JPH06214102A - Infrared optical part and measuring instrument - Google Patents

Infrared optical part and measuring instrument

Info

Publication number
JPH06214102A
JPH06214102A JP24978293A JP24978293A JPH06214102A JP H06214102 A JPH06214102 A JP H06214102A JP 24978293 A JP24978293 A JP 24978293A JP 24978293 A JP24978293 A JP 24978293A JP H06214102 A JPH06214102 A JP H06214102A
Authority
JP
Japan
Prior art keywords
prism
sample
diamond
light
atr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24978293A
Other languages
Japanese (ja)
Inventor
Shuichi Sato
周一 佐藤
Hitoshi Sumiya
均 角谷
Katsuyuki Kawate
克之 川手
Toshiro Kato
寿郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24978293A priority Critical patent/JPH06214102A/en
Publication of JPH06214102A publication Critical patent/JPH06214102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the IR optical parts, such as prism which enables ATR spectrochemical analysis simply by pressing the prism to a measuring object in contact therewith in the case of measurement of samples in a place of poor environment or sticking to the structure itself or clothing, etc., and a sample plate for an IR microscopic device having a high number of service lifetimes by using synthetic diamond as a material. CONSTITUTION:This measuring instrument is constituted to make total reflection (ATR) spectrochemical analysis by using the total reflection (ATR) prism 14 formed by using the synthetic diamond of >=3ppm content of nitrogen incorporated into the crystal and <=3ppm content of boron and optical mirrors 12, 17, lenses 13, 16 or fibers together with the prism and pressing the prism directly to the sample 15 without using a holder, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、赤外分光分析に主と
して用いられる光学部品に関するものである。特に、被
測定物に接触加圧するのみで、ATRスペクトルが測定
出来るATR用プリズム、及び、有機物の微量不純物
や、微小部分の吸収スペクトルを顕微型赤外分光分析装
置で測定する時に用いる試料を保持する為の試料板等の
部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical component mainly used for infrared spectroscopic analysis. In particular, it holds an ATR prism that can measure the ATR spectrum only by contacting and pressurizing the object to be measured, and a trace impurity of organic substances and a sample used when measuring the absorption spectrum of a minute portion with a microscopic infrared spectroscopic analyzer. It relates to parts such as a sample plate for performing.

【0002】[0002]

【従来の技術】従来の赤外ATR分光分析法は、まず、
図1に示すようなプリズム1を用い、薄片状にした試料
2をプリズム表面3に接着させ、測定光4を入射させ
る。すると、試料とプリズムの界面3で全反射する際
に、もぐり込みが生じ試料物質特有な吸収を生じる。そ
して、吸収の生じた透過光5のスペクトルを測定するこ
とによって、試料及び試料中の不純物を測定する。尚、
この方法に関する詳細は、宮田威男著「大出力Co2
ーザー用透明光学部品の開発」に記載されている通りで
ある。
2. Description of the Related Art A conventional infrared ATR spectroscopic analysis method is as follows.
Using a prism 1 as shown in FIG. 1, a sample 2 in the form of a thin piece is adhered to a prism surface 3 and measurement light 4 is made incident. Then, when the light is totally reflected at the interface 3 between the sample and the prism, a crawling occurs and absorption peculiar to the sample substance occurs. Then, the sample and impurities in the sample are measured by measuring the spectrum of the transmitted light 5 in which absorption has occurred. still,
The details of this method are as described in "Development of Transparent Optical Components for High Power Co 2 Laser" by Takeo Miyata.

【0003】ところで、従来よりこの赤外ATR分光分
析のプリズム1に使用されている材料としては表1に示
すような物質があった。材質としては、天然ダイヤモン
ドの内、IIa型と呼ばれる赤外領域に吸収のないものが
最適である。
By the way, as a material conventionally used for the prism 1 of the infrared ATR spectroscopic analysis, there are substances as shown in Table 1. Of the natural diamonds, the most suitable material is the type IIa which has no absorption in the infrared region.

【0004】[0004]

【表1】 [Table 1]

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ダイヤ
モンドを除く従来の物質は、表1に示すように、それぞ
れ、透過領域が狭い。毒性が有る。傷がつき易
い。潮解性が有る。という問題があった。
However, as shown in Table 1, each of the conventional materials except diamond has a narrow transmission region. It is toxic. It is easily scratched. There is deliquescence. There was a problem.

【0006】そして、上記欠点のため、空調のされてい
ない環境の悪い室や屋外での測定は大変困難であった。
更に、耐久性や強度に問題があるため、直接試料そのも
のにプリズムを押し当てて容易に測定することができ
ず、試料を薄片状にし、特殊なホルダーで試料をプリズ
ムに接着させる必要があった。
Due to the above-mentioned drawbacks, it has been very difficult to make measurements in a room without air conditioning or in a bad environment or outdoors.
Furthermore, because of problems with durability and strength, it was not possible to press the prism directly against the sample itself for easy measurement, and it was necessary to make the sample into a thin piece and adhere the sample to the prism with a special holder. .

【0007】これに対してダイヤモンドには材質上の欠
点は殆どないが、ダイヤモンドの中で赤外分光分析に適
した種類はIIa型と称される赤外領域に吸収のないタイ
プであり、このタイプは、天然ダイヤの産出量の1〜2
%と少ないため、プリズムに用いるような数ミリの大き
なサイズになると、産出量は極めて稀で、事実上入手が
困難であった。
On the other hand, diamond has almost no material defects, but a type of diamond suitable for infrared spectroscopic analysis is a type called IIa type which has no absorption in the infrared region. Type is 1-2 of natural diamond production
Since it is as small as%, the output is extremely rare when it comes to a large size of several millimeters used for prisms, and it is practically difficult to obtain it.

