JPH06216220A - Positioning apparatus - Google Patents

Positioning apparatus

Info

Publication number
JPH06216220A
JPH06216220A JP643693A JP643693A JPH06216220A JP H06216220 A JPH06216220 A JP H06216220A JP 643693 A JP643693 A JP 643693A JP 643693 A JP643693 A JP 643693A JP H06216220 A JPH06216220 A JP H06216220A
Authority
JP
Japan
Prior art keywords
axis
wafer
positioning
origin
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP643693A
Other languages
Japanese (ja)
Inventor
Masahiro Tsunoda
正弘 角田
Toshitaka Kobayashi
敏孝 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP643693A priority Critical patent/JPH06216220A/en
Publication of JPH06216220A publication Critical patent/JPH06216220A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To position a wafer with high accuracy by performing a highly accurate origin detection and a highly accurate position detection of a fine region without being affected by the environment such as a magnetic field. CONSTITUTION:A wafer positioning apparatus comprises a sample table 9, and a fine adjustment mechanism 10 for performing a fine movement in X-axis and Y-axis directions and a fine rotation around X-axis, Y-axis and Z-axis, a coarse Z mechanism for performing a vertical movement in a Z-axis direction, a coarse adjustment mechanism 12 for performing a large movement in a Y-axis direction, an X laser measuring machine 13 for measuring a position of the X-axis direction, and a Y laser measuring machine 14 for measuring a position of the Y-axis direction and the amount of rotation around Z-axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路の製造
に使用される半導体製造装置、特に縮小投影露光装置,
電子線描画装置などの試料台に係り、高精度な位置決め
に好適な構造と測長方法を有する位置決め装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus used for manufacturing a semiconductor integrated circuit, particularly a reduction projection exposure apparatus,
The present invention relates to a sample stand such as an electron beam drawing apparatus, and a positioning apparatus having a structure suitable for highly accurate positioning and a length measuring method.

【0002】[0002]

【従来の技術】近年、半導体集積回路の高集積化に伴
い、半導体製造装置の性能向上が要求されている。特に
縮少投影露光装置は、半導体集積回路の原画であるレテ
ィクルとウェハの相対位置や、各々の絶対位置を高い精
度合わせる必要があるため、ウェハ位置決め装置の精度
向上が重要となっている。
2. Description of the Related Art In recent years, with the high integration of semiconductor integrated circuits, it has been required to improve the performance of semiconductor manufacturing equipment. Particularly in the reduced projection exposure apparatus, since it is necessary to adjust the relative position of the reticle, which is the original image of the semiconductor integrated circuit, and the wafer and the absolute position of each of them with high accuracy, it is important to improve the accuracy of the wafer positioning apparatus.

【0003】ウェハ位置決め装置は、ウェハを真空吸着
し保持するウェハチャックとそれを保持しZ軸回りに回
転移動が可能な粗θテーブルとそれを駆動する駆動系と
その他付加機能のためのセンサ類を有する試料台と、そ
の試料台を圧電素子アクチュエータなどによりX軸回
り,Y軸回り,Z軸回りの微小回転、およびX軸方向,
Y軸方向の微小移動を行う微動機構と、Z軸方向に上下
移動と水平面内X軸,Y軸方向に移動可能な粗動機構
と、試料台の位置計測を行うためのレーザ測長器で構成
されている。
The wafer positioning device includes a wafer chuck for vacuum-sucking and holding a wafer, a coarse θ table that holds the wafer and can rotate about the Z-axis, a drive system for driving the table, and sensors for other additional functions. And a sample stage having a micro-rotation about the X-axis, the Y-axis, and the Z-axis by a piezoelectric element actuator, and the X-axis direction.
A fine movement mechanism that performs fine movement in the Y-axis direction, a coarse movement mechanism that can move up and down in the Z-axis direction and move in the X-axis and Y-axis directions in the horizontal plane, and a laser length measuring device for measuring the position of the sample table. It is configured.

【0004】このレーザ測長器は、主にX軸,Y軸の位
置およびZ軸回りの回転量を計測し、原点はマグネセン
サ等により電気的信号を検出して行っている。また、X
軸,Y軸回りの回転量(傾斜量)は、マグネセンサによ
り行っている。
This laser length-measuring device mainly measures the positions of the X-axis and the Y-axis and the amount of rotation around the Z-axis, and the origin is determined by detecting an electrical signal with a magnet sensor or the like. Also, X
The amount of rotation (inclination amount) about the axis and the Y axis is performed by a magnet sensor.

【0005】しかしこの方法では、原点検出精度が±1
μm程度なので、原点検出を行う毎に、レティクルとの
相対位置が変化する。またマグネセンサは磁界の影響を
受け易く、マグネセンサが設置されている試料台移動に
より磁界が変化し検出精度に悪影響を与える。これを防
止するには、特殊材料によりマグネセンサを完全にシー
ルドする必要があるが、実装上困難で高価である。また
マグネセンサは、それ自体の構成が複雑で信号等のケー
ブルの本数が多く、試料台の移動時の負荷となり位置決
め精度の劣化を招き、より高精度なウェハ位置決め装置
を実現するうえで問題となってくる。
However, in this method, the origin detection accuracy is ± 1.
Since it is about μm, the relative position to the reticle changes every time the origin is detected. Further, the magnet sensor is easily affected by the magnetic field, and the magnetic field changes due to the movement of the sample table on which the magnet sensor is installed, which adversely affects the detection accuracy. In order to prevent this, it is necessary to completely shield the magnet sensor with a special material, but this is difficult and expensive in terms of mounting. In addition, the magnet sensor has a complicated structure and a large number of cables such as signals, which becomes a load when moving the sample table and causes deterioration of positioning accuracy, which is a problem in realizing a more accurate wafer positioning device. Is coming.

【0006】なお、この種の装置として関連するものに
は、特願平2−12085号等が上げられ、本件では渦電流式
非接触変位計,差動トランス等電気的手段をとってい
る。
As a device related to this type, Japanese Patent Application No. 2-12085 and the like are listed, and in this case, an eddy current type non-contact displacement meter, a differential transformer and other electrical means are used.

【0007】[0007]

【発明が解決しようとする課題】近年、半導体集積回路
の高集積化に伴い半導体製造装置の性能向上、特にウェ
ハの位置決め精度向上が重要となっている。
In recent years, along with the high integration of semiconductor integrated circuits, it has become important to improve the performance of semiconductor manufacturing apparatuses, especially the accuracy of wafer positioning.

【0008】現在のウェハ位置決め装置は、その位置決
めのために駆動系を粗動と微動の2系統に分割し、最終
的なウェハの位置決めを微動により行っている。また、
その高精度を要する位置計測及び原点検出は、レーザ測
長器とマグネセンサで行い、電気信号を検出して行って
いる。しかし、高精度で測定可能なレーザ測長器を所有
しているにもかかわらず、その原点となるマグネセンサ
の検出精度が不十分であるため、被位置決め対象を保持
する試料台の絶対位置精度に悪影響を与える。これは、
ウェハ位置決め装置のイニシャライズ等原点検出を行う
毎に生じる。またマグネセンサは、試料台の微小傾き量
及びその原点を検出しているが、上記を含むマグネセン
サは、磁界,温度の影響を受け易いため高精度で測定,
検出することが困難である。さらに本ウェハ位置決め装
置は、上記の様にX軸,Y軸の原点検出,試料台の微小
傾き量の測定及びその原点検出を行うために6個のマグ
ネセンサを使用しているため、その信号等のケーブルの
本数が多く、試料台の移動時の負荷となり、ウェハ位置
決め装置の精度劣化の要因となる。
In the current wafer positioning apparatus, the drive system is divided into two systems, coarse movement and fine movement, for the purpose of positioning, and the final wafer positioning is performed by fine movement. Also,
The position measurement and the origin detection, which require high precision, are performed by a laser length measuring device and a magnet sensor, and an electric signal is detected. However, even though we have a laser length measuring device that can measure with high accuracy, the detection accuracy of the magnet sensor, which is the origin, is insufficient, so the absolute position accuracy of the sample table that holds the positioning target is insufficient. Adversely affect. this is,
It occurs every time the origin is detected such as the initialization of the wafer positioning device. Further, the magnet sensor detects the minute tilt amount of the sample table and the origin thereof, but the magnet sensor including the above is easily affected by the magnetic field and temperature, so that the measurement can be performed with high accuracy.
Difficult to detect. Further, since the wafer positioning device uses six magnet sensors to detect the origins of the X-axis and Y-axis, measure the minute tilt amount of the sample stage, and detect the origins as described above, Since the number of such cables is large, it becomes a load when the sample table is moved, which causes deterioration of accuracy of the wafer positioning device.

【0009】本発明の目的は、ウェハ位置決め装置の原
点検出精度を向上することにあり、ウェハを保持する試
料台の高精度位置決めに寄与する。
An object of the present invention is to improve the origin detection accuracy of the wafer positioning device, which contributes to high-accuracy positioning of the sample stage holding the wafer.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、位置決め装置の原点検出及び微小位置計測をエアマ
イクロメータにより行うものである。
In order to solve the above problems, the origin of the positioning device and the minute position measurement are performed by an air micrometer.

【0011】[0011]

【作用】本ウェハ位置決め装置は、ウェハを真空吸着し
保持するウェハチャックとそれを保持し平面内をZ軸回
りに回転移動が可能な粗θテーブルとそれを駆動する駆
動系とその付加機能のためのセンサ類を有する試料台
と、その試料台を圧電素子アクチュエータによりX軸回
り,Y軸回り,Z軸回りの微小回転およびX軸方向,Y
軸方向の微小移動を行う微動機構と、Z軸方向の上下移
動と水平面内X軸,Y軸方向に移動可能な粗動機構と、
試料台の水平面内X軸,Y軸方向の位置とZ軸回りの回
転方向の原点検出位置、また、その裏面をX軸,Y軸回
りの回転方向(試料台の傾斜)の原点検出及び回転量の
測定位置とし、エアマイクロメータにより試料台を直接
測定するため、磁界,温度の影響を受けにくい高精度な
原点検出,回転量測定が可能となる。また、エアマイク
ロにより、原点検出や位置計測を試料台とのギャップに
よる圧力と基準圧力の差で管理するため、そのためのセ
ンサ等のケーブルが減少し、ウェハ位置決め装置移動時
の負荷低減が可能となる。
The present wafer positioning apparatus is composed of a wafer chuck that holds a wafer by vacuum suction, a rough θ table that holds the wafer chuck and can rotate about the Z axis in the plane, a drive system that drives the table, and its additional functions. And a sample stage having sensors for use in the sample stage, and the sample stage is rotated by a piezoelectric element actuator around the X axis, the Y axis, and the Z axis for minute rotation and the X axis direction, Y.
A fine movement mechanism for performing a small movement in the axial direction, and a coarse movement mechanism capable of moving up and down in the Z axis direction and moving in the X axis and Y axis directions in a horizontal plane,
The origin of the sample stage in the horizontal and horizontal directions of the X-axis and Y-axis, and the origin of the rotation around the Z-axis is detected, and the back surface of the sample is detected and rotated in the direction of rotation around the X-axis and the Y-axis (tilt of the sample stage). Since the sample stage is directly measured by the air micrometer as the amount measurement position, highly accurate origin detection and rotation amount measurement that are less susceptible to magnetic fields and temperature become possible. In addition, since the origin detection and position measurement are managed by the air micro by the difference between the pressure due to the gap between the sample table and the reference pressure, the number of cables such as sensors for that is reduced, and the load when moving the wafer positioning device can be reduced. Become.

