JPH06207253A - Iron base sliding part material - Google Patents

Iron base sliding part material

Info

Publication number
JPH06207253A
JPH06207253A JP74493A JP74493A JPH06207253A JP H06207253 A JPH06207253 A JP H06207253A JP 74493 A JP74493 A JP 74493A JP 74493 A JP74493 A JP 74493A JP H06207253 A JPH06207253 A JP H06207253A
Authority
JP
Japan
Prior art keywords
sliding
iron
sintered
sintered body
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP74493A
Other languages
Japanese (ja)
Inventor
Tsutomu Morioka
勉 森岡
Kunpei Kobayashi
薫平 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP74493A priority Critical patent/JPH06207253A/en
Publication of JPH06207253A publication Critical patent/JPH06207253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide an iron base sliding parts material excellent in wear resistance and seizing resistance and remarkably improved in durability. CONSTITUTION:The iron base sliding parts material in this invention is formed of an iron series sintered alloy consisting of, by weight, 0.8 to 3% C and 0.1 to 5% Sn, and the balance substantially Fe and having a structure in which Fe-Sn allay phases are dispersed into a ferritic-pearlitic matrix. Furthermore, as for the other constituting example, it is formed of an iron series sintered allay consisting of 0.8 to 3% C, 1 to 10% Cu and 0.1 to 5% Sn, and the balance substantially Fe and having a structure in which Cu-Sn allay phases and Fe-Sn allay phases are dispersed into a ferritic-pearlitic matrix, and in which the content of Sn incorporated into the Cu-Sn allay phases is regulated to 10 to 50% based on the total content of Sn to be added. Moreover, it shall be constituted in such a manner that the density of the sintered allay is set to 6 to 7g/cm<3>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄基摺動部品材料に係
り、特に圧縮機用のシリンダ材や軸受材、ベアリングの
ハウジング材料などの摺動部材に好適であり、耐摩耗性
および耐焼付性を改善し耐久性に優れた鉄基摺動部品材
料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for iron-based sliding parts, and is particularly suitable for a sliding member such as a cylinder material for a compressor, a bearing material, and a housing material for a bearing, and has wear resistance and seizure resistance. The present invention relates to an iron-based sliding part material having improved durability and excellent durability.

【0002】[0002]

【従来の技術】冷凍機、冷蔵庫、空調機やショーケース
においては冷媒を圧縮する圧縮機が主要機器として装備
されている。上記用途例において一般的に使用されてい
る圧縮機として、図1および図2に示すような密閉型の
ロータリ圧縮機がある。
2. Description of the Related Art In refrigerators, refrigerators, air conditioners and showcases, a compressor for compressing a refrigerant is equipped as a main device. As a compressor generally used in the above application example, there is a hermetic rotary compressor as shown in FIGS. 1 and 2.

【0003】この圧縮機1は、ケ―シング2の内部にモ
ータ3aと圧縮要素3bとを内装し、圧縮要素3bはモ
ータ3から延びる回転軸4を主軸受5と副軸受6に挿通
させ、この主軸受5と副軸受6との間に、仕切板7を介
して2基のシリンダ8a,8bを配設し、各シリンダ8
a,8b内において、前記回転軸4に形成された偏心部
9a,9bにそれぞれ円筒状のローラ10a,10bを
嵌合させる一方、図2に示すように偏心回転するローラ
10a,10bに対して常時押し付けて接触するよう
に、ベーン11a,11bが配設されて構成される。ベ
ーン11a,11bは偏心部9a,9bおよびローラ1
0a,10bの回転に応じて往復動し、各シリンダ8
a,8b内部を圧力的に仕切る役割を果している。こう
して圧縮機1は、モータ3の駆動によって前記ローラ1
0a,10bをシリンダ8a,8b内において偏心回転
させることにより、シリンダ8a,8b内に吸入したガ
スを圧縮して吐出するものである。
The compressor 1 has a casing 2 internally provided with a motor 3a and a compression element 3b. The compression element 3b inserts a rotary shaft 4 extending from the motor 3 into a main bearing 5 and a sub bearing 6. Two cylinders 8a and 8b are arranged between the main bearing 5 and the sub bearing 6 with a partition plate 7 interposed therebetween.
In a and 8b, cylindrical rollers 10a and 10b are fitted into eccentric parts 9a and 9b formed on the rotary shaft 4, respectively, while the rollers 10a and 10b are eccentrically rotated as shown in FIG. The vanes 11a and 11b are arranged so as to be constantly pressed and brought into contact with each other. The vanes 11a and 11b include the eccentric portions 9a and 9b and the roller 1.
It reciprocates according to the rotation of 0a and 10b, and each cylinder 8
It plays a role of partitioning the insides of a and 8b by pressure. Thus, the compressor 1 drives the motor 3 to drive the roller 1
By eccentrically rotating the cylinders 0a, 10b in the cylinders 8a, 8b, the gas sucked into the cylinders 8a, 8b is compressed and discharged.

【0004】上記のような圧縮機1においては、主副軸
受5,6と回転軸4、シリンダ8とベーン11、仕切板
7とローラ10など相互に摺接する摺動部における摩耗
が特に顕著になるため、高い耐摩耗性を有する摺動材で
形成する必要がある。
In the compressor 1 as described above, wear is particularly remarkable in sliding parts such as the main and auxiliary bearings 5 and 6, the rotary shaft 4, the cylinder 8 and the vanes 11, the partition plate 7 and the rollers 10, which are in sliding contact with each other. Therefore, it is necessary to form the sliding member having high wear resistance.

【0005】従来、この種の摺動材としては、高速度鋼
や共晶黒鉛鋳鉄の溶解材、さらにより具体的には2.2
Si−3.4C−残部Feから成るFC200、SMF
4030などのSMF−4種材(鉄−炭素−銅系合金)
など耐摩耗性を高めた材料が一般に使用されている。
Conventionally, as a sliding material of this kind, a high speed steel or a melting material of eutectic graphite cast iron, and more specifically 2.2.
FC200, SMF consisting of Si-3.4C-balance Fe
SMF-4 type material such as 4030 (iron-carbon-copper alloy)
Materials having improved wear resistance are generally used.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、近年、
圧縮機は冷凍機用、冷蔵庫用、空調機用などの用途を問
わず、高性能化や使用条件の拡大が求められている。特
に空調機においては、使用者の住空間の変化や快適性の
要求水準の高まりが著しく、インバータを装備したもの
が標準品になりつつある。このような空調機に使用され
る圧縮機では従来以上に苛酷な運転条件、すなわち高負
荷条件下での高速運転や変速運転が要求されている。
However, in recent years,
Compressors are required to have high performance and expanded usage conditions regardless of their applications such as refrigerators, refrigerators, and air conditioners. In particular, in the case of air conditioners, changes in the living space of users and demands for comfort have risen remarkably, and those equipped with inverters are becoming standard products. The compressor used for such an air conditioner is required to operate at higher speeds and speed changes under severer operating conditions than before, that is, under high load conditions.