【0008】この発明は上記のような課題を解決し、環
境の悪い場所で測定する場合や、構造物自体を測定した
い場合、あるいは衣類等に付着した試料を測定する場合
等に、プリズムを測定物に接触し、押し当てるのみでA
TR分光分析が可能となる赤外光学部品とそれを用いた
測定装置を提供しようとするものである。
The present invention solves the above problems and measures the prism when measuring in a bad environment, when measuring the structure itself, or when measuring a sample attached to clothes or the like. Just touch the object and press it A
It is intended to provide an infrared optical component capable of TR spectroscopic analysis and a measuring device using the infrared optical component.

【0009】[0009]

【課題を解決するための手段】この発明者らは、上記の
課題を解決するために鋭意研究の結果、以下のことを見
出した。 合成ダイヤモンドを用い、その中で不純物として含
有される窒素元素が3ppm以下であり、かつ硼素元素
が3ppm以下であるものがATRプリズムとして適し
ていることを見出した。 光学用ミラー又は光ファイバー又は光学用レンズ及
び前記合成ダイヤを組合せることでコンパクトな計測機
器を作製し、直接試料に押し当てて測定することが可能
となった。 ATR測定光の入射又は集光を良くするために、プ
リズムの形状をATR光が反射しない微少な平面で覆う
形状にした。 入射光又はATR測定光の集光又は測定精度を良く
するために、ダイヤモンドと屈折率の等しい物質(Zn
Se,KRS−5等)で形成されるレンズ、プリズム又
はミラーをダイヤモンドATRプリズムと接触させ組合
せた。
Means for Solving the Problems The inventors of the present invention have found the following as a result of earnest research for solving the above problems. It has been found that a synthetic diamond is used, in which the nitrogen element contained as an impurity is 3 ppm or less and the boron element is 3 ppm or less, which is suitable as an ATR prism. By combining an optical mirror or an optical fiber or an optical lens and the synthetic diamond, a compact measuring instrument can be manufactured and directly pressed against a sample to perform measurement. In order to improve the incidence or collection of the ATR measurement light, the shape of the prism is made to be a shape covered with a minute plane on which the ATR light is not reflected. In order to improve the accuracy of condensing or measuring incident light or ATR measurement light, a substance (Zn
Se, KRS-5, etc.) lenses, prisms or mirrors were contacted and combined with the diamond ATR prism.

【0010】尚、この発明のダイヤモンドATRプリズ
ムは、通常のプリズムとしても十分に使用可能であり、
又、この発明の分光分析装置は赤外域にかかわらず、可
視・紫外域にても測定可能である。
The diamond ATR prism of the present invention can be sufficiently used as an ordinary prism,
Further, the spectroscopic analyzer of the present invention can measure in the visible / ultraviolet region regardless of the infrared region.

【0011】更に、下記の合成ダイヤモンドを用いて作
成した赤外顕微装置用試料板が、微量の不純物や微小部
分の吸収スペクトルを測定する赤外分光分析に用いられ
る試料板として適していることを見出した。 結晶中に含有される窒素量が3ppm以下かつ、硼
素量が3ppm以下である合成ダイヤモンドを用い、測
定光の入射面と透過面の平行度が1分以内である赤外顕
微装置用試料板とした。 上記赤外顕微装置用試料板の入射面には、測定試料
を保持するための凹型の穴を有していることが望まし
く、その穴は、その深さが、0.01μm〜100μm
であり、底部の面精度が0.5μm以下であることが望
ましい。また、この穴を形成するには、イオンビーム、
電子線ビーム等のエネルギー線を用いて作成する。
Furthermore, it is confirmed that the sample plate for an infrared microscope prepared by using the following synthetic diamond is suitable as a sample plate used for infrared spectroscopic analysis for measuring the absorption spectrum of a trace amount of impurities and minute portions. I found it. A sample plate for an infrared microscope, which uses a synthetic diamond having a nitrogen content of 3 ppm or less and a boron content of 3 ppm or less contained in a crystal, and a parallelism of a measurement light incident surface and a transmission surface is within 1 minute. did. It is desirable that the incident surface of the infrared microscope apparatus sample plate has a concave hole for holding a measurement sample, and the hole has a depth of 0.01 μm to 100 μm.
It is desirable that the surface accuracy of the bottom be 0.5 μm or less. Also, to form this hole, an ion beam,
It is created using energy rays such as an electron beam.

【0012】[0012]

【作用】 窒素含有量が3ppm以下であり、かつ硼素含有量
が3ppm以下である合成ダイヤモンドを用いることの
作用について。ダイヤモンドの中で、赤外分光分析に適
した種類はIIa型と称される赤外領域に吸収のないタイ
プである。このタイプは、天然ダイヤの産出量の1〜2
%と少ないため、プリズムに用いるような数ミリの大き
なサイズになると、産出量は極めて稀で、事実上存在し
ないのに等しい。そこで本発明では、大型サイズが合成
出来る合成ダイヤモンドを用いている。
[Function] Regarding the function of using a synthetic diamond having a nitrogen content of 3 ppm or less and a boron content of 3 ppm or less. Among diamonds, a type suitable for infrared spectroscopic analysis is a type called type IIa which has no absorption in the infrared region. This type is 1-2 of natural diamond production
Since it is as small as%, the output is extremely rare when it comes to a large size such as a few millimeters used for prisms, and it is equivalent to virtually no production. Therefore, in the present invention, a synthetic diamond that can synthesize a large size is used.

【0013】この合成ダイヤモンドは、通常、Fe,N
i,Co等の金属溶媒を用いているため、溶媒中に存在
する窒素や硼素原子が結晶中に取り込まれ、赤外領域に
吸収ピークを生ずる。窒素元素による吸収は、1332
cm-1の鋭いピークと、1130cm-1のなだらかな大
きなピークとして現われる。前者は、FTIR(フーリ
エ変換型赤外分光分析装置)を用いた時、擬似ピークと
して現われ、測定誤差となる。又、後者の大きな吸収ピ
ークは、プリズムの場合、赤外光の光路が長いため、
(透過測定光)/(入射光)の比率を下げ、S/N比を
増大させ、測定誤差を増大させる。プリズムの場合は、
後者の影響が大きく、素材として適しているダイヤモン
ドは3ppm以下の窒素含有量であることを見出した。
又、硼素元素による吸収は、2935cm-1,2807
cm-1,2459cm-1,1332cm-1に鋭い吸収を
持つため、擬似ピークとして誤った測定結果を導き出
す。しかし含有硼素量が3ppm以下の場合、前記のよ
うな問題は生じないことを見出した。
This synthetic diamond is usually composed of Fe, N
Since a metal solvent such as i or Co is used, nitrogen or boron atoms present in the solvent are taken into the crystal, and an absorption peak is generated in the infrared region. Absorption by elemental nitrogen is 1332.
a sharp peak cm -1, appears as gentle large peak of 1130 cm -1. The former appears as a pseudo peak when an FTIR (Fourier transform infrared spectroscopic analyzer) is used and causes a measurement error. In the case of a prism, the latter large absorption peak has a long optical path of infrared light,
The ratio of (transmitted measurement light) / (incident light) is decreased, the S / N ratio is increased, and the measurement error is increased. For prisms,
It was found that the latter has a large effect and diamond suitable as a material has a nitrogen content of 3 ppm or less.
Also, the absorption due to boron element is 2935 cm −1 , 2807
cm -1, 2459cm -1, to have a sharp absorption at 1332 cm -1, derive measurements erroneous as a pseudo peak. However, it has been found that the above problem does not occur when the content of boron is 3 ppm or less.

【0014】 合成ダイヤと光学用ミラー等を組合せ
ることによって、コンパクトなプローブを作製する効果
について。被測定物に直接プリズムを接触し押し当てて
測定する場合、耐久性や耐食性が最も優れている材質は
ダイヤモンドであり、本発明では、前項で述べた効果
より合成ダイヤモンドを用いている。従来のATR測定
法では、図1に示すように試料2を薄片又は平板状に加
工してプリズム表面3に接触させ、ホルダー等で押し当
てて測定をしていた。この場合、試料が薄片又は平板状
に加工し易いものは測定可能である。しかし、動かし難
い構造物自体を測る場合や、衣料等に付着した試料をそ
のまま測定することが出来なかった。このため、本発明
では下記の3通りの方法を見出し、前記問題点を解決し
た。
Regarding the effect of producing a compact probe by combining a synthetic diamond and an optical mirror or the like. When a prism is brought into direct contact with and pressed against the object to be measured, diamond is the material having the best durability and corrosion resistance. In the present invention, synthetic diamond is used because of the effects described in the preceding paragraph. In the conventional ATR measurement method, as shown in FIG. 1, the sample 2 was processed into a thin piece or a flat plate shape, brought into contact with the prism surface 3, and pressed by a holder or the like for measurement. In this case, a sample that can be easily processed into a thin piece or a flat plate can be measured. However, when measuring the structure itself that is difficult to move or when measuring the sample adhered to clothing or the like, it was not possible to measure it. Therefore, the present invention has found the following three methods and solved the above problems.

【0015】(a) ダイヤモンドプリズムを下方に設置
し、その上に試料をセットして治具等で押し当てて測定
する場合、ダイヤモンドプリズムへの入射光の導入及び
透過測定光の集光を良くするために、ミラー又はレンズ
を固定して設置する。代表例を図2に示す。図2におい
て、14はプリズム、15は試料である。垂直下方向よ
り入射する入射光11が集光ミラー12と集光レンズ1
3集光した状態でプリズム14内に入光し、プリズム1
4上の試料15との界面で反射と吸収を起こしてプリズ
ム14を透過して測定光18となり、集光レンズ16及
び集光ミラー17により下方へ導かれて測定される。こ
うしてプリズムとミラー及びレンズを組合せることによ
り小型のプローブを作成することができる。
(A) When a diamond prism is installed on the lower side and a sample is set on it and pressed by a jig or the like for measurement, it is better to introduce incident light into the diamond prism and collect transmitted measurement light. In order to do so, a mirror or lens is fixedly installed. A representative example is shown in FIG. In FIG. 2, 14 is a prism and 15 is a sample. Incident light 11 incident from the vertically downward direction is a condenser mirror 12 and a condenser lens 1.
3 The light enters the prism 14 in a condensed state, and the prism 1
Reflection and absorption are caused at the interface with the sample 15 on the surface 4, and the measurement light 18 is transmitted through the prism 14 and becomes measurement light 18, which is guided downward by the condenser lens 16 and the condenser mirror 17 for measurement. In this way, a small probe can be produced by combining the prism, the mirror, and the lens.

【0016】(b) ダイヤモンドプリズムを上方に設置
し、試料をその下方にセットし、ダイヤモンドプリズム
自体を下降させ試料に押し当て測定する場合、プリズム
がスライドしても測定が可能なように、ミラー又はレン
ズを配置した。代表例を図3に示す。 図3において、
24はプリズム、25は試料、26は試料を載せる試料
台である。横方向より入射する入射光21は変向ミラー
22により下方に導かれ、集光ミラー23によりプリズ
ム24に入射する。プリズム24を下降させて試料25
に押しつければ、入射光21はプリズムと試料との界面
で反射吸収を行ない、測定光29は集光ミラー27によ
り上方へ導かれ、変向ミラー28により横方向に導かれ
る。こうすればプリズム24が上下しても測定光29が
導かれる場所は変化せず測定が可能である。
(B) When the diamond prism is installed above and the sample is set below it, and the diamond prism itself is lowered and pressed against the sample for measurement, a mirror is used so that the measurement is possible even when the prism slides. Or a lens is arranged. A representative example is shown in FIG. In FIG.
24 is a prism, 25 is a sample, and 26 is a sample stand on which a sample is placed. Incident light 21 incident from the lateral direction is guided downward by a deflecting mirror 22 and is incident on a prism 24 by a condenser mirror 23. Sample 25 by lowering prism 24
When it is pressed against, the incident light 21 is reflected and absorbed at the interface between the prism and the sample, and the measuring light 29 is guided upward by the condenser mirror 27 and laterally by the deflecting mirror 28. In this way, even if the prism 24 moves up and down, the location where the measurement light 29 is guided does not change and measurement can be performed.

【0017】(c) ダイヤモンドプリズムを任意な場所に
移動可能にするため、入射光の導入及び搬送と透過測定
光の集光及び搬送に光ファイバーを用いた。代表例を図
4に示す。図4において、入射光31は光ファイバー3
2内を通ってプリズム33に導かれ、プリズム33と試
料34との界面で反射、吸収を行ない、プリズム33を
出て測定光36として光ファイバー35内を通って測定
器(図示せず)に導かれる。光ファイバーによりプロー
ブと測定器をつないでいるので、プローブを測定点まで
移動しやすく簡便に測定をすることができる。
(C) In order to move the diamond prism to an arbitrary place, an optical fiber was used to introduce and convey incident light and collect and convey transmitted measurement light. A representative example is shown in FIG. In FIG. 4, the incident light 31 is the optical fiber 3
The light is guided to the prism 33 through the inside of the optical fiber 2, reflected and absorbed at the interface between the prism 33 and the sample 34, and exits the prism 33 and is guided as a measuring light 36 through the optical fiber 35 to a measuring device (not shown). Get burned. Since the probe and the measuring device are connected by the optical fiber, the probe can be easily moved to the measurement point and the measurement can be easily performed.

【0018】 ATR測定光の集光を良くするため
に、プリズムを全反射しない微少な平面で覆う形状にし
た作用について。ダイヤモンドは屈折率が高く、プリズ
ム内で反射を繰り返し、ATR光の集光効率が低下する
問題点がある。本発明では入射及び集光効率を良くする
ために、ATR光がプリズムから入射又は放出される面
で反射ロスが生じないように微少な面で覆った。代表例
を図5に示す。図5中、入射光41がレンズ42で集光
し、プリズム43内に入射する。試料45とプリズム4
3の境界面で反射が生じプリズム外に放射される。表面
で反射したATR光がプリズム外に放射する際に生ずる
ロスを減少させるため、プリズム43を微少な面44で
おおっている。放射された測定光47はミラー46によ
って変向し測定系へ送られる。
Regarding the action of forming the prism in a shape covered with a minute flat surface that does not totally reflect the light in order to improve the focusing of the ATR measurement light. Since diamond has a high refractive index, it is repeatedly reflected in the prism, and the efficiency of collecting ATR light decreases. In the present invention, in order to improve the efficiency of incidence and light collection, the ATR light is covered with a minute surface so that reflection loss does not occur on the surface incident or emitted from the prism. A representative example is shown in FIG. In FIG. 5, incident light 41 is condensed by the lens 42 and enters the prism 43. Sample 45 and prism 4
Reflection occurs at the boundary surface of 3 and the light is radiated outside the prism. In order to reduce the loss that occurs when the ATR light reflected on the surface is emitted to the outside of the prism, the prism 43 is covered with a minute surface 44. The emitted measuring light 47 is deflected by the mirror 46 and sent to the measuring system.

【0019】 ダイヤモンドと屈折率がほぼ同じ物質
で構成される光学部品を接触組合せる作用について。ダ
イヤモンドは加工性が悪いため曲面が得られない。又、
価格が高いため大きなアンビルになる程高価格であると
いう欠点がある。このため、ダイヤモンドと屈折率がほ
ぼ等しい物質(例えば、ZuSe,KRS5等)を予め
加工しておき、ダイヤモンドに接触組合せることで入射
及び集光ロスを防止する。又、ダイヤモンドの一部をこ
れらの物質で置き替えることにより大きなプリズムが得
られ測定精度が向上する。例を図6に示す。入射光51
が集光ミラー52を介して、曲面加工等を施したダイヤ
モンドと等屈折率の物質53に入射し、反射なくダイヤ
モンドプリズム54中に入射する。試料55との界面で
全反射し、ダイヤモンドと等屈折率物質53の外に放出
される。この際、ダイヤモンドと等屈折率物質53は曲
面加工されているので反射ロスは殆ど生じない。放出さ
れた測定光57は、ミラー56によって集光される。
Regarding the action of contact-combining optical components composed of diamond and a substance having almost the same refractive index. Since diamond has poor workability, curved surfaces cannot be obtained. or,
Since the price is high, the larger the anvil, the higher the price. Therefore, a substance having a refractive index almost equal to that of diamond (for example, ZuSe, KRS5, etc.) is processed in advance and brought into contact with the diamond to prevent incident and condensing loss. Also, by replacing a part of diamond with these substances, a large prism can be obtained and the measurement accuracy is improved. An example is shown in FIG. Incident light 51
Is incident on the substance 53 having a refractive index equal to that of the diamond subjected to the curved surface processing through the condenser mirror 52, and is incident on the diamond prism 54 without being reflected. The light is totally reflected at the interface with the sample 55 and is emitted to the outside of the diamond and the equirefractive material 53. At this time, since the diamond and the equal-refractive index material 53 are curved, the reflection loss hardly occurs. The emitted measurement light 57 is condensed by the mirror 56.

