JPH0620588B2 - Impact molding machine - Google Patents

Impact molding machine

Info

Publication number
JPH0620588B2
JPH0620588B2 JP1341289A JP34128989A JPH0620588B2 JP H0620588 B2 JPH0620588 B2 JP H0620588B2 JP 1341289 A JP1341289 A JP 1341289A JP 34128989 A JP34128989 A JP 34128989A JP H0620588 B2 JPH0620588 B2 JP H0620588B2
Authority
JP
Japan
Prior art keywords
chamber
compressed air
valve
sub
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1341289A
Other languages
Japanese (ja)
Other versions
JPH03204138A (en
Inventor
克治 大瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Corp
Original Assignee
Koyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Corp filed Critical Koyo Corp
Priority to JP1341289A priority Critical patent/JPH0620588B2/en
Publication of JPH03204138A publication Critical patent/JPH03204138A/en
Publication of JPH0620588B2 publication Critical patent/JPH0620588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)

Description

【発明の詳細な説明】 I.発明の目的 (1)産業上の利用分野 本発明は、圧縮空気を使用した衝撃型造型装置に関する
ものである。
Detailed Description of the Invention I. Object of the invention (1) Field of industrial application The present invention relates to an impact molding apparatus using compressed air.

(2)従来の技術 近年、水平割りの砂型の造型装置においては、ジョル
ト、スクイーズ式の造型装置に替り圧縮空気を鋳型枠内
に送気し、その圧縮空気の衝撃波により砂型を造型する
衝撃型造型装置が開発され、砂型の見切線位置や鋳型枠
面位置の強度が大きく、上面になるに従い密度が粗であ
るために注湯時のガス抜けが良好であり、製品の精度も
高く、又装置の構造が簡単で強靭性があり、長期の使用
に耐え得るとして多用されつつある。
(2) Conventional Technology In recent years, in a horizontally-divided sand molding machine, compressed air is blown into a mold frame instead of a jolt or squeeze molding machine, and a sand mold is molded by a shock wave of the compressed air. A molding machine was developed, the strength of the parting line position of the sand mold and the position of the mold frame surface is large, and the density is coarser as it goes to the upper surface, so outgassing at the time of pouring is good, product accuracy is also high, and The structure of the device is simple and tough, and it is being widely used because it can withstand long-term use.

前記衝撃型造型装置は、第3図、第4図に示す様に圧縮
空気室の下面に鋳型枠を接続させるための鋳型枠接続口
と、この鋳型接続口より圧縮空気室内へ突出された通気
口に連通され圧縮空気室の内底部に設置された弁室とを
備え、この弁室より突設された弁筒に送気管が連通さ
れ、外部より弁筒内に圧縮空気を送気しながら弁室内の
可動弁で前記通気口を閉弁させると共に圧縮空気室内の
圧縮空気圧を上昇させ、所定圧力に加圧した後で弁筒の
上端口をロックシリンダーで閉鎖させ、弁室内の圧縮空
気を大気中へ排気させることにより圧縮空気室内の圧縮
空気で弁室内の可動弁を通気口より開弁させると共に圧
縮空気を通気口へ送気し、鋳型接続口に接続された鋳型
枠内の鋳砂を圧縮させると共に、圧縮空気の圧力による
衝撃波を伝播させて砂型を造型しているものである。
The impact molding apparatus includes a mold frame connection port for connecting a mold frame to the lower surface of the compressed air chamber, and a vent projected from the mold connection port into the compressed air chamber, as shown in FIGS. 3 and 4. A valve chamber that is connected to the mouth and is installed at the inner bottom of the compressed air chamber, and an air supply pipe is connected to the valve cylinder that projects from this valve chamber, while supplying compressed air from the outside into the valve cylinder. A movable valve in the valve chamber closes the vent hole and increases the compressed air pressure in the compressed air chamber, and after pressurizing to a predetermined pressure, the upper end port of the valve cylinder is closed by a lock cylinder to compress the compressed air in the valve chamber. By exhausting the air into the atmosphere, the compressed air in the compressed air chamber opens the movable valve in the valve chamber from the ventilation port, and also sends the compressed air to the ventilation port, and the sand in the mold frame connected to the mold connection port. And compress the compressed air to propagate the shock wave. It is those that are molding the mold.

(3)発明が解決しようとする問題点 一般に衝撃型造型装置においては弁室内の作動弁を短時
間で開弁させることが大きな衝撃波を発生させるポイン
トである。しかし、前記衝撃型造型装置においては、弁
室内に連通させた弁筒内の圧縮空気を大気中へ排気させ
るため、高圧の圧縮空気の排気に時間を要して弁室内の
可動弁の開弁作動が遅く、また圧縮空気も弁室の下面よ
り通気口へと迂回されるため、圧縮空気の通気口への通
流に時間を要すると共に減圧され易く、従って、大きな
衝撃波を得ることが出来ず、造型された砂型の精度が低
くなり易い等の問題点があった。
(3) Problems to be Solved by the Invention Generally, in an impact molding apparatus, opening a working valve in a valve chamber in a short time is a point to generate a large shock wave. However, in the impact molding apparatus, since the compressed air in the valve cylinder communicating with the valve chamber is exhausted to the atmosphere, it takes time to exhaust the high-pressure compressed air and the movable valve in the valve chamber is opened. The operation is slow, and compressed air is also diverted from the lower surface of the valve chamber to the ventilation port, so it takes time to flow compressed air to the ventilation port and the pressure is easily reduced. Therefore, a large shock wave cannot be obtained. However, there is a problem in that the precision of the sand mold made tends to be low.