【0007】ところが、エネルギー効率を高めるために
圧縮機のON−OFF動作の回数を低減して、より低速
域での運転を行なうと、回転軸と主副軸受との間の摺動
部への給油量が減少して焼付きが生じ易くなるととも
に、ジャーナル軸受としての軸受負荷が低下して、回転
軸と主副軸受とが金属接触する機会が増大して摩耗が急
速に進行してしまう問題点がある。
However, when the compressor is operated in a lower speed range by reducing the number of ON-OFF operations in order to improve energy efficiency, the sliding portion between the rotary shaft and the main and sub bearings is moved. The problem that the amount of oil supply decreases and seizure easily occurs, the bearing load as the journal bearing decreases, the chances of metal contact between the rotating shaft and the main and sub bearings increase, and wear progresses rapidly. There is a point.

【0008】このような問題点を改善し、摺動特性を向
上させるために、給油機構の改善や軸受構造の改良およ
び耐摩耗性に優れた軸受や回転軸の材料開発や摺動材の
表面処理方法が種々検討されている。
In order to solve such problems and improve the sliding characteristics, the lubrication mechanism is improved, the bearing structure is improved, and the materials for bearings and rotary shafts having excellent wear resistance are developed and the surface of sliding materials is improved. Various treatment methods have been studied.

【0009】例えば、インバータ駆動の圧縮機の低速運
転時のように潤滑状態の悪化により潤滑油膜厚さが充分
に保持できない場合には、摩耗が急速に進行する場合が
あり、この対策として硬度が高い材料を使用したり、表
面処理によって摺動材の表面硬度を高める方法も採用さ
れている。
For example, when the lubricating oil film thickness cannot be sufficiently maintained due to deterioration of the lubrication state such as when the inverter-driven compressor operates at a low speed, wear may rapidly progress. A method of using a high material or increasing the surface hardness of the sliding material by surface treatment is also adopted.

【0010】しかしながら、摺動材の表面硬度を高める
のみでは、耐摩耗性は向上するが、摺動部におけるかじ
りを生じ易く、起動直後における初期なじみまたは耐焼
付性が悪化する場合も多い。
However, only by increasing the surface hardness of the sliding material, the wear resistance is improved, but galling is likely to occur in the sliding portion, and the initial running-in or seizure resistance immediately after starting is often deteriorated.

【0011】また表面処理による摺動材の表面硬度を高
めることは、形状が単純な回転軸等においては、比較的
に容易である一方、主副軸受などのように凹部を有する
複雑形状の部品では均一な表面処理が困難であり、摺動
特性が全体として低下してしまう問題点もある。
Further, it is relatively easy to increase the surface hardness of the sliding member by the surface treatment on a rotating shaft having a simple shape, while a part having a complicated shape such as a main bearing and a sub bearing having a concave portion. However, it is difficult to perform a uniform surface treatment, and there is a problem that the sliding characteristics are deteriorated as a whole.

【0012】一方、摺動材として鉄系粉末から成る焼結
体を使用する場合もあるが、焼結体には無数の微細な連
通孔が形成されており、この焼結体でシリンダや軸受、
仕切板やローラを形成した場合には、圧縮機内の冷媒の
一部が連通孔を通り抜けることにより圧縮機の体積効率
が大幅に低下してしまう問題点がある。
On the other hand, although a sintered body made of iron-based powder may be used as the sliding material, the sintered body has innumerable minute communication holes formed therein, and the sintered body is used for cylinders and bearings. ,
When the partition plate or the roller is formed, there is a problem that a part of the refrigerant in the compressor passes through the communication hole, so that the volumetric efficiency of the compressor is significantly reduced.

【0013】さらに、上記焼結操作において焼結温度が
高い場合には、黒鉛成分が鉄成分中に拡散し、固溶する
とともに鉄と黒鉛とが反応してFe3 Cなどの極めて高
硬度のセメンタイトを生成する欠点がある。このセメン
タイトを生成した焼結体で圧縮機の軸受材を形成した場
合には、相手部材(回転軸)をかじり攻撃する性質(ス
カッフィング性)が極めて高くなる。そこで従来は上記
セメンタイトを生成しないように920〜1000℃の
比較的低温度の焼結条件で焼結操作を実施していた。
Further, when the sintering temperature is high in the above-mentioned sintering operation, the graphite component diffuses into the iron component to form a solid solution and the iron reacts with the graphite to cause extremely high hardness such as Fe 3 C. It has the drawback of producing cementite. When a bearing material for a compressor is formed from this sintered body that has produced cementite, the property (scuffing property) of galling and attacking a mating member (rotating shaft) becomes extremely high. Therefore, conventionally, the sintering operation has been carried out under a relatively low temperature sintering condition of 920 to 1000 ° C. so as not to form the cementite.

【0014】しかしながら、低温度で焼結した場合は、
セメンタイトの生成量は減少して相手攻撃性を緩和でき
るものの、焼結性が低下し、焼結合金の密度が低い上に
機械的強度が低くなり、軸受材の破損や摩耗が顕著にな
り圧縮機用摺動部材としての実用に供することが困難と
なる問題点があった。
However, when sintered at a low temperature,
Although the amount of cementite produced can be reduced to mitigate the opponent's aggressiveness, the sinterability is reduced, the density of the sintered alloy is low and the mechanical strength is low, and the damage and wear of the bearing material becomes noticeable and compression There is a problem that it is difficult to put it into practical use as a sliding member for machines.

【0015】本発明は上記の問題点を解決するためにな
されたものであり、耐摩耗性および耐焼付性が共に優
れ、機械的強度が高く耐久性が著しく改善された鉄基摺
動部品材料を提供することを目的とする。
The present invention has been made to solve the above problems, and is excellent in both wear resistance and seizure resistance, has high mechanical strength, and has significantly improved durability. The purpose is to provide.

【0016】[0016]

【課題を解決するための手段と作用】本発明者らは上記
の目的を達成するため、圧縮機の摺動部を構成する材料
を種々変えて、その摺動特性を比較検討した。その結
果、原料Fe粉末に所定量のC,Cu,Snを添加した
原料混合体を成形焼結し、焼結体組織中にCu−Sn合
金相および/またはFe−Sn合金相を分散させること
によって耐摩耗性、機械的強度が高く、相手攻撃性が少
なく摺動特性が優れた焼結摺動部材が得られることが判
明した。特にSnを所定量添加する一方で炭素を比較的
に多量に添加した場合には、高温度で焼結した場合にお
いても、Fe3 Cなどの高硬度のセメンタイトが形成さ
れることが少なく、相手攻撃性が低い焼結体が得られ
る。つまり、所定量のSnを添加することにより、オー
ステナイト中に固溶されるC量が減少したため高硬度の
セメンタイトの発生を抑制できることに基づくと推定さ
れる。このことは従来と比較して炭素分を多量に含有さ
せた場合においても、高い焼結温度で焼結操作を実施す
ることが可能であり、その結果、相手攻撃性を増すこと
なく密度が高く、構造強度および機械的強度に優れ、か
つ気密性に優れた焼結摺動部品を製造できることが判明
した。本発明はこれらの知見に基づいて完成されたもの
である。
In order to achieve the above object, the present inventors have variously changed the materials constituting the sliding portion of the compressor and compared and examined the sliding characteristics thereof. As a result, the raw material mixture obtained by adding a predetermined amount of C, Cu, Sn to the raw Fe powder is compacted and sintered to disperse the Cu—Sn alloy phase and / or the Fe—Sn alloy phase in the sintered body structure. It was found that a sintered sliding member having high wear resistance, high mechanical strength, low opponent attack and excellent sliding characteristics was obtained. In particular, when a predetermined amount of Sn is added and a relatively large amount of carbon is added, cementing with high hardness such as Fe 3 C is rarely formed even when sintering is performed at a high temperature. A sintered body with low aggressiveness can be obtained. In other words, it is presumed that the addition of a predetermined amount of Sn reduces the amount of C dissolved in austenite, so that the occurrence of high hardness cementite can be suppressed. This means that it is possible to carry out the sintering operation at a high sintering temperature even when a large amount of carbon is contained compared to the conventional one, and as a result, the density is increased without increasing the opponent attack. It has been found that it is possible to manufacture a sintered sliding part having excellent structural strength and mechanical strength and excellent airtightness. The present invention has been completed based on these findings.

【0017】すなわち本発明に係る鉄基摺動部品材料
は、Cを0.8〜3wt%、Snを0.1〜5wt%、
残部実質的にFeから成り、フェライトおよびパーライ
ト基地にFe−Sn合金相が分散した組織を有する鉄系
焼結合金で形成したことを特徴とする。
That is, in the iron-based sliding part material according to the present invention, C is 0.8 to 3 wt%, Sn is 0.1 to 5 wt%,
The balance is substantially Fe, and is characterized by being formed of an iron-based sintered alloy having a structure in which an Fe-Sn alloy phase is dispersed in a ferrite and pearlite matrix.

【0018】また他の態様としてCを0.8〜3wt
%、Cuを1〜10wt%、Snを0.1〜5wt%、
残部実質的にFeから成り、フェライトおよびパーライ
ト基地にCu−Sn合金相およびFe−Sn合金相が分
散した組織を有し、上記Cu−Sn合金相に含有される
Sn量がSnの総添加量の10〜50wt%である鉄系
焼結合金で形成したことを特徴とする。
In another embodiment, C is 0.8 to 3 wt.
%, Cu 1 to 10 wt%, Sn 0.1 to 5 wt%,
The balance consists essentially of Fe and has a structure in which a Cu-Sn alloy phase and a Fe-Sn alloy phase are dispersed in a ferrite and pearlite matrix, and the amount of Sn contained in the Cu-Sn alloy phase is the total addition amount of Sn. 10 to 50 wt% of the iron-based sintered alloy.

【0019】また上記焼結合金の密度は6〜7g/cm3
に設定するとよい。
The density of the above sintered alloy is 6 to 7 g / cm 3.
Set to.

【0020】さらに焼結合金の硬さはHRB硬度で60〜
110に設定する。
Further, the hardness of the sintered alloy is 60 to 60 in terms of H RB hardness.
Set to 110.

【0021】また焼結合金の耐圧性は0.5MPa以上
に設定される。
The pressure resistance of the sintered alloy is set to 0.5 MPa or more.

【0022】以下本発明に係る摺動部品材料の組成等に
ついて順次説明する。
The composition and the like of the sliding component material according to the present invention will be sequentially described below.

【0023】Cは、基地を構成するFeと反応してパー
ライトを生成し、部品の耐久性を向上させる元素であ
る。一方、Feと反応しなかったCは、遊離黒鉛として
マトリックス中に分散され摺動面の潤滑性を高めて摺動
材のかじりを防止し、初期摺動特性を改善するために
0.8〜3wt%含有する。
C is an element that reacts with Fe forming the base to generate pearlite and improves the durability of parts. On the other hand, C that has not reacted with Fe is dispersed in the matrix as free graphite to improve the lubricity of the sliding surface, prevent galling of the sliding material, and improve the initial sliding property by 0.8 to 0.8%. Contains 3 wt%.

【0024】C含有量が0.8wt%未満の場合には遊
離黒鉛量が少なく摺動特性の改善効果が充分ではなく、
一方、含有量が3wt%を超える場合には、成形性が低
下し、高密度かつ高強度の焼結体が得られにくい。
When the C content is less than 0.8 wt%, the amount of free graphite is small and the effect of improving the sliding characteristics is not sufficient.
On the other hand, if the content exceeds 3 wt%, the formability is lowered and it is difficult to obtain a high-density and high-strength sintered body.

【0025】特に焼結体の初期摺動特性を改善するため
には、後述するCu−Sn合金相(青銅)および/また
はFe−Sn合金相を基地中に分散させることが有効で
ある。
In particular, in order to improve the initial sliding characteristics of the sintered body, it is effective to disperse the Cu-Sn alloy phase (bronze) and / or Fe-Sn alloy phase described later in the matrix.

【0026】またCuはSnと合金化されて分散した青
銅(Cu−Sn合金相)となり、摺動材の初期摺動特性
を改善するために1〜10wt%含有する。Cuの含有
量が1wt%未満の場合には、添加の効果が少ない一
方、含有量が10wt%を超えると、焼結合金全体の硬
度が低下し、摺動材としての耐久性が低下してしまう。
Cu is alloyed with Sn to become bronze (Cu-Sn alloy phase) dispersed and is contained in an amount of 1 to 10 wt% in order to improve the initial sliding characteristics of the sliding material. When the content of Cu is less than 1 wt%, the effect of addition is small, while when the content exceeds 10 wt%, the hardness of the sintered alloy as a whole decreases and the durability as a sliding material decreases. I will end up.

【0027】Snは、溶製材の場合において本来多量に
合金化されると基地の靭性低下を引き起こす有害物質と
なるが、焼結体の場合においては所定の範囲内において
含有させることにより、摺動特性および基地の機械的強
度を増大化させ得ることが本発明者らの実験により確認
された。すなわち、SnはCuおよびFeと合金化し
て、摺動特性を改善するCu−Sn合金相(青銅)およ
びFe−Sn合金相を焼結体基地中に分散して形成し耐
摩耗性を改善するために0.1〜5wt%の範囲で添加
される。
In the case of a molten material, Sn is a harmful substance which causes deterioration of the toughness of the matrix when it is alloyed in a large amount. Experiments by the present inventors have confirmed that the properties and mechanical strength of the matrix can be increased. That is, Sn alloys with Cu and Fe to form a Cu-Sn alloy phase (bronze) and an Fe-Sn alloy phase, which improve sliding characteristics, dispersed in a sintered body matrix to improve wear resistance. Therefore, it is added in the range of 0.1 to 5 wt%.

【0028】またSnを添加することにより、Cを従来
より多量に添加し高温度で焼結した場合においても、F
3 Cのような相手攻撃性が高いセメンタイトが形成さ
れない。したがって、従来と比較して炭素分を多量に含
有させた場合においても高い焼結温度で焼結操作を実施
することが可能であり、その結果、高密度で機械的強度
および気密性(耐圧性)に優れた焼結摺動部品が得られ
る。
Further, by adding Sn, even when a large amount of C is added and sintering is performed at a high temperature, F is increased.
Cementite, which is highly aggressive to opponents like e 3 C, is not formed. Therefore, it is possible to carry out the sintering operation at a high sintering temperature even when a large amount of carbon is contained as compared with the conventional one, and as a result, high density mechanical strength and airtightness (pressure resistance) can be achieved. ) Sintered sliding parts excellent in

【0029】Sn含有量が0.1wt%未満の場合には
Cu−Sn合金相、Fe−Sn合金相および固溶Snの
生成量が少なく上記改善効果が不充分になる上に相手攻
撃性が高いFe3 Cのようなセメンタイトが増加してし
まう一方、Sn含有量が5wt%を超えると、焼結合金
全体の靭性および機械的強度が低下してしまう。
When the Sn content is less than 0.1 wt%, the amount of Cu—Sn alloy phase, Fe—Sn alloy phase and solid solution Sn produced is small and the above-mentioned improvement effect is insufficient, and the opponent attacking property is high. While high cementite such as Fe 3 C will increase, if the Sn content exceeds 5 wt%, the toughness and mechanical strength of the entire sintered alloy will decrease.

【0030】したがって、Cu−Sn合金相およびFe
−Sn合金相に取り込まれるSn量を最適な範囲に設定
することにより、靭性や機械的強度を損うことなく、焼
結合金の摺動特性を改善することができる。すなわちC
u−Sn合金相に含有されるSn量はSnの総添加量の
10〜50wt%の範囲に設定することが重要である。
Therefore, the Cu--Sn alloy phase and Fe
-By setting the amount of Sn taken into the Sn alloy phase in the optimum range, the sliding characteristics of the sintered alloy can be improved without impairing the toughness and mechanical strength. Ie C
It is important to set the amount of Sn contained in the u-Sn alloy phase in the range of 10 to 50 wt% of the total amount of Sn added.

【0031】なお本発明者らの実験によれば、C含有量
を0.8〜3wt%と高く設定することによって、硬度
60〜110HRB(ロックウェル硬度Bスケール)を有
し、フェライトとセメンタイトとの共存組織を有する焼
結体が得られ、この焼結体で摺動部品を形成した場合に
おいても、優れた耐摩耗性を発揮できることも確認され
ている。また上記のようにC含有量を従来より高く設定
し高温度で焼結するにも拘らず、鉄と炭素とが反応して
生じるFe3 Oなどのセメンタイトなどの極めて高硬度
の金属間化合物が生成することが少なく、相手攻撃性が
低くなることも確認された。
According to the experiments conducted by the present inventors, by setting the C content as high as 0.8 to 3 wt%, the hardness is 60 to 110 H RB (Rockwell hardness B scale), and ferrite and cementite are present. It has also been confirmed that a sintered body having a coexisting structure with is obtained, and that even when a sliding component is formed from this sintered body, excellent wear resistance can be exhibited. Further, as described above, although the C content is set higher than in the conventional case and sintering is performed at a high temperature, an extremely high hardness intermetallic compound such as cementite such as Fe 3 O produced by the reaction between iron and carbon is generated. It was also confirmed that they are rarely generated and the attacking power of the opponent is low.

【0032】さらに材料の耐摩耗性および摺動特性をよ
り改善するために上記Cu,Sn,Cの他にNi,Mo
などの元素を所定量含有するとよい。
Further, in order to further improve the wear resistance and sliding characteristics of the material, in addition to the above Cu, Sn, C, Ni, Mo
It is advisable to include a predetermined amount of such elements.

【0033】すなわちNiは、摺動部品材料の焼付きを
防止するために、0.5〜4wtwt%の範囲で含有す
るとよい。含有量が0.5wt%未満の場合には上記効
果が少なくなる一方、含有量が4wt%を超える過量に
含有しても効果の大幅な改善が見られず、基地の硬度が
低下したり、充分な耐摩耗性が得られなくなる。また成
形性の悪化により、所定の密度が得られない。
That is, Ni is preferably contained in the range of 0.5 to 4 wt% in order to prevent seizure of the sliding component material. When the content is less than 0.5 wt%, the above effects are reduced, but even if the content exceeds 4 wt%, the effect is not significantly improved, and the hardness of the base decreases, Sufficient wear resistance cannot be obtained. Further, due to deterioration of moldability, a predetermined density cannot be obtained.

【0034】さらにMoは焼入れ性および高温強度を改
善して摺動部品の耐久性を向上させるために、0.5〜
10wt%含有するとよい。含有量が0.5wt%未満
の場合には、耐久性の向上効果が少ない一方、添加量が
10wt%を超えるように含有しても、それ以上の大き
な改善効果は見られずNiと同様に基地硬度の低下、耐
摩耗性の低下、成形性の悪化を招き、所定の密度が得ら
れなくなる。
Further, Mo is added in an amount of 0.5 to 0.5 in order to improve hardenability and high temperature strength and durability of sliding parts.
It is preferable to contain 10 wt%. When the content is less than 0.5 wt%, the durability improving effect is small, but even when the content is more than 10 wt%, no further significant improving effect is observed and similar to Ni. The base hardness is lowered, the wear resistance is lowered, the moldability is deteriorated, and the predetermined density cannot be obtained.

【0035】本発明に係る鉄基摺動部品材料は、鉄粉に
0.8〜3wt%のカーボン粉末、1〜10wt%のC
u粉末および0.1〜5wt%のSn粉末を添加混合し
て原料混合体を調製し、その原料混合体を所定形状に成
形した後に、成形体を1100〜1150℃程度の温度
によって0.5〜2時間焼結し、さらに必要に応じて得
られた焼結体を水蒸気処理法等によって封孔処理すると
ともに、鉄酸化物を生成せしめて製造される。ここで上
記原料混合体の調製に際してSn成分は単体のSn粉末
として添加することが肝要である。すなわち単体のSn
粉末を添加することにより、焼結時に低融点のSn成分
が早くから固溶し、基地強度を改善する作用を発揮す
る。もし、Cu−Sn合金粉末として添加した場合に
は、Cu−Sn合金相の分散割合は高くなるが、Snの
Fe中への固溶量は少なくなり、摺動性の改善効果が少
なくなる。
The iron-based sliding part material according to the present invention comprises 0.8 to 3 wt% carbon powder and 1 to 10 wt% C in iron powder.
After the u powder and 0.1 to 5 wt% Sn powder are added and mixed to prepare a raw material mixture and the raw material mixture is molded into a predetermined shape, the molded body is heated to a temperature of about 1100 to 1150 ° C. for 0.5 It is produced by sintering for ~ 2 hours and, if necessary, subjecting the obtained sintered body to sealing treatment by a steam treatment method or the like and generating iron oxide. Here, when preparing the above-mentioned raw material mixture, it is important to add the Sn component as a simple Sn powder. That is, Sn alone
By adding the powder, the Sn component having a low melting point is solid-solved at an early stage during sintering, and exhibits the effect of improving the matrix strength. If added as a Cu-Sn alloy powder, the dispersion ratio of the Cu-Sn alloy phase increases, but the solid solution amount of Sn in Fe decreases, and the effect of improving slidability decreases.

【0036】こうして得られた鉄基摺動部品材料は、フ
ェライトおよびパーライトから成る主相マトリックス基
地中に第2相としてのCu−Sn合金相(青銅)と、第
3相としてのFe−Sn合金相とが分散し、さらに添加
したCの一部がマトリックス基地中に遊離黒鉛として分
散した複合金属組織を有する。また上記Cu−Sn合金
相は一般にCu−3〜25wt%Snの組成を有するよ
うに形成される。
The iron-based sliding component material thus obtained is composed of a main phase matrix matrix composed of ferrite and pearlite and has a Cu-Sn alloy phase (bronze) as a second phase and an Fe-Sn alloy as a third phase. The phase and the dispersed C have a composite metal structure in which a part of the added C is dispersed as free graphite in the matrix matrix. The Cu-Sn alloy phase is generally formed to have a composition of Cu-3 to 25 wt% Sn.

【0037】ここで焼結体の密度は6〜7g/cm3 の範
囲が好ましい。この密度が6g/cm3 未満であると摺動
部品としての構造強度が低下する一方、密度が7g/cm
3を超えると、潤滑油の保油性が優れる鉄酸化物の生成
量が減少して摺動特性および耐久性が共に低下してしま
う。
Here, the density of the sintered body is preferably in the range of 6 to 7 g / cm 3 . If this density is less than 6 g / cm 3 , the structural strength of the sliding component will be reduced, while the density will be 7 g / cm 3.
When it exceeds 3 , the production amount of iron oxide, which is excellent in the oil retaining property of the lubricating oil, is reduced, so that the sliding property and the durability are both deteriorated.

【0038】ここで水蒸気処理は温度500〜650
℃、圧力0.03〜0.1MPaの過熱水蒸気中に焼結
体を2〜3時間保持するものである。
Here, the steam treatment is carried out at a temperature of 500 to 650.
The sintered body is held in superheated steam at a temperature of 0.03 to 0.1 MPa for 2 to 3 hours.

【0039】この水蒸気処理により焼結体の基地組織の
空孔に鉄酸化物が分散生成される。この鉄酸化物量は焼
結体の全容積に対して5〜20vol%に設定するとよい。
この鉄酸化物は焼結体の耐摩耗性を向上させるととも
に、焼結体の基地組織の空孔を封じる役割(封孔作用)
を果して耐圧性(気密性)を与える。特に高い耐圧性を
確保するためには、焼結体の内部まで鉄酸化物を生成さ
せる必要がある。この封孔処理を行なうことにより、焼
結体の耐圧性を0.5MPa以上にすることが可能にな
り、圧縮機内の冷媒ガスが焼結体中を通り抜けることが
防止できるため、圧縮機の体積効率を大幅に改善するこ
とができる。
By this steam treatment, iron oxide is dispersed and generated in the pores of the matrix structure of the sintered body. This amount of iron oxide is preferably set to 5 to 20 vol% with respect to the total volume of the sintered body.
This iron oxide not only improves the wear resistance of the sintered body, but also serves to seal the pores in the matrix structure of the sintered body (sealing function).
To achieve pressure resistance (airtightness). In order to secure particularly high pressure resistance, it is necessary to generate iron oxide even inside the sintered body. By performing this sealing treatment, the pressure resistance of the sintered body can be made 0.5 MPa or more, and it is possible to prevent the refrigerant gas in the compressor from passing through the sintered body. The efficiency can be greatly improved.

【0040】また鉄酸化物は同時に潤滑油の保油性に優
れている。鉄酸化物の生成量が5Vol %未満であると上
記効果が少なく、一方生成量が20Vol %を超えると、
焼結体自体の強度が低下してしまう。さらに、水蒸気処
理により焼結体の基地組織に存在している窒素分が拡散
して、基地組織の粒子中に固溶するために、窒素分の存
在による焼結体の脆化を大幅に改善できる。
Further, iron oxide is also excellent in oil retaining property of lubricating oil. If the amount of iron oxide produced is less than 5% by volume, the above effect is small, while if the amount produced exceeds 20% by volume,
The strength of the sintered body itself decreases. Further, the steam treatment causes the nitrogen content existing in the matrix structure of the sintered body to diffuse and form a solid solution in the particles of the matrix structure, which significantly improves the embrittlement of the sintered body due to the presence of the nitrogen content. it can.

【0041】上記組成範囲を有し、水蒸気処理した摺動
部品材料は、フェライトおよびパーライト基地中にCu
−Sn合金相、Fe−Sn合金相および鉄酸化物が分散
し、またCの一部が遊離黒鉛として分散しているため、
硬度も60〜 120HRBの範囲になり、従来一般的に使用さ
れる耐摩耗材とのなじみも優れている。
The sliding component material having the above composition range and subjected to steam treatment is Cu in ferrite and pearlite matrix.
Since the -Sn alloy phase, the Fe-Sn alloy phase and the iron oxide are dispersed, and a part of C is dispersed as free graphite,
The hardness is in the range of 60 to 120 H RB , and it has excellent compatibility with wear resistant materials that have been commonly used in the past.

【0042】上記部品材料で形成した摺動部品と摺接す
る相手材としては、FC材(ねずみ鋳鉄材)またはFC
D材(球状黒鉛鋳鉄材)のような鉄系鋳物材、SCM材
(クロムモリブデン鋼)、SNCM材(ニッケル−クロ
ム−モリブデン鋼)のような鋼材、あるいはシリコンを
含有するアルミニウム鋳物材や鍛造材で形成するとよ
い。これらの材料で形成された摺動材は、上記の焼結体
で形成した本発明に係る鉄基摺動部品材料とのなじみが
良く、かじり等を発生することが少なく、優れた摺動特
性を発揮する。
FC material (gray cast iron material) or FC material is used as the mating material which is in sliding contact with the sliding component formed of the above component material.
Iron-based casting material such as D material (spheroidal graphite cast iron material), steel material such as SCM material (chrome molybdenum steel), SNCM material (nickel-chromium-molybdenum steel), aluminum casting material containing silicon or forged material It is good to form. The sliding material formed of these materials has good compatibility with the iron-based sliding component material according to the present invention formed of the above-mentioned sintered body, hardly causes galling, and has excellent sliding characteristics. Exert.

【0043】このようにして本発明材料から製造された
摺動部品は、従来一般に使用されているSMF−4種材
やFC材から製造した摺動部品と比較して強靭な基地組
織を備えることに加え、硬度が大きく耐摩耗性が大幅に
向上している。さらに基地組織中に存在する錫、Cu−
Sn合金相やFe−Sn合金相および遊離黒鉛の潤滑作
用により摺動部品の耐焼付性および初期摺動特性が大幅
に向上し、苛酷な使用条件に耐え得る優れた耐摩耗摺動
部品となる。したがってこれらの摺動部品を軸受と回転
軸、シリンダとベーン、仕切板とローラなどの摺動部に
使用した圧縮機は、優れた耐摩耗性および耐焼付性を有
し、長期間に亘って安定した状態で運転することができ
る。
The sliding component manufactured from the material of the present invention as described above has a tougher base structure as compared with the sliding components manufactured from the SMF-4 type material and the FC material which have been generally used conventionally. In addition, the hardness is great and the wear resistance is greatly improved. Furthermore, tin and Cu- present in the base structure
Due to the lubricating action of the Sn alloy phase, Fe-Sn alloy phase and free graphite, the seizure resistance and initial sliding characteristics of sliding parts are greatly improved, making it an excellent wear-resistant sliding part that can withstand severe operating conditions. . Therefore, compressors that use these sliding parts for bearings and rotary shafts, cylinders and vanes, partition plates and rollers, and other sliding parts have excellent wear resistance and seizure resistance, and can be used for a long period of time. It can be operated in a stable state.

【0044】特に封孔処理を行なった焼結体で形成した
摺動部品は、耐圧性(気密性)に優れ、冷媒ガス等の被
圧縮ガスを透過させることがないため、圧縮機の体積効
率を高く維持することができる。
In particular, the sliding parts formed of the sintered body which has been subjected to the sealing treatment are excellent in pressure resistance (airtightness) and do not allow compressed gas such as refrigerant gas to pass therethrough. Can be kept high.

【0045】[0045]

【実施例】次に本発明に係る鉄基摺動部品材料で形成し
た摺動部品の特性を従来材と比較して説明する。
EXAMPLES Next, the characteristics of sliding parts made of the iron-based sliding part material according to the present invention will be described in comparison with conventional materials.

【0046】適用する摺動部として、図1に示すロータ
リ式圧縮機の回転軸4と副軸受6とで構成される摺動部
を例にとり、上記副軸受6に本発明の圧縮機用摺動部品
材料を使用する一方、回転軸4としては従来のFCD材
で形成したものを使用した場合について示す。
As an example of the sliding portion to be applied, a sliding portion constituted by the rotary shaft 4 and the sub bearing 6 of the rotary compressor shown in FIG. 1 is taken as an example. While the moving part material is used, the case where the rotating shaft 4 is made of the conventional FCD material is shown.

【0047】すなわち実施例1〜5として、以下に述べ
る方法で製造した焼結体で各副軸受を形成した。すなわ
ち粒径145μm以下のFe粉末を約88〜97wt
%、粒径44μm以下のSn粉末を1.0〜3.0wt
%、粒径44μm以下のCu粉末を0〜9wt%、黒鉛
粉末を0.8〜1.5wt%、および潤滑剤を1wt%
添加して、最終的な焼結体の組成が、表1の左欄に示す
値となるように、各原料粉末の配合割合をそれぞれ調整
して5種類の混合粉末を調製した。次に各混合粉末を成
形圧5〜6ton/cm2 で加圧して外径65mm×内径16mm
×厚さ14mmの寸法を有し、成形密度が6.6g/cm3
の円筒ブロック状の成形体を得た。そして各成形体を非
酸化性雰囲気中で温度1100〜1150℃で30分間
焼結して徐冷した。得られた焼結体の密度は6.5〜
6.7g/cm3 であった。
That is, as Examples 1 to 5, each sub-bearing was formed from a sintered body manufactured by the method described below. That is, about 88 to 97 wt.
%, 1.0 to 3.0 wt% of Sn powder having a particle size of 44 μm or less
%, Cu powder having a particle size of 44 μm or less 0 to 9 wt%, graphite powder 0.8 to 1.5 wt%, and lubricant 1 wt%.
5 types of mixed powders were prepared by adjusting the mixing ratios of the respective raw material powders so that the final composition of the sintered body had the values shown in the left column of Table 1. Next, each mixed powder is pressed at a molding pressure of 5 to 6 ton / cm 2 and an outer diameter of 65 mm x an inner diameter of 16 mm.
× Has a thickness of 14 mm and a molding density of 6.6 g / cm 3.
A cylindrical block-shaped molded body of was obtained. Then, each molded body was sintered in a non-oxidizing atmosphere at a temperature of 1100 to 1150 ° C. for 30 minutes and gradually cooled. The density of the obtained sintered body is 6.5.
It was 6.7 g / cm 3 .

【0048】次に製造された各焼結体を温度500〜6
50℃で圧力が0.13〜0.2MPaの過熱水蒸気中
に60〜240分間保持する水蒸気処理を施すことによ
り、封孔処理を行なうとともに焼結体の内部まで鉄酸化
物を生成させる酸化処理を行なった。得られた各焼結体
中に分散して含有される鉄酸化物量は13〜17Vol%
であり、耐圧性は約1.0MPaであった。そしてこの
各焼結体を研削研磨加工して同一寸法の5種類の副軸受
を製造した。
Next, each of the produced sintered bodies was heated to a temperature of 500 to 6
Oxidation treatment that performs pore-sealing treatment and generates iron oxides inside the sintered body by performing steam treatment of holding in superheated steam having a pressure of 0.13 to 0.2 MPa at 50 ° C. for 60 to 240 minutes. Was done. The amount of iron oxide dispersedly contained in each of the obtained sintered bodies is 13 to 17 Vol%.
And the pressure resistance was about 1.0 MPa. Then, each of the sintered bodies was ground and polished to manufacture five types of auxiliary bearings having the same size.

【0049】上記いずれの副軸受も、フェライトおよび
パーライトの混成組織にCu−Sn合金相、Fe−Sn
合金相、遊離黒鉛および鉄酸化物が分散した均一な合金
組織を有していた。
In all of the above sub-bearings, a composite structure of ferrite and pearlite has a Cu--Sn alloy phase and Fe--Sn.
It had a uniform alloy structure in which the alloy phase, free graphite and iron oxide were dispersed.

