strength of quartz and silicon was examined even at 60 ° C, but the higher the temperature, the greater the adhesive strength.
The heat treatment temperature may be selected so that it can be easily carried out within the temperature range in which the crystal exhibits piezoelectricity even after the heat treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例における水晶振動子の
外観図 (b)は同実施例におけるワンチップ化されたTCXO
の外観図
FIG. 1A is an external view of a crystal unit according to an embodiment of the present invention, and FIG. 1B is a one-chip TCXO according to the embodiment.
External view of

【図2】(a)は本発明の実施例における製造方法の手
順を示す図 (b)は本発明の実施例における製造方法の手順を示す
図 (c)は本発明の実施例における製造方法の手順を示す
図 (d)は本発明の実施例における製造方法の手順を示す
図 (e)は本発明の実施例における製造方法の手順を示す
図 (f)は本発明の実施例における製造方法の手順を示す
2A is a diagram showing a procedure of a manufacturing method in an embodiment of the present invention. FIG. 2B is a diagram showing a procedure of a manufacturing method in an embodiment of the present invention. FIG. 2C is a manufacturing method in an embodiment of the present invention. (D) shows the procedure of the manufacturing method in the embodiment of the present invention (e) shows the procedure of the manufacturing method in the embodiment of the present invention (f) shows the manufacturing method in the embodiment of the present invention Diagram showing the steps of the method

【図3】本発明の実施例における製造方法によって得ら
れた水晶振動子の断面図
FIG. 3 is a sectional view of a crystal resonator obtained by a manufacturing method according to an embodiment of the present invention.

【図4】本発明の実施例における水晶振動子の外観図FIG. 4 is an external view of a crystal unit according to an embodiment of the invention.

【図5】従来の水晶振動子の構造を示す図FIG. 5 is a diagram showing a structure of a conventional crystal unit.

【図6】従来の水晶振動子の外観図FIG. 6 is an external view of a conventional crystal unit.

【図7】従来のTCXOの外観図FIG. 7 is an external view of a conventional TCXO.

【符号の説明】[Explanation of symbols]

11 振動用水晶板 12 保持用水晶板 13 シリコン基板 14 励起電極 15 電極引出し部 16 端子 17 制御回路 11 Crystal Plate for Vibration 12 Crystal Plate for Holding 13 Silicon Substrate 14 Excitation Electrode 15 Electrode Extraction Part 16 Terminal 17 Control Circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 和生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Eda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】振動用水晶板が、保持用水晶板と直接接合
されて保持され、前記保持用水晶板がシリコン基板と直
接接合によって固定されたことを特徴とする水晶振動
子。
1. A crystal resonator, wherein a vibrating crystal plate is directly bonded to and held by a holding crystal plate, and the holding crystal plate is fixed to a silicon substrate by direct bonding.
【請求項2】振動用水晶板と保持用水晶板とシリコン基
板の表面を、親水処理を施して接触させ、そのまま熱処
理後においても水晶が圧電性を示す温度範囲内において
熱処理することにより、前記振動用水晶板と前記保持用
水晶板と前記シリコン基板を直接接合させたことを特徴
とする水晶振動子の製造方法。
2. The vibrating quartz plate, the holding quartz plate and the surface of the silicon substrate are subjected to a hydrophilic treatment to bring them into contact with each other, and heat treated as it is within a temperature range in which the quartz exhibits piezoelectricity even after the heat treatment. A method of manufacturing a crystal resonator, wherein the vibrating crystal plate, the holding crystal plate, and the silicon substrate are directly bonded.
【請求項3】振動用水晶板が、保持用水晶板と直接接合
されて保持され、前記保持用水晶板がシリコン基板と直
接接合によって固定され、前記シリコン基板によって前
記振動用水晶板と前記保持用水晶板とが密閉されたこと
を特徴とする水晶振動子。
3. A vibrating crystal plate is directly joined to and held by a holding quartz plate, said holding quartz plate is fixed by direct joining to a silicon substrate, and said vibrating quartz plate and said holding are held by said silicon substrate. A crystal unit characterized by being sealed with a crystal plate for use.
JP17660592A 1991-03-13 1992-07-03 Quartz crystal resonator and its manufacturing method Expired - Fee Related JP3164893B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP17660592A JP3164893B2 (en) 1992-07-03 1992-07-03 Quartz crystal resonator and its manufacturing method
EP93109905A EP0575948B1 (en) 1992-06-23 1993-06-22 Quartz device and manufacturing method thereof
DE69310031T DE69310031T2 (en) 1992-06-23 1993-06-22 Quartz device and manufacturing method
KR1019930011384A KR0157331B1 (en) 1992-06-23 1993-06-22 Quartz device and manufacturing method thereof
US08/182,561 US5747857A (en) 1991-03-13 1994-01-18 Electronic components having high-frequency elements and methods of manufacture therefor
US08/473,932 US5668057A (en) 1991-03-13 1995-06-07 Methods of manufacture for electronic components having high-frequency elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17660592A JP3164893B2 (en) 1992-07-03 1992-07-03 Quartz crystal resonator and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0621746A true JPH0621746A (en) 1994-01-28
JP3164893B2 JP3164893B2 (en) 2001-05-14