【0020】 窒素含有量が3ppm以下であり、か
つ硼素含有量が3ppm以下である合成ダイヤモンドを
用い、測定光の入射面と透過面の平行度が1分以内の赤
外顕微装置用試料板を作成する効果について。この発明
の赤外顕微装置用試料板は、合成ダイヤモンドを用いて
いるので、強度が高く、かつ各種の試料との反応性が貧
しいので、優れた試料板となる。即ち、試料は、酸性や
アルカリ等の液中に溶解させたものであるので、表1に
示した材料のうち、ダイヤモンドを除きいずれも化学的
な安定性において問題があり、試料の作製方法,観察方
法等種々の面で制約を受けることが多かった。近年にな
り、ダイヤモンドの微細加工技術が向上し、赤外顕微装
置用試料板としても充分使用できるようになってきた。
即ち、本試料板としては、通常板形状になっているが、
上下面の平行度が特に重要で、上下面2mmの間隔で、
厚みの相違が1μm以下の平行度が必要である。例え
ば、図7に示してある赤外顕微装置用試料板61の試料
挿入部62に試料を入れ、赤外顕微装置で観察する場
合、入射面63と、透過面64の平行度が1分以内とし
ておく必要がある。
Using a synthetic diamond having a nitrogen content of 3 ppm or less and a boron content of 3 ppm or less, a sample plate for an infrared microscope having a parallelism between an incident surface of a measurement light and a transmission surface of 1 minute or less is prepared. About the effect to create. Since the sample plate for an infrared microscope of the present invention uses synthetic diamond, it has high strength and poor reactivity with various samples, and thus is an excellent sample plate. That is, since the sample is dissolved in a liquid such as acid or alkali, all of the materials shown in Table 1 except diamond have a problem in chemical stability. It was often restricted by various aspects such as observation methods. In recent years, the fine processing technology of diamond has improved, and it has become possible to sufficiently use it as a sample plate for an infrared microscope.
That is, although the sample plate is usually plate-shaped,
The parallelism of the upper and lower surfaces is especially important.
Parallelism with a thickness difference of 1 μm or less is required. For example, when the sample is inserted into the sample insertion portion 62 of the infrared microscope apparatus sample plate 61 shown in FIG. 7 and observed by the infrared microscope apparatus, the parallelism between the incident surface 63 and the transmission surface 64 is within 1 minute. You need to keep it.

【0021】試料板の入射面に測定試料を保持するた
めの凹型の穴を形成する作用について。図7に示すこの
発明の赤外顕微装置用試料板61の大きさは1〜5mm
φ、通常は2〜3mmφ程度であり、入射面63には凹
型の穴からなる試料挿入部62が形成されている。この
試料挿入部62の直径は0.5mmφで深さが0.5〜
100μ程度の範囲が良好である。また、穴の底部の面
精度は0.5μm以下であることが好ましい。赤外分光
分析を行なう場合、この試料挿入部62に測定用試料を
充填し、更にその上に凹部のないダイヤモンド円板を重
ねて固定し、赤外光を入射面63側から当て、試料挿入
部を透過した透過光の赤外領域での吸収を測定する。
尚、本発明の合成ダイヤモンド製の試料板に上記のよう
な穴を形成するには、研磨等による機械的方法が困難で
あり、イオンビーム、電子線ビーム等のエネルギー線を
用いて形成する。
Regarding the action of forming a concave hole for holding the measurement sample on the incident surface of the sample plate. The size of the infrared microscope apparatus sample plate 61 shown in FIG. 7 is 1 to 5 mm.
φ, usually about 2 to 3 mmφ, and the incident surface 63 is provided with a sample insertion portion 62 formed of a concave hole. The sample insertion portion 62 has a diameter of 0.5 mmφ and a depth of 0.5 to
A range of about 100 μ is good. The surface accuracy of the bottom of the hole is preferably 0.5 μm or less. In the case of performing infrared spectroscopic analysis, this sample insertion portion 62 is filled with a measurement sample, and a diamond disc having no recess is further stacked and fixed thereon, and infrared light is applied from the incident surface 63 side to insert the sample. The absorption in the infrared region of the transmitted light transmitted through the section is measured.
Incidentally, in order to form the above holes in the synthetic diamond sample plate of the present invention, it is difficult to use a mechanical method such as polishing, and the energy beam such as an ion beam or an electron beam is used.

【0022】[0022]

【実施例】【Example】

(実施例1)ダイヤモンドが安定な圧力・温度領域で、
温度差法を用い、高純度単結晶を合成した。合成に用い
た溶媒はFe−40Co合金を用いた。窒素を除去する
ために、AlTi合金を添加した。又、硼素元素の影響
を調べるために、純度を変えた原料を用いた溶媒金属を
作製し合成に用いた。合成した結晶を図2のように加工
し、ATR分光分析を行なった。
(Example 1) In the stable pressure and temperature range of diamond,
High-purity single crystals were synthesized using the temperature difference method. An Fe-40Co alloy was used as the solvent used for the synthesis. An AlTi alloy was added to remove nitrogen. Further, in order to investigate the influence of boron element, a solvent metal was prepared using raw materials having different purities and used for the synthesis. The synthesized crystal was processed as shown in FIG. 2 and subjected to ATR spectroscopic analysis.

【0023】[0023]

【表2】 [Table 2]

【0024】表2の如く、結晶中の窒素含有量が3pp
mかつ、硼素含有量が3ppm以下のものがこの発明の
ATRプリズムに適しているのがわかる。
As shown in Table 2, the nitrogen content in the crystal is 3 pp.
It is understood that those having m and a boron content of 3 ppm or less are suitable for the ATR prism of the present invention.

【0025】(実施例2)実施例1の実験 No.1に用い
たプリズムを図3中の24に示した形状に再加工した。
当プリズム24を図3のようにセットし、入射光21を
変向ミラー22で方向を変え、集光ミラー23でプリズ
ム24に入れた。セットしたプリズム24を下降させ、
試料台26上の試料25に押し当てた。入射光21は、
プリズム24と試料25の界面で全反射を繰り返して吸
収を生じ、入射と反対方向に放射する。プリズム24を
透過した測定光29はカセグレンミラー27で集光さ
れ、変向ミラー28で測定系へ導入する。前記方法で塩
ビ板に付着したエチレングリコールの固定に成功した。
(Example 2) The prism used in Experiment No. 1 of Example 1 was reworked into the shape shown by 24 in FIG.
The prism 24 was set as shown in FIG. 3, the direction of the incident light 21 was changed by the deflecting mirror 22, and the light was entered into the prism 24 by the condenser mirror 23. Lower the set prism 24,
It was pressed against the sample 25 on the sample table 26. The incident light 21 is
Total reflection is repeated at the interface between the prism 24 and the sample 25 to cause absorption, and the light is emitted in the direction opposite to the incident direction. The measuring light 29 transmitted through the prism 24 is condensed by the Cassegrain mirror 27 and introduced into the measuring system by the deflecting mirror 28. By the above method, the ethylene glycol attached to the vinyl chloride plate was successfully fixed.

【0026】(実施例3)図6に示すように、ダイヤモ
ンドの円板54上に、半球状のKRS−5のレンズ53
を密着させた。これらを固定して試料55の上に押しつ
けてATRの測定を行った。入射光51を右側垂直方向
から入射させ、ミラー52で集光し、半球状のレンズ5
3(KRS−5)に導入した。導入光は、ダイヤモンド
板54との界面で反射を起こさず、試料55とダイヤモ
ンド板54の界面で反射を起こし吸収を生じた。反射光
は、半球状53レンズの表面で反射ロスを生ずることな
く外部に放出された。放出された測定光57は、集光ミ
ラー56で測定系に導入を行なった。前記方法で、ポリ
エチレンフィルムに混在した不純物の固定に成功した。
又、半球状53レンズを取り外して測定したところ、測
定光57の強度が低く、不純物は固定出来なかった。
(Embodiment 3) As shown in FIG. 6, a hemispherical lens 53 of KRS-5 is placed on a diamond disk 54.
Was in close contact. These were fixed and pressed on the sample 55 to measure the ATR. Incident light 51 is made incident from the vertical direction on the right side and condensed by a mirror 52 to form a hemispherical lens 5
3 (KRS-5). The introduced light did not reflect at the interface with the diamond plate 54, but did reflect at the interface between the sample 55 and the diamond plate 54 and absorbed. The reflected light was emitted to the outside without causing reflection loss on the surface of the hemispherical 53 lens. The emitted measurement light 57 was introduced into the measurement system by the condenser mirror 56. By the above method, the impurities mixed in the polyethylene film were successfully fixed.
When the hemispherical 53 lens was detached and measured, the intensity of the measuring light 57 was low and impurities could not be fixed.

【0027】(実施例4)実施例1で得られたダイヤモ
ンド単結晶を、直径2mmφ,厚さ1mmの円板状に加
工した。上平面63と下面64の平行度が、1秒以下に
納まるようにした。更に、直径0.5mmφで深さ7μ
mの座ぐり穴を中央部にあけ図7に示す様な顕微型赤外
分光分析用試料板61を作製した。試料挿入部62であ
る穴部底面の表面粗さは、Rmaxで0.3μmであっ
た。また、中央部に座ぐり穴の無い前記と同じ円板状の
試料板を作製した。有機物が溶解した水溶液を、座ぐり
穴部62に充填し、表面張力によって試料が盛り上がる
のを防ぐため、座ぐり穴の無い試料板を重ねて、測定光
路に設置し測定を行った。従来の材料(KBr等)の様
に、試料板自体が水溶液中に溶けだす事なく安定して正
確な測定が可能となった。更に、従来は試料板を侵食す
る為に測定出来なかった酸やアルカリに溶解した試料で
も、本発明による試料板を用いることにより、前記と同
じ方法で赤外分光分析が可能となった。又、表面張力の
小さな試料の場合には、座ぐり穴部に試料を挿入するだ
けで測定が可能であった。
Example 4 The diamond single crystal obtained in Example 1 was processed into a disc shape having a diameter of 2 mmφ and a thickness of 1 mm. The parallelism between the upper flat surface 63 and the lower surface 64 is set to be within 1 second. Furthermore, diameter 0.5mmφ and depth 7μ
A counterbored hole of m was bored in the central portion to prepare a sample plate 61 for microscopic infrared spectroscopic analysis as shown in FIG. The surface roughness of the bottom surface of the hole, which is the sample insertion portion 62, was 0.3 μm in Rmax. In addition, the same disk-shaped sample plate as described above having no counterbore in the center was prepared. An aqueous solution in which an organic substance was dissolved was filled in the counterbore hole portion 62, and in order to prevent the sample from rising due to surface tension, sample plates having no counterbore hole were stacked and placed in the measurement optical path for measurement. Unlike the conventional materials (KBr, etc.), the sample plate itself can be stably and accurately measured without melting into the aqueous solution. Furthermore, by using the sample plate according to the present invention, infrared spectroscopic analysis can be performed by using the sample plate according to the present invention, even for a sample dissolved in an acid or an alkali, which could not be conventionally measured due to erosion of the sample plate. Further, in the case of a sample having a small surface tension, it was possible to perform the measurement simply by inserting the sample into the counterbore.

【0028】[0028]

【発明の効果】以上説明したように、この発明のATR
プリズムを用いた赤外分光分析において、耐久性の優れ
たプリズムを提出出来るようになった。又、試料を薄片
状に加工し、ホルダー等でプリズムに接着させることな
く、直接押し当てることにより測定が可能となった。更
に、この発明の赤外顕微装置用試料板は、各種の試料と
の反応性が貧しく、試料板として最適であり、かつ強度
が高く耐用回数も従来の試料板に比較して大幅に向上し
た。
As described above, the ATR of the present invention
In the infrared spectroscopic analysis using prisms, it became possible to submit prisms with excellent durability. In addition, the sample can be processed into a thin piece and directly pressed without adhering it to the prism with a holder or the like, which enables measurement. Further, the sample plate for an infrared microscope of the present invention has poor reactivity with various samples, is optimal as a sample plate, has high strength, and has a significantly improved service life compared to conventional sample plates. .

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的なATRプリズムを用いた測定方法を示
す正面図である。
FIG. 1 is a front view showing a measuring method using a general ATR prism.

【図2】プリズムを下方に固定した状態で測定するこの
発明のATR測定装置を示す正面図である。
FIG. 2 is a front view showing an ATR measuring device of the present invention for measuring with a prism fixed downward.

【図3】プリズムを試料上方に配置させ下降接触するこ
とで測定するこの発明のATR測定装置を示す正面図で
ある。
FIG. 3 is a front view showing an ATR measuring device of the present invention for measuring by placing a prism above a sample and making a downward contact.

【図4】光ファイバーでプローブと測定器をつないだこ
の発明のATR測定装置を示す正面図である。
FIG. 4 is a front view showing an ATR measuring device of the present invention in which a probe and a measuring device are connected by an optical fiber.

【図5】この発明による微小平面で覆われたプリズムを
用いた測定装置を示す正面図である。
FIG. 5 is a front view showing a measuring device using a prism covered with a minute plane according to the present invention.

【図6】この発明によるダイヤモンドと等屈折率の物質
を組合せたプリズムを用いた測定装置を示す正面図であ
る。
FIG. 6 is a front view showing a measuring device using a prism in which diamond and a substance having an equal refractive index are combined according to the present invention.

【図7】この発明による赤外顕微装置用材料板で、
(A)は斜視図、(B)は中央縦断面図である。
FIG. 7 is a material plate for an infrared microscope according to the present invention,
(A) is a perspective view and (B) is a central longitudinal sectional view.

【符号の説明】[Explanation of symbols]

11,21,31,41,51 入射光 14,24,33,43 54 プリズム 18,29,36,47,57 測定光 12,17,23,27,46,52,56 集光ミ
ラー 13,16,42 集光レンズ 22,28 変向ミラー 32,35 光ファイバー 53 ダイヤモンドと等屈折率物質 61 赤外顕微装置用試料板 62 試料挿入部 63 入射面 64 透過面
11,21,31,41,51 Incident light 14,24,33,43 54 Prism 18,29,36,47,57 Measuring light 12,17,23,27,46,52,56 Condensing mirror 13,16 , 42 Condensing lens 22, 28 Deflection mirror 32, 35 Optical fiber 53 Diamond and iso-refractive index material 61 Sample plate for infrared microscope 62 Sample insertion part 63 Incident surface 64 Transmission surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 寿郎 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiro Kato 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries Itami Works