本発明は上記従来の問題点に鑑みてなされたものであ
り、その目的は、圧縮空気室の内底部に設けられ、内部
への高圧空気の送排気で鋳型枠接続口と連通した通気口
を作動弁で開閉させる主弁室機構と、この主弁室機構内
での高圧空気の送排気を制御させるため主弁室機構の上
面に主弁室機構内の高圧空気より低圧の圧縮空気で動作
する副弁室機構と、を設けたものであって、副弁室機構
内の圧縮空気の敏速な制御で主弁室内の高圧空気を敏速
に連動処理させて鋳型枠接続口に連通した通気口の開弁
動作時間を短縮化させ、また圧縮空気室内の圧縮空気の
通気口への流入を、主弁室機構に設けた通気室を介して
直接流通させて圧縮空気の鋳型枠内への流入をスピード
アップさせながら鋳型枠内の鋳砂に圧縮空気による大き
な衝撃波を伝播させ、造型された砂型の精度を向上させ
得る衝撃型造型装置を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a vent hole provided in the inner bottom portion of the compressed air chamber and communicating with the mold frame connection port by sending and discharging high pressure air to the inside. A main valve chamber mechanism that opens and closes with an operating valve, and operates on the upper surface of the main valve chamber mechanism with compressed air at a pressure lower than the high pressure air in the main valve chamber mechanism to control the supply and exhaust of high pressure air inside this main valve chamber mechanism. And a sub-valve chamber mechanism for controlling the compressed air in the sub-valve chamber mechanism so that the high-pressure air in the main valve chamber is promptly interlocked to communicate with the mold frame connection port. The valve opening time is shortened, and the compressed air in the compressed air chamber is allowed to flow directly into the mold through the ventilation chamber provided in the main valve chamber mechanism. A large shock wave by compressed air is propagated to the sand in the mold while speeding up To provide a shock-type molding apparatus capable of improving the accuracy of molding sand type.

II.発明の構成 (1)問題点を解決するための手段 上記目的を達成するために、本発明は圧縮空気室12
と、前記圧縮空気室12の内底部に設けられ、通気口2
0を介して圧縮空気室12の下面に連通された鋳砂26
造型用の鋳型枠24に接続される鋳型枠接続口18と連
通し、かつ、同通気口20を、内部に高圧空気を送排気
させながら開閉動作させる主弁室機構22−1と、前記
主弁室機構22−1の上端に送気筒36を介して連通さ
れ、この連通した空間を開閉しつつ前記主弁室機構22
−1による通気口20の開閉動作を制御させるための副
弁室機構22−2と、前記圧縮空気室12、主弁室機構
22−1、副弁室機構22−2へ所望の圧力空気を送気
するための送気管系Aと、を備え、前記主弁室機構22
−1は前記圧縮空気室12の内底部に設けられ、同圧縮
空気室12と連通すると共に前記通気口20と連通する
通気室30と、この通気室30の上面に連通すると共
に、前記送気筒36内の空間にも連通設された加圧室3
4と、この加圧室34内であって前記通気室30と加圧
室34とを画成するように弁板44が嵌合され、かつ前
記弁板44の下面に突設され同弁板44よりも縮径され
た弁筒46を前記通気口20に進退移動しつつこの通気
口20を開閉させる作動弁32とを含み、更に、前記副
弁室機構22−2は、前記送気筒36周縁に同送気筒よ
り拡径し一部を排気側に連通した排気空間Sを形成する
ように設けられた排気室38と、この排気室38の上面
に連通設された副加圧室50と、この副加圧室50内で
あって前記送気筒36内と副加圧室50とを画成するよ
うに嵌合され、かつ送気筒36側に進退移動しつつ送気
筒空間を開閉させる副作動弁48と、を含み、前記送気
筒36内と前記排気室38内とは前記副作動弁48が開
弁することにより連通され、前記主弁室機構22−1内
に高圧空気を、副弁室機構22−2内に主弁室機構内の
高圧空気より低圧の圧縮空気を送気して前記通気口20
の開弁状態を保持させると共に、副弁室機構22−2内
の圧縮空気の排気により主弁室機構22−1の高圧空気
を連動排気させて前記通気口20を瞬時開弁させ、圧縮
空気室12内の圧縮空気を通気口20より鋳型枠接続口
18へ送気しながら鋳型枠接続口に接続された鋳型枠2
4内の鋳砂26を造型させて成る衝撃型造型装置から構
成される。
II. Configuration of the Invention (1) Means for Solving the Problems In order to achieve the above object, the present invention provides a compressed air chamber 12
And the vent 2 provided at the inner bottom of the compressed air chamber 12.
Casting sand 26 communicated with the lower surface of the compressed air chamber 12 through 0
A main valve chamber mechanism 22-1 which communicates with a mold frame connection port 18 connected to a mold frame 24 for molding and which opens and closes the ventilation port 20 while sending and discharging high pressure air to the inside, and the main The main valve chamber mechanism 22 is communicated with the upper end of the valve chamber mechanism 22-1 via a feed cylinder 36, and opens and closes the communicated space.
Desired pressure air to the auxiliary valve chamber mechanism 22-2 for controlling the opening / closing operation of the ventilation port 20 by -1, and the compressed air chamber 12, the main valve chamber mechanism 22-1, and the auxiliary valve chamber mechanism 22-2. An air supply pipe system A for supplying air, and the main valve chamber mechanism 22
-1 is provided at the inner bottom portion of the compressed air chamber 12, communicates with the compressed air chamber 12, and communicates with the ventilation port 20; and with the upper surface of the ventilation chamber 30, Pressurization chamber 3 that is also connected to the space inside 36
4, a valve plate 44 is fitted in the pressurizing chamber 34 so as to define the vent chamber 30 and the pressurizing chamber 34, and the valve plate 44 is provided so as to project from the lower surface of the valve plate 44. A valve cylinder 46 having a diameter smaller than 44, and an actuating valve 32 that opens and closes the vent port 20 while advancing and retracting to and from the vent port 20, and the sub valve chamber mechanism 22-2 further includes the feed cylinder 36. An exhaust chamber 38 that is provided on the peripheral edge so as to form an exhaust space S that is expanded in diameter from the same-feeding cylinder and communicates partially with the exhaust side, and a sub-pressurization chamber 50 that is communicated with the upper surface of the exhaust chamber 38. In the sub pressurizing chamber 50, the sub pressurizing chamber 50 is fitted so as to define the sub pressurizing chamber 50 and the sub pressurizing chamber 50. An operation valve 48, and the sub-operation valve 48 opens in the transfer cylinder 36 and the exhaust chamber 38. Threaded, high pressure air in the main valve chamber mechanism within 22-1, the vent with air to low pressure of the compressed air from the high pressure air of the main valve chamber mechanism sub valve chamber mechanism 22-2 20
While maintaining the valve open state, the high pressure air of the main valve chamber mechanism 22-1 is interlockedly exhausted by the exhaustion of the compressed air in the sub valve chamber mechanism 22-2 to instantaneously open the vent port 20 to obtain the compressed air. The mold frame 2 connected to the mold frame connection port while sending the compressed air in the chamber 12 from the ventilation port 20 to the mold frame connection port 18.
4 is composed of an impact molding machine that molds the sand 26 in the mold 4.

また、前記主弁室機構22−1は、圧縮空気室12の略
中央内底部に設置され、前記通気室30は前記通気口2
0に直接連通されて圧縮空気を同通気口20へ直接通流
させてなることとしても良い。
Further, the main valve chamber mechanism 22-1 is installed at the substantially central inner bottom portion of the compressed air chamber 12, and the ventilation chamber 30 is the ventilation port 2
It is also possible that the compressed air is directly communicated with 0 and the compressed air is directly communicated with the ventilation port 20.

更に、前記主弁室機構22−1と、副弁室機構22−1
とは、内部の高圧空気や低圧空気を敏速に排気させるた
めに負圧排気機構64に連通されることとしても良い。
Further, the main valve chamber mechanism 22-1 and the auxiliary valve chamber mechanism 22-1
May be communicated with the negative pressure exhaust mechanism 64 in order to quickly exhaust high-pressure air or low-pressure air inside.

(2)作用 本発明の衝撃型造型装置においては、圧縮空気室内の主
弁室機構の上端に設けた副弁室機構内に主弁室機構内の
高圧空気より低圧の(低圧)圧縮空気を送気させて主弁
室機構の上端口を閉弁させ、その後に主弁室機構内に高
圧空気を送気して鋳型枠接続口に連通した通気口の閉弁
状態を保持させるものである。そして、圧縮空気室内に
高圧空気を送気して内部の圧縮空気が所定の圧力になっ
た時に、副弁室機構内の(低圧)圧縮空気を排気させる
と、主弁室機構内の高圧空気も副弁室機構に連動して排
気されて通気口が開弁され、圧縮空気室内の圧縮空気が
通気口より鋳型接続口の下面に接続された鋳型枠内に送
気され、その衝撃波で鋳型枠内の鋳砂を造型させるもの
である。
(2) Action In the impact molding apparatus of the present invention, a lower pressure (lower pressure) compressed air than the high pressure air in the main valve chamber mechanism is provided in the sub valve chamber mechanism provided at the upper end of the main valve chamber mechanism in the compressed air chamber. By supplying air, the upper end of the main valve chamber mechanism is closed, and then high pressure air is supplied into the main valve chamber mechanism to maintain the closed state of the vent hole communicating with the mold frame connection port. . Then, when high pressure air is fed into the compressed air chamber and the compressed air inside has reached a predetermined pressure, the (low pressure) compressed air in the sub valve chamber mechanism is exhausted, so that the high pressure air in the main valve chamber mechanism is discharged. Is also exhausted in conjunction with the sub-valve chamber mechanism to open the vent, and the compressed air in the compressed air chamber is sent from the vent into the mold frame connected to the lower surface of the mold connection port, and the shock wave causes the mold to flow. This is to mold the molding sand in the frame.

副弁室機構内に送気されている空気は主弁室機構内の高
圧空気より、より低圧の(低圧)圧縮空気であるため、
その排気量が少なく敏速な排気をなし得るものであり、
この副弁室機構と連動する主弁室機構においても内部の
高圧空気の排気が高速化されることにより、通気口の開
弁時間が短縮されて圧縮空気による衝撃波が大きくな
る。同時に、圧縮空気室内の圧縮空気は、通気口へスト
レートに通気されることと相まって、精密度の高い砂型
製品が造型されることとなる。
Since the air sent into the sub valve chamber mechanism is compressed air of lower pressure (lower pressure) than the high pressure air in the main valve chamber mechanism,
The exhaust volume is small and it is possible to make prompt exhaust,
Even in the main valve chamber mechanism that is interlocked with the sub valve chamber mechanism, the high-speed exhaust of the high-pressure air inside reduces the valve opening time of the ventilation port, and the shock wave due to the compressed air becomes large. At the same time, the compressed air in the compressed air chamber is ventilated straight to the ventilation port, so that a highly precise sand mold product is molded.

(3)実施例 以下、添付図面を引例しながら、本発明の好適な実施例
を説明する。
(3) Examples Hereinafter, preferred examples of the present invention will be described with reference to the accompanying drawings.

第1図、第2図には、本発明の実施例に係る衝撃型造型
装置10が示されている。
1 and 2 show an impact molding apparatus 10 according to an embodiment of the present invention.

図において、衝撃型造型装置10は、架台に架設された
圧縮空気室12と、この圧縮空気室12内に高圧空気を
送気するため連通された第1送気管14aとを備えてい
る。
In the figure, the impact molding apparatus 10 includes a compressed air chamber 12 installed on a pedestal, and a first air supply pipe 14a that is in communication with the compressed air chamber 12 for supplying high pressure air.

前記圧縮空気室12の底板16の下面には鋳型枠接続口
18が連接され、この鋳型枠接続口18に連通する様に
底板16に開口された通気口20が設けられている。そ
して同じくこの圧縮空気室12内底部には、前記通気口
20を開閉させるための主弁室機構22−1が設けら
れ、この主弁室機構22−1内には高圧空気を送気する
ための第2送気管14bが連通されている。
A mold frame connection port 18 is connected to the lower surface of the bottom plate 16 of the compressed air chamber 12, and a ventilation port 20 is provided in the bottom plate 16 so as to communicate with the mold frame connection port 18. Further, similarly, a main valve chamber mechanism 22-1 for opening and closing the ventilation port 20 is provided at the bottom of the compressed air chamber 12, and high-pressure air is supplied into the main valve chamber mechanism 22-1. The second air supply pipe 14b is communicated with.

また、前記主弁室機構22−1の上端には、主弁室機構
22−1による通気口20の開閉動作を連動制御させる
ための副弁室機構22−2が設けられている。
Further, an auxiliary valve chamber mechanism 22-2 is provided at the upper end of the main valve chamber mechanism 22-1 for interlockingly controlling the opening / closing operation of the vent 20 by the main valve chamber mechanism 22-1.

そして、前記副弁室機構22−2内の前記主弁室機構2
2−1よりも低圧の低圧圧縮空気を、主弁室機構22−
1内に高圧空気を送気して圧縮空気室12の底板の通気
口20の閉弁状態を保持させながら圧縮空気室12内に
高圧空気を送気させ、所定の圧力下において副弁室機構
22−2内の低圧空気を敏速に排気させながら主弁室機
構22−1内の高圧空気を瞬時に連動排気させて通気口
20を開弁させ、圧縮空気室12内の圧縮空気を通気口
20より鋳型枠接続口18の下面に接続された鋳型枠2
4内にい送気し、その衝撃波により内部の鋳砂26を造
型させるものである。
Then, the main valve chamber mechanism 2 in the sub valve chamber mechanism 22-2.
The main valve chamber mechanism 22-
The high pressure air is fed into the compressed air chamber 12 while maintaining the closed state of the vent hole 20 of the bottom plate of the compressed air chamber 12, and the high pressure air is fed into the compressed air chamber 12 under a predetermined pressure. The high-pressure air in the main valve chamber mechanism 22-1 is instantaneously interlockedly exhausted while the low-pressure air in 22-2 is promptly exhausted to open the vent port 20, and the compressed air in the compressed air chamber 12 is vented. The mold frame 2 connected to the lower surface of the mold frame connection port 18 from 20
The air is sent to the inside of the mold 4, and the shock wave causes the molding sand 26 inside to be molded.

第1図に示す様に、前記主弁室機構22−1は、圧縮空
気室12の底板16の略中央上面位置に設置され、圧縮
空気室12と孔28で連通されると共に底板16の通気
口20に連通された通気室30と、前記通気室30の上
面に連通設され、内部に通気口20を開閉させる作動弁
32が嵌合された加圧室34とを備えている。
As shown in FIG. 1, the main valve chamber mechanism 22-1 is installed at a substantially central upper surface position of the bottom plate 16 of the compressed air chamber 12, communicates with the compressed air chamber 12 through a hole 28, and vents the bottom plate 16. The vent chamber 30 communicates with the vent 20, and the pressurizing chamber 34 is provided on the upper surface of the vent chamber 30 and has an operation valve 32 for opening and closing the vent 20 fitted therein.

この加圧室34内の作動弁32は、加圧室34内を第1
図に示す送気筒36の下端と連通した第1弁室42aと
第2図に示す通気口20側に面した第2弁室42bとに
画成す様に嵌合された弁板44と、この弁板44の下面
に垂設され底板16の通気口20の周縁上面に当接して
通気口20を開閉させるための弁筒46とで形成されて
いる。そして、この作動弁32は前記通気口20側に進
退移動しつつこの通気口を開閉させるものである。
The actuating valve 32 in the pressurizing chamber 34 moves the inside of the pressurizing chamber 34 to the first position.
A valve plate 44 fitted so as to define a first valve chamber 42a communicating with the lower end of the feed cylinder 36 shown in the figure and a second valve chamber 42b facing the vent port 20 side shown in FIG. The valve cylinder 44 is provided on the lower surface of the valve plate 44 and is in contact with the upper surface of the peripheral edge of the vent hole 20 of the bottom plate 16 to open and close the vent hole 20. The operation valve 32 opens and closes the vent hole while moving forward and backward toward the vent hole 20 side.

図において、作動弁32は弁板44の下面に弁筒46を
垂設させた断面略鳥居状に形成されており、弁筒46の
下端部は前記通気口20の上端部と密着当接し、その閉
弁時には気密シールにより圧縮空気室12内と通気口2
0内とを気密遮断する。したがって、この作動弁32を
開弁したときには弁筒44が上昇するので通気室30か
ら圧縮空気室12内の空気が迂回することなく直接通気
口20側に流入することとなり、圧縮空気の鋳型枠内へ
の流入がスピードアップされることとなる。
In the figure, the actuating valve 32 is formed in a generally torii cross section in which a valve cylinder 46 is vertically provided on a lower surface of a valve plate 44, and a lower end portion of the valve cylinder 46 comes into close contact with an upper end portion of the ventilation port 20. When the valve is closed, the inside of the compressed air chamber 12 and the vent 2 are sealed by an airtight seal.
Airtightly shut off from 0. Therefore, when the actuating valve 32 is opened, the valve cylinder 44 rises, so that the air in the compressed air chamber 12 directly flows into the vent port 20 side without detouring, and the mold frame of compressed air is obtained. The inflow to the inside will be speeded up.

第1図に示す様に、前記圧縮空気室12と連通する通気
室30内の弁板44には、弁筒46を除く周縁下面Yに
圧縮空気室12側の空気圧が作用し、弁板44の上面X
に加圧室34側の空気圧が作用する。したがって、例え
ば圧縮空気室12内の空気圧と等しい空気圧を加圧室3
4内に加圧した場合には弁板44に加わる面積が大な加
圧室34側のほうが下面の圧縮空気室側から加わる空気
圧に勝って下方に押圧し、通気口20を閉弁保持するこ
ととなる。
As shown in FIG. 1, in the valve plate 44 in the ventilation chamber 30 communicating with the compressed air chamber 12, the air pressure on the compressed air chamber 12 side acts on the lower surface Y of the peripheral edge excluding the valve cylinder 46, and the valve plate 44. Top X of
The air pressure on the pressurizing chamber 34 side acts on. Therefore, for example, an air pressure equal to the air pressure in the compressed air chamber 12 is applied to the pressurizing chamber 3
4 is pressurized, the side of the pressurization chamber 34, which has a larger area applied to the valve plate 44, presses downward against the air pressure applied from the side of the compressed air chamber on the lower surface, and the vent hole 20 is held closed. It will be.

図において、主弁室機構22−1の上端にはその加圧室
34内に連通しこの加圧室より段差状に縮径された送気
筒36が接続形成されている。そして、この送気室36
側に副弁室機構22−2が設けられている。
In the figure, a feed cylinder 36 is connected to the upper end of the main valve chamber mechanism 22-1 so as to communicate with the pressurizing chamber 34 and the diameter of which is reduced stepwise from the pressurizing chamber 34. And this air supply chamber 36
The sub valve chamber mechanism 22-2 is provided on the side.

第1図に示す様に副弁室機構22−2は、加圧室34内
の高圧空気を排気させるため前記送気筒36周縁に同送
気筒36に対し拡径し、かつこの送気筒36を抱持する
ようにして、一部を排気側に連通した排気空間Sを形成
するように立設された排気室38を備えている。
As shown in FIG. 1, the sub-valve chamber mechanism 22-2 expands the diameter of the feeding cylinder 36 at the periphery of the feeding cylinder 36 in order to exhaust the high-pressure air in the pressurizing chamber 34, and An exhaust chamber 38 is provided upright so as to form an exhaust space S, which is partially held in communication with the exhaust side.

また、この排気室38の上面には副加圧室50が連通設
されると共に、この副加圧室50内であって前記送気筒
36内と副加圧室50とを画成するように副作動弁48
が嵌合されている。この副作動弁48は送気筒36側に
進退移動しつつこの送気筒36内の空間を開閉させるも
のである。
A sub-pressurization chamber 50 is connected to the upper surface of the exhaust chamber 38 so that the sub-pressurization chamber 50 is defined within the sub-pressurization chamber 50. Sub-operation valve 48
Are fitted. The sub-operation valve 48 opens and closes the space inside the sending cylinder 36 while moving back and forth toward the sending cylinder 36.

これによって、前記主弁室機構22−1の加圧室34と
の関係と同様に、例えば、送気筒36内の空気圧と等し
い空気圧を副加圧室50内に加圧した場合には、副加圧
室50側より副作動弁48上面全体に加わる空気圧が、
送気筒36側より副作動弁48の下面に加わる空気圧よ
り大きくなり、副作動弁48は送気筒36及び排気室3
8の上端を閉弁保持することとなる。このことは、逆に
言えば、送気筒36内側の空気圧よりも小さな空気圧を
副加圧室50内に加圧すれば作動弁48は閉弁状態を保
持し得るものであり、これは前記主弁室機構22−1の
場合においても同様である。
As a result, similar to the relationship with the pressurizing chamber 34 of the main valve chamber mechanism 22-1, for example, when the sub-pressurizing chamber 50 is pressurized with an air pressure equal to the air pressure in the sending cylinder 36, The air pressure applied from the pressurizing chamber 50 side to the entire upper surface of the sub-operation valve 48 is
The air pressure applied to the lower surface of the auxiliary operating valve 48 from the side of the sending cylinder 36 becomes larger, and the auxiliary operating valve 48 causes the auxiliary cylinder 48 and the exhaust chamber 3 to move.
The upper end of 8 is held closed. In other words, if the air pressure smaller than the air pressure inside the feed cylinder 36 is applied to the sub pressurizing chamber 50, the actuating valve 48 can maintain the closed state. The same applies to the case of the valve chamber mechanism 22-1.

前記圧縮空気室12内であって、前記副加圧室50の上
面には送排気管52が連通接続され、同圧縮空気室12
の側部に設けられた送気口54側に延設されている。更
に、前記送気口54の外部には同送気口54と直列に排
気弁56及び真空タンク60が連通されるとともに、排
気弁56よりも送気口54側には第3送気管14cが連
通されている。この第3送気管14cにより前記副加圧
室50内に前記圧縮空気室12内への送気と独立して圧
縮空気を送気するものである。
Inside the compressed air chamber 12, an air supply / exhaust pipe 52 is communicatively connected to the upper surface of the auxiliary pressurizing chamber 50.
Is provided on the side of the air supply port 54 provided on the side of the. Further, an exhaust valve 56 and a vacuum tank 60 are connected to the outside of the air supply port 54 in series with the same air supply port 54, and a third air supply pipe 14c is provided closer to the air supply port 54 than the exhaust valve 56. It is in communication. The third air supply pipe 14c supplies compressed air into the auxiliary pressure chamber 50 independently of the supply of air into the compressed air chamber 12.

一方、前記送気筒36の内側面には外部より第2送気管
14bが連通され、これにより前記第1送気管14aに
よる圧縮空気室12内への送気、及び第3送気管14c
による副加圧室50内への送気と別系統から送気筒36
内すなわち加圧室34ないへの圧縮空気の送気を行なう
ものである。
On the other hand, a second air supply pipe 14b is communicated with the inner surface of the air supply cylinder 36 from the outside, whereby the first air supply pipe 14a supplies air into the compressed air chamber 12 and the third air supply pipe 14c.
The air is sent to the sub pressurizing chamber 50 by the
The compressed air is sent to the inside, that is, the inside of the pressurizing chamber 34.

上記した第1、第2、第3送気管14a、14b、14
cを含んで送気管系Aが形成されている。
The above-mentioned first, second, and third air supply pipes 14a, 14b, 14
An air supply tube system A is formed including c.

更に、前記排気室38の内側面と圧縮空気室12と外側
面とには排気管40が連通され、大気側に開放するか又
は、排気弁58、真空タンク60及び真空ポンプ62等
を含む負圧排気機構64に連通接続される。
Further, an exhaust pipe 40 is connected to the inner side surface of the exhaust chamber 38, the compressed air chamber 12 and the outer side surface and is opened to the atmosphere side, or a negative valve including an exhaust valve 58, a vacuum tank 60, a vacuum pump 62 and the like. It is connected to the pressure exhaust mechanism 64.

次に、上記実施例構成に基づく作用を説明すると、先
ず、副弁室機構22−2の排気弁56を閉弁した状態で
第3送気管14cより送排気管52を経由して圧縮空気
を副加圧室50内に送気し、同副加圧室50内の作動弁
48を下降させて副弁室機構22−2の排気室38と送
気筒36の上端開口を閉弁させる。この状態で第1、第
2送気管14a、14bより高圧空気を圧縮空気室12
内の主弁室機構22−1の送気筒36内とに送気する。
Next, the operation based on the configuration of the above embodiment will be described. First, compressed air is supplied from the third air supply pipe 14c via the air supply / exhaust pipe 52 in a state where the exhaust valve 56 of the sub valve chamber mechanism 22-2 is closed. Air is supplied into the sub pressurizing chamber 50, and the operating valve 48 in the sub pressurizing chamber 50 is lowered to close the exhaust chamber 38 of the sub valve chamber mechanism 22-2 and the upper end opening of the sending cylinder 36. In this state, high pressure air is supplied from the first and second air supply pipes 14a and 14b to the compressed air chamber 12
The air is sent to the inside of the sending cylinder 36 of the main valve chamber mechanism 22-1.

このとき、作動弁32の弁板44の下面の圧力作用面積
が弁板44の上面の面積に比し小さいため、加圧室34
内の圧力は圧縮空気室12内の圧力よりもより低圧下で
も閉弁状態を保持する。したがって、鋳型枠24内の鋳
砂に作用する衝撃波としての圧縮空気室12内の空気圧
をある値に設定した場合に、その圧力値より、より小さ
な空気圧を第2送気管14bから送気筒36内に送気す
るものである。
At this time, since the pressure acting area of the lower surface of the valve plate 44 of the actuating valve 32 is smaller than the area of the upper surface of the valve plate 44, the pressurizing chamber 34
Even if the internal pressure is lower than the internal pressure of the compressed air chamber 12, the valve closed state is maintained. Therefore, when the air pressure in the compressed air chamber 12 as a shock wave acting on the casting sand in the mold frame 24 is set to a certain value, a smaller air pressure than the pressure value is supplied from the second air supply pipe 14b to the inside of the cylinder 36. To inhale.

これと同様に、副弁室機構22−2の副加圧室50内の
副作動弁48についても、送気筒36内の圧縮空気の作
用面積が同副作動弁48の上面の圧縮空気の作用面積よ
り小さいため、作動弁48による送気筒36並びに排気
室38の上端開口の閉弁状態が保持され、第3送気管1
4cから送気される空気圧もまた、前記圧縮空気室12
内の高圧空気圧の設定値に基づきその送気圧力が定まる
こととなる。
Similarly, as for the sub-operation valve 48 in the sub-pressurization chamber 50 of the sub-valve chamber mechanism 22-2, the action area of the compressed air in the sending cylinder 36 is the action of the compressed air on the upper surface of the sub-operation valve 48. Since it is smaller than the area, the closed state of the upper end opening of the feed cylinder 36 and the exhaust chamber 38 by the operating valve 48 is maintained, and the third air feeding pipe 1
The air pressure sent from 4c is also the compressed air chamber 12
The insufflation pressure is determined based on the set value of the high-pressure air pressure inside.

したがって、加圧室34内及び送気筒36内の圧縮空
気、副加圧室50内の圧縮空気と順次、より、低圧に構
成できるため、その排気量も順次少ないものとなり、こ
れによって敏速な排気をなし得ることとなる。
Therefore, the compressed air in the pressurizing chamber 34 and the feed cylinder 36, and the compressed air in the auxiliary pressurizing chamber 50 can be sequentially configured to have a lower pressure, so that the exhaust amount thereof is gradually reduced, thereby promptly exhausting the exhaust gas. Can be done.

そこで、圧縮空気室12内の圧力が、例えば3.5乃至
4.0Kg/cm2位に上昇した時点で、第1、第2、
第3送気管14a、14b、14cの送気を停止させ、
同時に副弁室機構22−2に連通する排気弁56を開弁
させると、副加圧室50内の(低圧)圧縮空気は送排気
管52より敏速に外部へと排気される。これにより、副
加圧室50内の副作動弁48が主弁室機構22−1の送
気筒36内の(高圧)圧縮空気で上方へと押圧されて開
弁され、加圧室34内の高圧空気は副加圧室50を経由
して排気室38へ通流しなら排気管40より排気され、
同時に加圧室34内で作動弁32が急速に上昇して通気
口20が開弁され、圧縮空気室12内の圧縮空気は通気
室30より通気口20へと直接通流しながら鋳型接続口
18に接続された鋳型枠24内の鋳砂26を圧縮、造型
させるものである。
Therefore, when the pressure in the compressed air chamber 12 rises to, for example, 3.5 to 4.0 Kg / cm 2 , the first, second,
Stop the air supply of the third air supply pipes 14a, 14b, 14c,
At the same time, when the exhaust valve 56 communicating with the sub valve chamber mechanism 22-2 is opened, the (low pressure) compressed air in the sub pressurizing chamber 50 is quickly exhausted to the outside from the air supply / exhaust pipe 52. As a result, the sub-operation valve 48 in the sub-pressurization chamber 50 is pressed upward by the (high pressure) compressed air in the feed cylinder 36 of the main valve chamber mechanism 22-1 to open, and the sub-operation valve 48 in the pressurization chamber 34 is opened. The high-pressure air is exhausted from the exhaust pipe 40 if it flows to the exhaust chamber 38 via the auxiliary pressurizing chamber 50,
At the same time, the actuating valve 32 rapidly rises in the pressurizing chamber 34 and the vent port 20 is opened. The compressed air in the compressed air chamber 12 flows directly from the vent chamber 30 to the vent port 20 while the mold connection port 18 is opened. The casting sand 26 in the mold frame 24 connected to is compressed and molded.

砂型の造型後には、排気弁56、58を閉弁し、第3送
気管14cより圧縮空気を副加圧室50内に送気して副
作動弁48で送気筒36の上端を閉弁させると共に第2
送気管14bより加圧室34内に圧縮空気を送気して作
動弁32で再び通気口20を開弁させ、鋳型枠接続口1
8に設けた排気口(図示せず)より内部の圧縮空気を排
気させた後に鋳型枠24を鋳型枠接続口18より下降さ
せて外部へ搬出させ、造型工程の1サイクルを終了する
ものである。
After the sand mold is formed, the exhaust valves 56 and 58 are closed, compressed air is supplied into the auxiliary pressurizing chamber 50 from the third air supply pipe 14c, and the upper end of the supply cylinder 36 is closed by the auxiliary operation valve 48. With the second
Compressed air is supplied from the air supply pipe 14b into the pressurizing chamber 34, and the ventilation port 20 is opened again by the operation valve 32, and the mold frame connection port 1
After the compressed air inside is exhausted from the exhaust port (not shown) provided in 8, the mold frame 24 is lowered from the mold frame connection port 18 and carried out to the outside, and one cycle of the molding process is completed. .

そして、次の鋳型枠を搬入して造型作動に移行するもの
である。
Then, the next mold frame is loaded and the molding operation is started.

ここにおいて、副弁室機構22−2内の(低圧)圧縮空
気の排気を敏速になしながら主弁室機構22−1内の高
圧空気の排気を連動させて敏速に排気させ、主弁室機構
内の作動弁を短時間で開弁させ得るものであり、圧縮空
気室12内の圧縮空気は通気室30より通気口20へス
トレートに通気されて減圧されることなく、圧縮空気に
よる大きな衝撃波で精密度の高い砂型製品を得ることが
できるものである。
Here, while exhausting the (low pressure) compressed air in the sub valve chamber mechanism 22-2 is promptly performed, the exhaust of the high pressure air in the main valve chamber mechanism 22-1 is promptly exhausted by interlocking with the main valve chamber mechanism 22-2. It is possible to open the operating valve therein in a short time, and the compressed air in the compressed air chamber 12 is not directly depressurized by being directly ventilated from the ventilation chamber 30 to the ventilation port 20, and a large shock wave is generated by the compressed air. It is possible to obtain a sand type product with high precision.

また、第1図の仮想線で示す様に、主弁室機構22−1
の排気管40に排気弁58を接続し、真空タンク60に
真空ポンプ62を接続した負圧排気機構64の真空タン
ク60に、前記排気弁58と副弁室機構22−2の排気
弁56とを接続させておき、主弁室機構22−1と副弁
室機構22−2との開弁時の排気を排気弁56、58を
経由させて真空タンク60へ高速排気させると、作動弁
32の開弁動作時間が更に短縮されて大きな衝撃波が鋳
砂26に伝播され、より精密度の高い製品を得ることが
出来る。
Further, as shown by the phantom line in FIG. 1, the main valve chamber mechanism 22-1
The exhaust valve 58 is connected to the exhaust pipe 40 and the vacuum tank 60 is connected to the vacuum tank 60 of the negative pressure exhaust mechanism 64 in which the vacuum pump 62 is connected to the exhaust valve 58 and the exhaust valve 56 of the sub valve chamber mechanism 22-2. Is connected to the main valve chamber mechanism 22-1 and the sub valve chamber mechanism 22-2 at the time of valve opening, and exhausted at high speed to the vacuum tank 60 via the exhaust valves 56 and 58. The valve opening time is further shortened and a large shock wave is propagated to the casting sand 26, so that a product with higher precision can be obtained.

III.発明の効果 以上、説明した様に本発明は、圧縮空気室の内底部に設
けられ、鋳型枠接続口と連通した通気口を開閉させる作
動弁を高圧空気の送排気で制御させる主弁室機構と、こ
の主弁室機構内の高圧空気を制御させるため主弁室機構
の上面に低圧空気で動作する副弁室機構を設けたもので
あって、副弁室機構内の低圧空気の敏速な排気で主弁室
内の高圧空気の排気を敏速に連動処理させて鋳型枠接続
口に連通した通気口の開弁動作時間を急速に短縮化さ
せ、鋳型枠内の鋳砂に圧縮空気による大きな衝撃波を伝
播させ得るものである。
III. EFFECTS OF THE INVENTION As described above, the present invention is a main valve chamber mechanism for controlling an operating valve, which is provided at the inner bottom of a compressed air chamber and opens and closes a vent communicating with a mold frame connection port, by sending and discharging high-pressure air. In order to control the high pressure air in the main valve chamber mechanism, a sub-valve chamber mechanism that operates on low pressure air is provided on the upper surface of the main valve chamber mechanism. The high-pressure air in the main valve chamber is quickly interlocked with the exhaust gas to rapidly shorten the valve opening time of the ventilation port that communicates with the mold frame connection port. Can be propagated.

また、圧縮空気室内の圧縮空気の通気口への流入を、主
弁室機構に設けた通気室を介して直接通流させて圧縮空
気の鋳型枠内への流入がスピードアップされるものであ
る。
In addition, the inflow of compressed air into the vent hole of the compressed air chamber is made to directly flow through the vent chamber provided in the main valve chamber mechanism to speed up the inflow of compressed air into the mold frame. .

更に、主弁室機構と副弁室機構との排気系に負圧排気機
構を接続して排気を瞬時になすことによって、通気口の
開弁時間が更に短縮化され、精密度の高い砂型製品を得
ることが出来る。
Furthermore, the negative pressure exhaust mechanism is connected to the exhaust system of the main valve chamber mechanism and the sub valve chamber mechanism to instantaneously perform the exhaust, so that the valve opening time of the vent is further shortened and the sand type product with high precision is provided. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る衝撃型造型装置の弁室機
構の閉弁状態の断面図、第2図は弁室機構が閉弁状態を
示した衝撃型造型装置の断面図、第3図、第4図は従来
の衝撃型造型装置の弁室機構の閉弁状態と開弁状態とを
示した断面図である。 10……衝撃型造型装置、12……圧縮空気室、14…
…送気管、18……鋳型枠接続口、20……通気口、2
2−1……主弁室機構、22−2……副弁室機構、24
……鋳型枠、26……鋳砂、30……通気室、32……
作動弁、34……加圧室、36……送気筒、38……排
気室、40……排気管、48……副作動弁、50……副
加圧室、52……送排気管、54……送気口、56、5
8……排気弁、64……負圧排気機構、A……送気管
系、S……排気室38内の排気空間
FIG. 1 is a cross-sectional view of a valve chamber mechanism of an impact-type molding apparatus according to an embodiment of the present invention in a closed state, and FIG. 2 is a cross-sectional view of an impact-type molding apparatus in which the valve chamber mechanism is in a closed state. 3 and 4 are cross-sectional views showing a valve closed state and a valve opened state of the valve chamber mechanism of the conventional impact molding apparatus. 10 ... Impact molding device, 12 ... Compressed air chamber, 14 ...
… Air pipe, 18 …… Mold frame connection port, 20… Vent port, 2
2-1 ... Main valve chamber mechanism, 22-2 ... Sub valve chamber mechanism, 24
...... Mold frame, 26 …… Sand sand, 30 …… Ventilation chamber, 32 ……
Operating valve, 34 ... Pressurizing chamber, 36 ... Sending cylinder, 38 ... Exhaust chamber, 40 ... Exhaust pipe, 48 ... Sub operating valve, 50 ... Sub pressurizing chamber, 52 ... Sending / exhausting pipe, 54 ... Air inlet, 56, 5
8 ... Exhaust valve, 64 ... Negative pressure exhaust mechanism, A ... Air supply pipe system, S ... Exhaust space in exhaust chamber 38