【0050】また各焼結体組織に分散しているCu−S
n合金相およびFe−Sn合金相の組成をX線マイクロ
アナライザ(EPMA)によって調査し、Snの総添加
量に対するCu−Sn合金相に含有されるSn量を測定
したところ、30〜45wt%の範囲であった。
Cu--S dispersed in each sintered body structure
The composition of the n-alloy phase and the Fe-Sn alloy phase was investigated by an X-ray microanalyzer (EPMA), and the amount of Sn contained in the Cu-Sn alloy phase with respect to the total amount of Sn added was measured. It was in the range.

【0051】一方、上記焼結体製の副軸受と比較するた
めに、従来材であるFC材の研削研磨加工によって製造
した副軸受(比較例1)、および従来材であるSMF−
4種材で形成した副軸受(比較例2)を、それぞれ実施
例1〜5と同一寸法を有するように形成した。
On the other hand, for comparison with the above-mentioned sintered sub-bearing, a sub-bearing (comparative example 1) manufactured by grinding and polishing a conventional FC material, and a conventional SMF-bearing material.
A sub-bearing (Comparative Example 2) formed of the four kinds of materials was formed so as to have the same dimensions as those of Examples 1 to 5, respectively.

【0052】こうして得られた実施例1〜5、比較例1
〜2の各副軸受を、FCD200材で形成した回転軸を
有する圧縮機の副軸受として実装し高負荷でかつ低周波
数条件という最も潤滑条件が悪化する条件下で、各圧縮
機を連続的に1000時間運転する耐久試験を行ない、
回転軸および副軸受の摩耗量の測定を行ない、下記表1
右欄に示す結果を得た。
Examples 1 to 5 and Comparative Example 1 thus obtained
Each sub-bearing No. 2 to No. 2 is mounted as a sub-bearing of a compressor having a rotating shaft formed of FCD200 material, and each compressor is continuously operated under high load and low frequency conditions, which is the worst lubricating condition. The durability test that runs for 1000 hours is performed,
The amount of wear of the rotating shaft and the auxiliary bearing was measured, and Table 1 below was used.
The results shown in the right column were obtained.

【0053】[0053]

【表1】 [Table 1]

【0054】表1に示す結果から明らかなように、実施
例1〜5に係る摺動部品材料で形成した副軸受を使用し
ている圧縮機においては、耐摩耗性に優れた摺動材で副
軸受を構成しているため、過酷な運転条件下で長時間運
転した後においても、回転軸および副軸受の双方の摩耗
量が、比較例1または2で示す従来材で形成した副軸受
を使用したものよりも小さくなり、優れた耐久性を有し
ている。また摺動部の表面粗さも小さくなっており、摺
動部におけるかじりの発生が少なく、初期摺動特性が改
善されることが実証された。
As is clear from the results shown in Table 1, in the compressor using the sub-bearings formed of the sliding component materials according to Examples 1 to 5, the sliding material excellent in wear resistance was used. Since the sub-bearing is configured, even if the sub-bearing formed of the conventional material shown in Comparative Example 1 or 2 has a wear amount of both the rotating shaft and the sub-bearing even after long-term operation under severe operating conditions. It is smaller than the one used and has excellent durability. Also, the surface roughness of the sliding portion was small, and it was verified that the occurrence of galling in the sliding portion was small and the initial sliding characteristics were improved.

【0055】一方、副軸受として、同一組成の焼結体を
使用した場合においても、焼結体に封孔処理を施した副
軸受の方が潤滑油の保持性が優れているため摩耗量が小
さくなることが確認された。
On the other hand, even when a sintered body having the same composition is used as the sub-bearing, the sub-bearing obtained by subjecting the sintered body to the sealing treatment has a better lubricating oil retention property, and therefore the amount of wear is smaller. It was confirmed that it would be smaller.

【0056】以上の実施例においては、摺動部を構成す
る一対の摺動材としてロータリー式圧縮機の回転軸と副
軸受との組合せを例にとって説明したが、摺動部はこれ
に限定されない。すなわち本発明者らは、図1に示すよ
うな圧縮機1の圧縮要素3bを形成するシリンダ8a,
8bを上記鉄系焼結体で形成する一方、シリンダの半径
方向に進退するようにシリンダに摺接し、シリンダ内の
高圧側と低圧側とを仕切るベーン11a,11bを鉄系
スチール材で形成して、耐久試験を行なったところ、実
施例1〜5と同傾向の効果が得られた。
In the above embodiments, the combination of the rotary shaft of the rotary compressor and the auxiliary bearing was described as an example of the pair of sliding materials constituting the sliding portion, but the sliding portion is not limited to this. . That is, the present inventors have proposed a cylinder 8a, which forms the compression element 3b of the compressor 1 as shown in FIG.
8b is formed of the above-mentioned iron-based sintered body, and on the other hand, the vanes 11a and 11b, which are in sliding contact with the cylinder so as to advance and retreat in the radial direction of the cylinder and partition the high pressure side and the low pressure side inside the cylinder, are formed of the iron-based steel material Then, when a durability test was performed, the same effects as in Examples 1 to 5 were obtained.

【0057】また図1に示す圧縮機1において、隣接す
る複数の圧縮部を仕切る仕切板7と、この仕切板7に回
転しながら摺接するローラ10a,10bとで形成され
る摺動部についても、同様に適用することができる。
Further, in the compressor 1 shown in FIG. 1, the sliding portion formed by the partition plate 7 for partitioning a plurality of adjoining compression parts and the rollers 10a, 10b which are in sliding contact with the partition plate 7 while rotating are also used. , Can be applied as well.

【0058】さらに上記実施例においては、ロータリ圧
縮機に本願発明を適用した例で示しているが、適用対象
はロータリ圧縮機に限定されず、例えば、スクロール圧
縮機、レシプロ圧縮機等の種々の形式の圧縮機について
も同様に適用することができる。例えば、スクロールタ
イプの圧縮機において、旋回スクロールの位置規制を行
なうとともに自転の防止を図るために用いるオルダムリ
ングを上記の鉄系焼結合金で形成する一方、旋回スクロ
ールおよび固定スクロールを鋳物あるいはアルミニウム
系鋳物で構成した場合においても、従来材を使用した場
合よりも、優れた耐摩耗性および耐焼付性が発揮され耐
久性が優れた圧縮機とすることができた。
Further, in the above embodiment, the example in which the present invention is applied to the rotary compressor is shown, but the application target is not limited to the rotary compressor, and for example, various scroll compressors, reciprocating compressors, etc. The same applies to the type of compressor. For example, in a scroll-type compressor, the Oldham ring used to control the position of the orbiting scroll and prevent rotation is formed of the above iron-based sintered alloy, while the orbiting scroll and the fixed scroll are made of cast or aluminum. Even in the case of using a casting, it was possible to obtain a compressor having excellent wear resistance and seizure resistance and excellent durability as compared with the case of using a conventional material.