Family

ID=16016495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17660592A Expired - Fee Related JP3164893B2 (en) 1991-03-13 1992-07-03 Quartz crystal resonator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3164893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157831A (en) * 2012-01-31 2013-08-15 Nippon Dempa Kogyo Co Ltd Crystal vibration piece and crystal device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183915A (en) * 1985-02-08 1986-08-16 Toshiba Corp Manufacture of compound semiconductor device
JPS6227040A (en) * 1985-07-26 1987-02-05 Sapporo Breweries Ltd Method for adsorbing or including material to or into starch
JPS62122148A (en) * 1985-11-21 1987-06-03 Toshiba Corp Semiconductor substrate
JPS63285195A (en) * 1987-05-19 1988-11-22 Yokogawa Electric Corp Bonding of quartz single crystal
JPH01246820A (en) * 1988-03-29 1989-10-02 Seiko Epson Corp Semiconductor substrate
JPH02183510A (en) * 1989-01-10 1990-07-18 Sony Corp Manufacture of substrate for semiconductor
JPH0391227A (en) * 1989-09-01 1991-04-16 Nippon Soken Inc Adhering method for semiconductor substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183915A (en) * 1985-02-08 1986-08-16 Toshiba Corp Manufacture of compound semiconductor device
JPS6227040A (en) * 1985-07-26 1987-02-05 Sapporo Breweries Ltd Method for adsorbing or including material to or into starch
JPS62122148A (en) * 1985-11-21 1987-06-03 Toshiba Corp Semiconductor substrate
JPS63285195A (en) * 1987-05-19 1988-11-22 Yokogawa Electric Corp Bonding of quartz single crystal
JPH01246820A (en) * 1988-03-29 1989-10-02 Seiko Epson Corp Semiconductor substrate
JPH02183510A (en) * 1989-01-10 1990-07-18 Sony Corp Manufacture of substrate for semiconductor
JPH0391227A (en) * 1989-09-01 1991-04-16 Nippon Soken Inc Adhering method for semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157831A (en) * 2012-01-31 2013-08-15 Nippon Dempa Kogyo Co Ltd Crystal vibration piece and crystal device

Also Published As

Publication number Publication date
JP3164893B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
US7518291B2 (en) Piezoelectric device
US5548178A (en) Piezoelectric vibrator and manufacturing method thereof
US8269568B2 (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator
JP2643620B2 (en) Voltage controlled oscillator and method of manufacturing the same
JPH06350371A (en) Manufacture of piezoelectric device
JP2007258917A (en) Piezoelectric device
JP2000341065A (en) Manufacture of piezoelectric vibrator
JPS583602B2 (en) Suishiyo Shindoushi
JP2011199673A (en) Crystal substrate etching method, piezoelectric vibrating reed, piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece
JPH0746072A (en) Manufacture of crystal resonator
JPH07249957A (en) Electronic parts and their formation
JPH08153915A (en) Composite piezoelectric substrate and its manufacture
JP3164891B2 (en) Quartz crystal resonator and its manufacturing method
JPH0621746A (en) Quartz oscillator and its manufacture
KR0157331B1 (en) Quartz device and manufacturing method thereof
JP3164890B2 (en) Quartz crystal resonator and its manufacturing method
JP2976704B2 (en) Quartz crystal resonator and its manufacturing method
JPH06314947A (en) Crystal vibrator and its manufacture
JPH07111435A (en) Production of crystal piezoelectric device
JP2002299991A (en) Piezoelectric vibrator
JPH0786866A (en) Composite single-crystal piezoelectric substrate and its production
JPH09221392A (en) Composite piezoelectric substrate and its production
JPH08162893A (en) Piezoelectric component and manufacture of piezoelectric component
JPH08162892A (en) Piezoelectric component and manufacture of piezoelectric component
JPH07226638A (en) Composite piezoelectric substrate and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees