JPH06203840A - Solid polyelectrolyte fuel cell - Google Patents

Solid polyelectrolyte fuel cell

Info

Publication number
JPH06203840A
JPH06203840A JP5001674A JP167493A JPH06203840A JP H06203840 A JPH06203840 A JP H06203840A JP 5001674 A JP5001674 A JP 5001674A JP 167493 A JP167493 A JP 167493A JP H06203840 A JPH06203840 A JP H06203840A
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel cell
conductive material
group
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5001674A
Other languages
Japanese (ja)
Inventor
Kazuo Okuyama
和雄 奥山
Yoshio Suzuki
良雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5001674A priority Critical patent/JPH06203840A/en
Publication of JPH06203840A publication Critical patent/JPH06203840A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To eliminate the possibility of voltage outputs being abruptly decreased so as to enhance the output performance of a fuel cell when the fuel cell is formed by junction of an ion exchange film serving as electrolyte and gas diffusion electrodes each having at least a catalyst layer by impregnating the catalyst layer with a proton conductive material, and specifying the percentage of voids in the catalytic layer after the junction. CONSTITUTION:An ion exchange film for use as electrolyte contains a fluorine- containing polymer that serves as its skeleton, containing at least one kind of group selected from a sulfonate group, a carboxyl group, a phosphate group and a phosphate group. Gas diffusion electrodes are each provided with a porous catalyst layer having a conductive material as an essential constituent with at least catalytic metal particles supported thereto, and a water repelling agent and a binding agent are contained therein when necessary. Any catalytic metal that works in hydrogen oxidation and oxygen reduction, such as lead, iron and manganese is usable and a proton conductive material is contained in the metal and the percentage of voids formed in the catalyst layer after junction is 65 to 90. Thus a sufficient amount of reaction gas is supplied to reaction interfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質型燃
料電池(PEFC)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell (PEFC).

【0002】[0002]

【従来の技術】低公害性と高効率という特徴により、燃
料電池が注目されている。燃料電池は水素やメタノール
等の燃料を酸素や空気を用いて電気化学的に酸化し、燃
料の化学エネルギーを電気エネルギーとして取り出すも
のである。用いる電解質の種類によりリン酸型、溶融炭
酸塩型、固体酸化物型等に分類される。この中で、低温
作動性と高出力密度という特徴から、近年特にPEFC
が注目されてきた。
2. Description of the Related Art Fuel cells have been attracting attention due to their characteristics of low pollution and high efficiency. A fuel cell electrochemically oxidizes a fuel such as hydrogen or methanol using oxygen or air to take out the chemical energy of the fuel as electric energy. Depending on the type of electrolyte used, it is classified into phosphoric acid type, molten carbonate type, solid oxide type and the like. Among these, PEFC has been particularly popular in recent years due to its characteristics of low temperature operation and high power density.
Has been attracting attention.

【0003】図2にてPEFCの基本構造について説明
する。同図に示すように電池本体は固体高分子電解質膜
の両側にガス拡散電極が接合されることにより構成され
ている。ガス拡散電極は少なくとも触媒が担持されてい
る層(触媒層)を有しており、従って電池反応は膜と触
媒層の接合界面にて生じる。例えば電極2に水素ガスを
流すと膜の接合界面で2H2 →4H+ +4e- の反応が
生じる。H+ は固体高分子電解質膜3を通って対極1
に、またe- は電極と電極をむすんだ回路を通じて対極
1に移動する。この電極1に酸素ガスを流すとO2 +4
+ +4e- →2H2 Oの反応が膜と電極内触媒の界面
で生じ、水が生成すると同時に電気エネルギーが得られ
る。
The basic structure of PEFC will be described with reference to FIG. As shown in the figure, the battery main body is constructed by joining gas diffusion electrodes to both sides of the solid polymer electrolyte membrane. The gas diffusion electrode has at least a layer on which a catalyst is supported (catalyst layer), and therefore a cell reaction occurs at the bonding interface between the membrane and the catalyst layer. For example, when hydrogen gas is supplied to the electrode 2, a reaction of 2H 2 → 4H + + 4e occurs at the bonding interface of the film. H + passes through the solid polymer electrolyte membrane 3 and the counter electrode 1
In addition, e moves to the counter electrode 1 through the electrode and the circuit including the electrode. When oxygen gas is passed through this electrode 1, O 2 +4
The reaction of H + + 4e → 2H 2 O occurs at the interface between the membrane and the catalyst in the electrode, and water is generated, and at the same time, electric energy is obtained.