【0059】[0059]

【発明の効果】以上説明の通り、本発明に係る鉄基摺動
部品材料によれば、従来材と比較して耐摩耗性、潤滑性
および耐焼付性に優れた特性を有しているため、この材
料で形成した摺動部品を備えた圧縮機は、長期間に亘っ
て過酷な条件で運転した場合においても、優れた耐久性
を発揮する。
As described above, the iron-based sliding part material according to the present invention has excellent wear resistance, lubricity and seizure resistance as compared with conventional materials. The compressor provided with the sliding parts made of this material exhibits excellent durability even when operated under severe conditions for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】密閉型ロータリ圧縮機の構造を示す縦断面図。FIG. 1 is a vertical cross-sectional view showing the structure of a hermetic rotary compressor.

【図2】図1に示す圧縮機のロータ部を示す平断面図。 1 圧縮機 2 ケ―シング 3a モータ 3b 圧縮要素 4 回転軸 5 主軸受 6 副軸受 7 仕切板 8,8a,8b シリンダ 9,9a,9b 偏心部 10,10a,10b ローラ 11,11a,11b ベーンFIG. 2 is a plan sectional view showing a rotor portion of the compressor shown in FIG. DESCRIPTION OF SYMBOLS 1 compressor 2 casing 3a motor 3b compression element 4 rotary shaft 5 main bearing 6 auxiliary bearing 7 partition plate 8,8a, 8b cylinder 9,9a, 9b eccentric part 10,10a, 10b roller 11,11a, 11b vane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cを0.8〜3wt%、Snを0.1〜
5wt%、残部実質的にFeから成り、フェライトおよ
びパーライト基地にFe−Sn合金相を有する鉄系焼結
合金で形成したことを特徴とする鉄基摺動部品材料。
1. C is 0.8 to 3 wt%, Sn is 0.1 to 0.1%.
An iron-based sliding component material, characterized in that it is formed of an iron-based sintered alloy having 5 wt% and the balance substantially Fe, and having a Fe-Sn alloy phase in a ferrite and pearlite matrix.
【請求項2】 Cを0.8〜3wt%、Cuを1〜10
wt%、Snを0.1〜5wt%、残部実質的にFeか
ら成り、フェライトおよびパーライト基地にCu−Sn
合金相およびFe−Sn合金相が分散した組織を有し、
上記Cu−Sn合金相に含有されるSn量がSnの総添
加量の10〜50wt%である鉄系焼結合金で形成した
ことを特徴とする鉄基摺動部品材料。
2. C of 0.8 to 3 wt% and Cu of 1 to 10
wt%, 0.1 to 5 wt% Sn, the balance consisting essentially of Fe, and Cu-Sn in the ferrite and pearlite matrix.
It has a structure in which the alloy phase and the Fe-Sn alloy phase are dispersed,
An iron-based sliding component material formed by an iron-based sintered alloy in which the amount of Sn contained in the Cu-Sn alloy phase is 10 to 50 wt% of the total amount of Sn added.
【請求項3】 焼結合金の密度が6〜7g/cm3 である
ことを特徴とする請求項1または2記載の鉄基摺動部品
材料。
3. The iron-based sliding component material according to claim 1, wherein the sintered alloy has a density of 6 to 7 g / cm 3 .
JP74493A 1993-01-06 1993-01-06 Iron base sliding part material Pending JPH06207253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP74493A JPH06207253A (en) 1993-01-06 1993-01-06 Iron base sliding part material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP74493A JPH06207253A (en) 1993-01-06 1993-01-06 Iron base sliding part material

Publications (1)

Publication Number Publication Date
JPH06207253A true JPH06207253A (en) 1994-07-26

Family

ID=11482215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP74493A Pending JPH06207253A (en) 1993-01-06 1993-01-06 Iron base sliding part material

Country Status (1)

Country Link
JP (1) JPH06207253A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159008A (en) * 2011-01-31 2012-08-23 Sanyo Electric Co Ltd Machining hole structure of metal member, and refrigerating cycle device formed by using the machining hole structure
KR101365816B1 (en) * 2010-09-30 2014-02-20 히다치 훈마츠 야킨 가부시키가이샤 Sintered valve guide material and method for manufacturing the same
WO2016114065A1 (en) * 2015-01-14 2016-07-21 Ntn株式会社 Bearing base material and method for manufacturing same, and slide bearing
CN113444963A (en) * 2021-06-16 2021-09-28 河北裕龙科技股份有限公司 Production process of cylinder body for high-density high-performance high-speed rail

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101365816B1 (en) * 2010-09-30 2014-02-20 히다치 훈마츠 야킨 가부시키가이샤 Sintered valve guide material and method for manufacturing the same
JP2012159008A (en) * 2011-01-31 2012-08-23 Sanyo Electric Co Ltd Machining hole structure of metal member, and refrigerating cycle device formed by using the machining hole structure
WO2016114065A1 (en) * 2015-01-14 2016-07-21 Ntn株式会社 Bearing base material and method for manufacturing same, and slide bearing
CN113444963A (en) * 2021-06-16 2021-09-28 河北裕龙科技股份有限公司 Production process of cylinder body for high-density high-performance high-speed rail

Similar Documents

Publication Publication Date Title
US6457960B1 (en) Hermetic compressor and open compressor
JP3876756B2 (en) CO2 refrigerant compressor bearing, compressor using the same, and use thereof
JPH10226855A (en) Valve seat for internal combustion engine made of wear resistant sintered alloy
US4904302A (en) Roller in rotary compressor and method for producing the same
US4861372A (en) Roller in rotary compressor and method for producing the same
JP2825334B2 (en) Compressor
JPH06207253A (en) Iron base sliding part material
JP3878835B2 (en) Refrigerant compressor, air conditioner and refrigerator using the same, and bearing thereof
JP2001107173A (en) Roller for rotary compressor
JPH0551708A (en) Wear resistant material for compressor and compressor using the same
JP2005083339A (en) Sliding device, its manufacturing method and refrigerant compressor
JPH0551709A (en) Sliding parts material for compressor
JPH06207252A (en) Iron base sliding part material
JPH0551707A (en) Wear resistant material for compressor
CN104520588B (en) Vane of rotary compressor
JPH0428920B2 (en)
JPH07173509A (en) Wear resistant material, production thereof and compressor using the same material
JP3802840B2 (en) Sliding member
JPH06192710A (en) Sliding member for compressor and its production
KR102206102B1 (en) Rotary compressor having a combined vane-roller structure
JPH02133549A (en) Wear-resistant compound sintered material and its production
JPH06193575A (en) Compressor
KR100202963B1 (en) The making method of rotary compresser vein with fe sintered and same product
JPH07179981A (en) Wear resistant material, its production and compressor using the same
JP4528542B2 (en) Compressor bearing