【0012】[0012]

【実施例】以下、本発明の実施例を図1,図2により説
明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0013】図1,図2において本発明のウェハ位置決
め装置は、試料台9とそれを、X軸,Y軸方向の微小移
動とX軸,Y軸,Z軸回りの微小回転させる微動機構1
0とZ軸方向の上下移動を行う粗Z機構11とX軸,Y
軸方向の大きな移動を行う粗動機構12とX軸方向の位
置を計測するためのXレーザ測長器13と、Y軸方向の
位置とZ軸回りの回転量を計測するYレーザ測長器14
で構成されている。
1 and 2, the wafer positioning apparatus of the present invention comprises a sample stage 9 and a fine movement mechanism 1 for finely moving the sample stage 9 in the X-axis and Y-axis directions and finely rotating it around the X-axis, Y-axis and Z-axis.
0 and the coarse Z mechanism 11 which moves up and down in the Z-axis direction and the X-axis, Y
A coarse movement mechanism 12 that makes a large movement in the axial direction, an X laser length measuring device 13 for measuring the position in the X axis direction, and a Y laser length measuring device for measuring the position in the Y axis direction and the amount of rotation around the Z axis. 14
It is composed of.

【0014】さらに試料台9は、ウェハ1を真空吸着し
保持するウェハチャック2とそれを保持しZ軸回りに回
転移動が可能な粗θテーブル3とそれを駆動する粗θ駆
動系4とその他付加機能のためのセンサ5とレーザ測長
のためのXミラー15とYミラー16で構成されてい
る。また微動機構10は、試料台9をX軸回り,Y軸回
りで微小回転を行うために弾性ヒンジを備えた3本のZ
圧電素子アクチュエータ6とZ軸回りの微小回転及びY
軸方向の微小移動を行うために弾性ヒンジを備えた2本
のY圧電素子アクチュエータ7とX軸方向の微小移動を
行うために弾性ヒンジを備えたX圧電素子アクチュエー
タ8と、試料台9のX軸方向の原点とY軸及びZ軸回り
の原点を検出するXエアマイクロメータ17及び2個の
Yエアマイクロメータ18と、ウェハチャック2の裏側
に配置したX軸,Y軸回りの原点を検出する3個のZエ
アマイクロメータ19で構成されている。
Further, the sample table 9 includes a wafer chuck 2 that holds the wafer 1 by vacuum suction, a rough θ table 3 that holds the wafer 1 and can rotate about the Z axis, and a rough θ drive system 4 that drives it. It is composed of a sensor 5 for an additional function, an X mirror 15 and a Y mirror 16 for laser measurement. Further, the fine movement mechanism 10 includes three Zs provided with elastic hinges for performing minute rotations around the sample stage 9 around the X axis and the Y axis.
Piezoelectric element actuator 6 and minute rotation around Z axis and Y
Two Y piezoelectric element actuators 7 provided with elastic hinges for performing a minute movement in the axial direction, X piezoelectric element actuators 8 provided with elastic hinges for performing a minute movement in the X-axis direction, and X of the sample table 9. An X air micrometer 17 and two Y air micrometers 18 for detecting the origin in the axial direction and the origins around the Y axis and the Z axis, and the origins around the X axis and the Y axis arranged on the back side of the wafer chuck 2 are detected. It is composed of three Z air micrometers 19.

【0015】また粗動機構10は、Xサーボモータ22
とYサーボモータ20とX送りねじ23とY送りねじ2
1で構成されている。その原点検出は、粗Xエアマイク
ロメータ24,粗Yエアマイクロメータ25で行う。
The coarse movement mechanism 10 includes an X servo motor 22.
And Y servo motor 20, X feed screw 23 and Y feed screw 2
It is composed of 1. The origin detection is performed by the coarse X air micrometer 24 and the coarse Y air micrometer 25.