【0004】界面で電極反応が生じることから、プロト
ン導伝材を溶媒に溶かして電極表面に塗布してからイオ
ン交換膜と接合したり、電極構成カーボンにあらかじめ
混合した後に電極作成(特開昭61−67787号公
報、同61−67788号公報)したりの工夫がされて
いる。これらの電極と電解質膜の接合は加熱しながら圧
をかけるホットプレス法が用いられている。しかし、接
合のためのホットプレス操作により、ガス拡散電極内の
触媒担持部分(触媒層)の細孔がつぶされ、結果として
充分な反応ガスの供給ができなくなり出力の低下を生じ
るという問題がある。
Since an electrode reaction occurs at the interface, the proton conductive material is dissolved in a solvent and applied on the surface of the electrode and then bonded to the ion exchange membrane, or the electrode constituent carbon is preliminarily mixed to prepare the electrode (Japanese Patent Laid-Open Publication No. Sho. 61-67787 and 61-67788). A hot press method in which pressure is applied while heating is used to bond these electrodes and the electrolyte membrane. However, there is a problem that the pores of the catalyst supporting portion (catalyst layer) in the gas diffusion electrode are crushed by the hot pressing operation for joining, and as a result, sufficient reaction gas cannot be supplied and the output is reduced. .

【0005】[0005]

【発明が解決しようとする課題】本発明は、反応ガスを
反応点に充分供給せしめ、出力性能を大きく向上させる
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to sufficiently supply a reaction gas to a reaction point and greatly improve output performance.

【0006】[0006]

【課題を解決するための手段】本発明者らは、イオン交
換膜と触媒層を含むガス拡散電極との接合及び接合体の
物性と出力特性の関係を鋭意検討した結果、接合後の触
媒層内の細孔の大きさが出力に関係することを見い出
し、本発明に至った。すなわち、本発明は電解質である
イオン交換膜と、少なくとも触媒層を有するガス拡散電
極とを接合した燃料電池において、上記触媒層がプロト
ン導伝材を含有し、かつ、接合後の上記触媒層内の空孔
率が65から90容量%であることを特徴とするもので
ある。
Means for Solving the Problems The inventors of the present invention have made earnest studies on the bonding between the ion exchange membrane and the gas diffusion electrode including the catalyst layer and the relationship between the physical properties and the output characteristics of the bonded body. The inventors have found that the size of the inner pores is related to the output, and completed the present invention. That is, the present invention is a fuel cell in which an ion exchange membrane which is an electrolyte and a gas diffusion electrode having at least a catalyst layer are joined, and the catalyst layer contains a proton conductive material, and the inside of the catalyst layer after joining Is characterized by having a porosity of 65 to 90% by volume.