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮空気室と、 前記圧縮空気室の内底部に設けられ、通気口を介して圧
縮空気室の下面に連通された鋳砂造型用の鋳型枠に接続
される鋳型枠接続口と連通し、かつ、同通気口を、内部
に高圧空気を送排気させながら開閉動作させる主弁室機
構と、 前記主弁室機構の上端に送気筒を介して連通され、この
連通した空間を開閉しつつ前記主弁室機構による通気口
の開閉動作を制御させるための副弁室機構と、 前記圧縮空気室、主弁室機構、副弁室機構へ所望の圧力
空気を送気するための送気管系と、を備え、 前記主弁室機構は、前記圧縮空気室の内底部に設けら
れ、同圧縮空気室と連通すると共に前記通気口と連通す
る通気室と、 この通気室の上面に連通すると共に、前記送気筒内の空
間にも連通設された加圧室と、 この加圧室内であって前記通気室と加圧室とを画成する
ように弁板が嵌合され、かつ前記弁板の下面に突設され
同弁板よりも縮径された弁筒を前記通気口に進退移動し
つつこの通気口を開閉させる作動弁とを含み、 更に、前記副弁室機構は、前記送気筒周縁に同送気筒よ
り拡径され一部を排気側に連通した排気空間を形成する
ように設けられた排気室と、 この排気室の上面に連通設された副加圧室と、 この副加圧室内であって前記送気筒内と副加圧室とを画
成するように嵌合され、かつ送気筒側に進退移動しつつ
送気筒内空間を開閉させる副作動弁と、を含み、 前記送気筒内と前記排気室内とは前記副作動弁が開弁す
ることにより連通され、 前記主弁室機構内に高圧空気を、副弁室機構内に主弁室
機構内の高圧空気より低圧の圧縮空気を送気して前記通
気口の閉弁状態を保持させると共に、副弁室機構内の圧
縮空気の排気により主弁室機構の高圧空気を連動排気さ
せて前記通気口を瞬時開弁させ、圧縮空気室内の圧縮空
気を通気口より鋳型枠接続口へ送気しながら鋳型枠接続
口に接続された鋳型枠内の鋳砂を造型させて成る衝撃型
造型装置。
1. A compressed air chamber, and a mold frame connection port which is provided at an inner bottom portion of the compressed air chamber and is connected to a mold frame for sand-sand molding which is connected to a lower surface of the compressed air chamber through a ventilation hole. And a main valve chamber mechanism that opens and closes the ventilation port while sending and discharging high-pressure air to the inside, and communicates with the upper end of the main valve chamber mechanism through a sending cylinder. A sub-valve chamber mechanism for controlling the opening / closing operation of the vent hole by the main valve chamber mechanism while opening and closing, and for supplying desired compressed air to the compressed air chamber, the main valve chamber mechanism, and the sub-valve chamber mechanism. An air supply pipe system, and the main valve chamber mechanism is provided at an inner bottom portion of the compressed air chamber, communicates with the compressed air chamber and a ventilation chamber that communicates with the ventilation port, and an upper surface of the ventilation chamber. A pressurizing chamber that communicates with the space inside the sending cylinder, and the pressurizing chamber. A valve cylinder fitted to the vent plate so as to define the vent chamber and the pressurizing chamber, and a valve cylinder protruding from the lower surface of the valve plate and having a diameter smaller than that of the valve plate to the vent port. And an actuating valve that opens and closes the vent while moving forward and backward, and the sub-valve chamber mechanism forms an exhaust space on the periphery of the sending cylinder, the diameter of which is expanded from the sending cylinder and a part of which communicates with the exhaust side. An exhaust chamber provided in such a manner, a sub-pressurizing chamber that communicates with the upper surface of the exhaust chamber, and a sub-pressurizing chamber that fits between the sending cylinder and the sub-pressurizing chamber. And a sub-operation valve that opens and closes the space inside the transfer cylinder while moving forward and backward toward the transfer cylinder side, and the inside of the transfer cylinder and the exhaust chamber are communicated by opening the sub-operation valve, High pressure air is fed into the main valve chamber mechanism, compressed air having a pressure lower than that of the high pressure air in the main valve chamber mechanism is fed into the sub valve chamber mechanism, and While maintaining the closed state of the vent, the high pressure air of the main valve chamber mechanism is exhausted in conjunction with the exhaust of the compressed air in the sub valve chamber mechanism to instantaneously open the vent port, and the compressed air in the compressed air chamber is released. An impact molding apparatus that molds the molding sand in the mold frame connected to the mold frame connection port while sending air from the ventilation port to the mold frame connection port.
【請求項2】前記主弁室機構は、圧縮空気室の略中央内
底部に設置され、前記通気室は前記通気口に直接連通さ
れて圧縮空気を同通気口へ直接通流させてなる特許請求
の範囲第1項記載の衝撃型造形装置。
2. The main valve chamber mechanism is installed in a substantially central inner bottom portion of a compressed air chamber, and the ventilation chamber is directly communicated with the ventilation port to allow compressed air to flow directly to the ventilation port. The impact molding apparatus according to claim 1.
【請求項3】前記主弁室機構と、副弁室機構とは、内部
の高圧空気や低圧空気を敏速に排気させるために負圧排
気機構に連通されて成る特許請求の範囲第1項、または
第2項記載の衝撃型造形装置。
3. The main valve chamber mechanism and the sub-valve chamber mechanism are connected to a negative pressure exhaust mechanism for promptly exhausting high pressure air and low pressure air therein, and a subordinate valve chamber mechanism, Alternatively, the impact molding apparatus according to the second aspect.
JP1341289A 1989-12-28 1989-12-28 Impact molding machine Expired - Lifetime JPH0620588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1341289A JPH0620588B2 (en) 1989-12-28 1989-12-28 Impact molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1341289A JPH0620588B2 (en) 1989-12-28 1989-12-28 Impact molding machine

Publications (2)

Publication Number Publication Date
JPH03204138A JPH03204138A (en) 1991-09-05
JPH0620588B2 true JPH0620588B2 (en) 1994-03-23

Family

ID=18344905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341289A Expired - Lifetime JPH0620588B2 (en) 1989-12-28 1989-12-28 Impact molding machine

Country Status (1)

Country Link
JP (1) JPH0620588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164271B2 (en) * 1994-12-09 2001-05-08 新東工業株式会社 Mold making equipment

Also Published As

Publication number Publication date
JPH03204138A (en) 1991-09-05

Similar Documents

Publication Publication Date Title
US7757746B2 (en) Pouring method, device, and cast in vacuum molding process
JPH07115120B2 (en) Outer frame mold manufacturing method and apparatus
US4531565A (en) Gas hardening type molding machine
JPH0620588B2 (en) Impact molding machine
US4195682A (en) Method and apparatus for providing air vents or holes in casting moles of molding sand
KR200324439Y1 (en) mold for injection molding
US4231415A (en) Apparatus for the production of foundry sand molds
JPH0648578A (en) Coreshooter
JPH0622737B2 (en) Impact molding machine
JPS62273742A (en) Transfer molding equipment
JP2006075850A (en) Vacuum apparatus and evacuating method
JPH05318026A (en) Head for air shock sandbox type molding machine
JP3148788B2 (en) Mold making method and apparatus
JP2000509360A (en) Method and apparatus for forming glass container
CN214661197U (en) Hydraulic oil cylinder for vacuumizing die mandrel
JPS5837361B2 (en) Vacuum powder molding method
JPH0756103Y2 (en) Compressed air blowing device for mold making equipment
JPH11226973A (en) Method for molding foamed synthetic resin molding
JPH0110104Y2 (en)
US698590A (en) Casting-machine.
RU2114716C1 (en) Device for vacuum treatment of transfer mold with crystallization under pressure
JP3441065B2 (en) Mold molding method and molding apparatus
JPS57195559A (en) Nozzle device
JPS591049A (en) Method and device for molding casting mold
JPS57184550A (en) Hopper device