【0016】したがって、本実施例によれば、磁界の影
響を受けずに原点を検出することが可能となるので、高
精度な原点検出が可能となり、絶対位置決め精度の向上
が可能となる。また本位置決め装置に備えられたXエア
マイクロメータ17,Yエアマイクロメータ18,Zエ
アマイクロメータ19自体の構造が単純で、エアーの流
路となるチューブが細く軟質であるため負荷が減少し、
位置決め精度向上に有利となる。
Therefore, according to this embodiment, the origin can be detected without being affected by the magnetic field, so that the origin can be detected with high accuracy and the absolute positioning accuracy can be improved. In addition, the structure of the X air micrometer 17, the Y air micrometer 18, and the Z air micrometer 19 themselves provided in the positioning device is simple, and the load is reduced because the tube serving as an air flow path is thin and soft.
This is advantageous for improving the positioning accuracy.

【0017】またZエアマイクロメータ19の様に、被
位置決め対象を検出対象を介さずに直接検出することが
できるので、温度や湿度の影響を受けることなく高精度
な原点検出が可能となる。
Further, like the Z-air micrometer 19, the object to be positioned can be directly detected without passing through the object to be detected, so that highly accurate origin detection can be performed without being affected by temperature and humidity.

【0018】さらに各軸のエアマイクロメータは、原点
検出のみならず数百μm内で位置決め対象を高精度に位
置計測することが可能となる。
Furthermore, the air micrometer for each axis can not only detect the origin but also measure the position of the positioning object with high accuracy within several hundreds of μm.

【0019】[0019]

【発明の効果】本発明によれば、 1.位置決め装置に不可欠な原点の検出精度が向上し、
ウェハの高精度位置決めが可能となる。
According to the present invention, 1. The detection accuracy of the origin, which is indispensable for the positioning device, has been improved.
High-precision positioning of the wafer becomes possible.

【0020】2.ウェハを保持するウェハチャックの裏
面及び試料台の端面を直接検出することができるので、
マグネセンサ等の検出対象が不要となり、試料台の小型
化が可能となる。
2. Since the back surface of the wafer chuck holding the wafer and the end surface of the sample table can be directly detected,
A detection target such as a magnet sensor is unnecessary, and the sample table can be downsized.

【0021】3.試料台の位置計測ができるので、エア
マイクロメータと圧電素子アクチュエータの閉ループ制
御が可能となり、微小位置決めが容易になる。
3. Since the position of the sample table can be measured, closed loop control of the air micrometer and the piezoelectric element actuator becomes possible, and micropositioning becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の平面図である。FIG. 1 is a plan view of an embodiment of the present invention.

【図2】本発明の実施例の正面図である。FIG. 2 is a front view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ウェハ、2…ウェハチャック、3…粗シータテーブ
ル、4…粗シータ駆動系、5…センサ、6…Z圧電素子
アクチュエータ、7…Y圧電素子アクチュエータ、8…
X圧電素子アクチュエータ、9…試料台、10…微動機
構、11…粗Z機構、12…粗動機構、13…Xレーザ
測長器、14…Yレーザ測長器、15…Xミラー、16
…Yミラー、17…Xエアマイクロメータ、18…Yエ
アマイクロメータ、19…Zエアマイクロメータ、20
…Yサーボモータ、21…Y送りねじ、22…Xサーボ
モータ、23…X送りねじ、24…粗Xエアマイクロメ
ータ、25…粗Yエアマイクロメータ。
1 ... Wafer, 2 ... Wafer chuck, 3 ... Coarse theta table, 4 ... Coarse theta drive system, 5 ... Sensor, 6 ... Z piezoelectric element actuator, 7 ... Y piezoelectric element actuator, 8 ...
X piezoelectric element actuator, 9 ... Sample stage, 10 ... Fine movement mechanism, 11 ... Coarse Z mechanism, 12 ... Coarse movement mechanism, 13 ... X laser length measuring device, 14 ... Y laser length measuring device, 15 ... X mirror, 16
... Y mirror, 17 ... X air micrometer, 18 ... Y air micrometer, 19 ... Z air micrometer, 20
Y servo motor, 21 Y feed screw, 22 X servo motor, 23 X feed screw, 24 coarse X air micrometer, 25 coarse Y air micrometer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8831−4M H01L 21/30 341 L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 8831-4M H01L 21/30 341 L