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 結晶中に含有される窒素量が3ppm以
下かつ、硼素量が3ppm以下である合成ダイヤモンド
を用いた全反射(ATR)プリズムからなることを特徴
とする赤外光学部品。
1. An infrared optical component comprising a total reflection (ATR) prism using a synthetic diamond having a nitrogen content of 3 ppm or less and a boron content of 3 ppm or less contained in a crystal.
【請求項2】 プリズムの入射面または透過面を、全反
射しない複数の面で覆うことにより、入射光及び透過光
のロスを減少させることを特徴とする請求項1記載の赤
外光学部品。
2. The infrared optical component according to claim 1, wherein the incident surface or the transmissive surface of the prism is covered with a plurality of surfaces that do not totally reflect to reduce the loss of incident light and transmitted light.
【請求項3】 プリズムの入射光及び透過光の反射ロス
を減少させるため、ダイヤモンドと等屈折率からなる物
質の表面を曲面で加工し、合成ダイヤモンドプリズム上
に密着させたことを特徴とする請求項1記載の赤外光学
部品。
3. A surface of a substance having a refractive index equal to that of diamond is processed into a curved surface to reduce reflection loss of incident light and transmitted light of the prism, and the surface of the material is adhered onto a synthetic diamond prism. Item 1. The infrared optical component according to item 1.
【請求項4】 請求項1乃至請求項3記載のプリズムと
共に、光学用ミラー、レンズ又はファイバーを用いるこ
とにより、ホルダー等を用いることなく直接試料に押し
当てることにより全反射(ATR)分光分析をすること
を特徴とする測定装置。
4. A total reflection (ATR) spectroscopic analysis can be performed by directly pressing against a sample without using a holder or the like by using an optical mirror, lens or fiber together with the prism according to any one of claims 1 to 3. A measuring device characterized by:
【請求項5】 結晶中に含有される窒素量が3ppm以
下かつ、硼素量が3ppm以下である合成ダイヤモンド
を用い、測定光の入射面と透過面の平行度が1分以内で
あることを特徴とする赤外顕微装置用試料板。
5. A synthetic diamond having a nitrogen content of 3 ppm or less and a boron content of 3 ppm or less is used in the crystal, and the parallelism between the measurement light incident surface and the transmission surface is within 1 minute. Sample plate for infrared microscope.
【請求項6】 前記請求項5記載の試料板の入射面に測
定試料を保持するための凹型の穴を有していることを特
徴とする請求項5記載の赤外顕微装置用試料板。
6. The sample plate for an infrared microscope according to claim 5, wherein the sample plate according to claim 5 has a concave hole for holding a measurement sample.
【請求項7】 前記請求項6記載の測定試料を保持する
ための穴の深さが、0.01μm〜100μmであり、
底部の面精度が0.5μm以下であることを特徴とする
請求項6記載の赤外顕微装置用試料板。
7. The depth of the hole for holding the measurement sample according to claim 6, is 0.01 μm to 100 μm,
The sample plate for an infrared microscope according to claim 6, wherein the bottom surface has an accuracy of 0.5 µm or less.
【請求項8】 前記請求項5又は6記載の試料板の穴を
形成するのに、イオンビーム、電子線ビーム等のエネル
ギー線を用いることを特徴とする赤外顕微装置用試料板
の作成方法。
8. A method for producing a sample plate for an infrared microscope, wherein an energy beam such as an ion beam or an electron beam is used to form the hole of the sample plate according to claim 5 or 6. .
JP24978293A 1992-10-07 1993-09-10 Infrared optical part and measuring instrument Pending JPH06214102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24978293A JPH06214102A (en) 1992-10-07 1993-09-10 Infrared optical part and measuring instrument

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-296326 1992-10-07
JP29632692 1992-10-07
JP24978293A JPH06214102A (en) 1992-10-07 1993-09-10 Infrared optical part and measuring instrument

Publications (1)

Publication Number Publication Date
JPH06214102A true JPH06214102A (en) 1994-08-05

Family

ID=26539486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24978293A Pending JPH06214102A (en) 1992-10-07 1993-09-10 Infrared optical part and measuring instrument

Country Status (1)

Country Link
JP (1) JPH06214102A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506972A (en) * 1998-03-12 2002-03-05 ルックジュトゥール,トーマス Optical configuration for detecting light
JP2007121322A (en) * 2007-02-13 2007-05-17 Japan Science & Technology Agency Prism for measuring total reflection absorption, and total reflection absorbing apparatus using the same
JP2015187587A (en) * 2014-03-27 2015-10-29 国立大学法人山梨大学 Polarization modulation fourier transform infrared spectroscope, polarization modulation measurement unit for fourier transform infrared spectroscope, and polarization modulation fourier transform infrared spectroscopy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506972A (en) * 1998-03-12 2002-03-05 ルックジュトゥール,トーマス Optical configuration for detecting light
JP2007121322A (en) * 2007-02-13 2007-05-17 Japan Science & Technology Agency Prism for measuring total reflection absorption, and total reflection absorbing apparatus using the same
JP2015187587A (en) * 2014-03-27 2015-10-29 国立大学法人山梨大学 Polarization modulation fourier transform infrared spectroscope, polarization modulation measurement unit for fourier transform infrared spectroscope, and polarization modulation fourier transform infrared spectroscopy

Similar Documents

Publication Publication Date Title
WO1994008224A1 (en) Infrared optical part and measuring instrument
US4906083A (en) Apparatus for examining gemstones and the like
Croft Under the microscope: a brief history of microscopy
EP0341927A1 (en) Biological sensors
JPH0544621B2 (en)
JPWO2005088280A1 (en) Optical measuring device and optical measuring method
CN101441175A (en) Surface plasma resonance detection device based on laser scanning surface confocal microscopic system
US20140295535A1 (en) Measurement apparatus
EP0503934A2 (en) Infrared optical part and method of making the same
JPH06214102A (en) Infrared optical part and measuring instrument
CN112525884B (en) Ultra-micro Raman spectrum detection device
US2869417A (en) Refractometers
CN110530821B (en) Measuring device and measuring method for refractive index of optical material
JPS62190438A (en) Illumination method of particle and dispersoid analyzer using said method
CN2452021Y (en) Micro laser inducing fluorescence detector observation calibrating apparatus
US7012692B2 (en) Photothermal conversion spectroscopic analysis method, and photothermal conversion spectroscopic analysis apparatus for carrying out the method
US4299493A (en) Auto-optical centering device for photometers
SU408200A1 (en) DEVICE FOR DEFECTIC TRANSPARENTS
JP2004020262A (en) Photothermal conversion spectroscopic method and apparatus therefor
CN218098884U (en) Sample table for Raman spectrum testing and real-time correction of geological sample
Willard Chapter V: Use of the etch technique for determining orientation and twinning in quartz crystals
Parrish et al. Orientation techniques for the manufacture of quartz oscillator-plates
JP2003344323A (en) Photothermal conversion spectroscopic analysis method and photothermal conversion spectroscopic analyzer implementing the method
Louden Raman microscopy
Axelrod Surface fluorescence microscopy with evanescent illumination