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】日位置決め対象を位置決めする装置におい
て、エアマイクロメータを当該装置の機械的原点位置の
検出装置とするよう構成したことを特徴とする位置決め
装置。
1. A positioning device for positioning a date positioning object, wherein an air micrometer is used as a device for detecting a mechanical origin position of the device.
【請求項2】請求項1記載の位置決め装置において、被
位置決め対象を保持するチャック自体の位置を直接検出
し、装置の原点とすることを特徴とする位置決め装置。
2. The positioning device according to claim 1, wherein the position of the chuck itself holding the object to be positioned is directly detected and used as the origin of the device.
【請求項3】請求項1記載のエアマイクロメータを複数
個用いることにより、回転中心を保有しない位置決め装
置の回転方向の原点検出を行い、さらにその回転量を計
測することを特徴とする位置決め装置。
3. A positioning device characterized by using a plurality of the air micrometer according to claim 1 to detect the origin of the rotation direction of a positioning device which does not have a rotation center and to measure the amount of rotation. .
【請求項4】請求項1,2又は3記載の位置決め装置を
所有することを特徴とする半導体製造装置。
4. A semiconductor manufacturing apparatus having the positioning device according to claim 1, 2, or 3.
JP643693A 1993-01-19 1993-01-19 Positioning apparatus Pending JPH06216220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP643693A JPH06216220A (en) 1993-01-19 1993-01-19 Positioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP643693A JPH06216220A (en) 1993-01-19 1993-01-19 Positioning apparatus

Publications (1)

Publication Number Publication Date
JPH06216220A true JPH06216220A (en) 1994-08-05

Family

ID=11638353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP643693A Pending JPH06216220A (en) 1993-01-19 1993-01-19 Positioning apparatus

Country Status (1)

Country Link
JP (1) JPH06216220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216999A1 (en) * 2002-04-16 2003-11-06 Thomson Brandt Gmbh ECC block encoders and decoders with reduced RAM requirements
US7136146B2 (en) 2003-05-09 2006-11-14 Rohm Co., Ltd Exposure device and exposure method
CN113206614A (en) * 2021-05-06 2021-08-03 上海隐冠半导体技术有限公司 Exercise device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216999A1 (en) * 2002-04-16 2003-11-06 Thomson Brandt Gmbh ECC block encoders and decoders with reduced RAM requirements
US7136146B2 (en) 2003-05-09 2006-11-14 Rohm Co., Ltd Exposure device and exposure method
CN113206614A (en) * 2021-05-06 2021-08-03 上海隐冠半导体技术有限公司 Exercise device

Similar Documents

Publication Publication Date Title
KR100471018B1 (en) Gap adjustment apparatus and gap adjustment method for adjusting gap between two objects
US6353271B1 (en) Extreme-UV scanning wafer and reticle stages
EP0244012B1 (en) Positioning device
US6367159B1 (en) Method and apparatus for measuring surface shape of thin element
EP0230540A2 (en) X-Y-theta stage apparatus
US20050264777A1 (en) High speed lithography machine and method
TW497147B (en) Stage device and exposure apparatus
WO2005090902A1 (en) Stage device
KR20020065369A (en) Position measuring apparatus
JP2005046941A (en) Stage device with cable jogging unit
JPS6320014B2 (en)
JP2007053244A (en) Stage equipment and its exposure device
JP4198338B2 (en) Stage equipment
US6351313B1 (en) Device for detecting the position of two bodies
JP4962779B2 (en) STAGE DEVICE, FLOAT CONTROL METHOD, AND EXPOSURE DEVICE USING STAGE DEVICE
JPH06216220A (en) Positioning apparatus
JPS63140989A (en) Positioning device
JP3613291B2 (en) Exposure equipment
CN116379896A (en) Modular configuration for a coordinate measuring machine probe
JPH0434166B2 (en)
US5714860A (en) Stage device capable of applying a damping force to a movable member
JP2001102279A (en) Stage device and aligner
JP2000174102A (en) Sample base and substrate evaluation device using the same
JP2803440B2 (en) XY fine movement stage
CN112835269A (en) Photoetching device and exposure method