【0007】本発明において電解質として用いるイオン
交換膜は含フッ素高分子を骨格とし、スルホン酸基、カ
ルボキシル基、リン酸基、ホスホン酸基から選ばれる少
なくとも1種を有するものである。例えば、テトラフル
オロエチレン、トリフルオロモノクロロエチレン、トリ
フルオロエチレン、フッ化ビニリデン、1、1−ジフル
オロ−2,2−ジクロロエチエン、1,1−ジフルオロ
−2−クロロエチレン、ヘキサフルオロプロピレン、
1,1,1,3,3−ペンタフルオロプロピレン、オク
タフルオロイソブチレン、エチレン、塩化ビニルおよび
アルキルビニルエステルの第1群のモノマー、並びに、
下記一般式(1)で表される第2群のモノマーで表され
るものから、第1群モノマーの1種以上を必須として選
ばれた2種以上、通常は2ないし3種類の共重合体であ
る。 Y−(CF2 a −(CFRf b −(CFRf ′)c −O− −{CF(CF2 X)−CF2 −O}n −CF=CF2 ……(1) (式中、Yは−SO3 H,−COOH,−PO3 2
たは−PO3 Hである。aは0〜6の整数であり、bは
0〜6の整数であり、cは0または1である。但しa+
b+cは0に等しくはならない。Xはn≧1のときC
l,Br,Fまたはそれらの混合物である。nは0〜6
の整数であり、Rf およびRf ′は独立にF,Cl,1
〜10個の炭素原子を有するペルフルオロアルキル基お
よび1〜10個の炭素原子を有するフルオロクロロアル
キル基からなる群から選択されるものである。)プロト
ン導伝材はプロトンを導伝する材料であれば良く、好ま
しくはスルホン酸基、カルボキシル基、リン酸基、およ
びホスホン酸基から選ばれた少なくとも1種を含有する
含フッ素炭化水素である。
The ion exchange membrane used as an electrolyte in the present invention has a fluorinated polymer as a skeleton and has at least one selected from a sulfonic acid group, a carboxyl group, a phosphoric acid group and a phosphonic acid group. For example, tetrafluoroethylene, trifluoromonochloroethylene, trifluoroethylene, vinylidene fluoride, 1,1-difluoro-2,2-dichloroethene, 1,1-difluoro-2-chloroethylene, hexafluoropropylene,
1,1,1,3,3-pentafluoropropylene, octafluoroisobutylene, ethylene, vinyl chloride and alkyl vinyl esters of the first group of monomers, and
Copolymers of two or more kinds, usually 2 to 3 kinds, selected from those represented by the second group of monomers represented by the following general formula (1), in which at least one kind of the first group of monomers is essential. Is. Y- (CF 2) a - ( CFR f) b - (CFR f ') c -O- - {CF (CF 2 X) -CF 2 -O} n -CF = CF 2 ...... (1) ( Formula In the formula, Y is —SO 3 H, —COOH, —PO 3 H 2 or —PO 3 H. a is an integer of 0 to 6, b is an integer of 0 to 6 and c is 0 or 1. Where a +
b + c does not equal 0. X is C when n ≧ 1
1, Br, F or a mixture thereof. n is 0 to 6
And R f and R f ′ are independently F, Cl, 1
It is selected from the group consisting of perfluoroalkyl groups having from 10 carbon atoms and fluorochloroalkyl groups having from 1 to 10 carbon atoms. ) The proton conducting material may be any material that conducts protons, and is preferably a fluorine-containing hydrocarbon containing at least one selected from a sulfonic acid group, a carboxyl group, a phosphoric acid group, and a phosphonic acid group. .

【0008】例えば、前記第1群のモノマーと前記第2
群のモノマーから選ばれた、第2群モノマーを必須モノ
マーとする2種類あるいは3種類以上のモノマーの共重
合体;前記第2群のモノマーの1種類以上の重合体;前
記第2群のモノマーである、トリフルオロメタンスルホ
ン酸,フルオロエタン,スルホン酸,トリフルオロエタ
ンスルホン酸,テトラフルオロプロパンスルホン酸,パ
ーフルオロアルキル(C4 〜C12)スルホン酸,3−
〔フルオロアルキル(C6 〜C11)オキシン〕−1−ア
ルキル(C3 〜C4 )スルホン酸,3−〔ω−フルオロ
アルカノイル(C 6 〜C8 )−N−エチルアミノ〕−1
−プロパンスルホン酸などの一官能性含フッ素ハイドロ
カーボンスルホン酸類;ジフルオロメタンジスルホン
酸,テトラフルオロエタンジスルホン酸などの二官能性
含フッ素ハイドロカーボンスルホン酸類;トリフルオロ
メタンベンゼンスルホン酸などの含フッ素芳香族スルホ
ン酸誘導体;トリフルオロ酸類,フルオロアルキル(C
2 〜C20)カルボン酸,パーフルオロアルキル(C7
13)カルボン酸などの一官能性含フッ素ハイドロカー
ボンカルボン酸類;テトラフルオロエタンジカルボン酸
などの二官能性含フッ素ハイドロカーボンカルボン酸
類;ジフルオロメタンジカルボン酸などの含フッ素ハイ
ドロカーボンホスホン酸類;チオスルホン酸類;トリフ
ルオロメタンスルホンイミドなどのフルオロスルホンイ
ミド類;モノパーフルオロアルキル(C6 〜C16)リン
酸などであり、これらは単独、あるいは2種類以上の混
合で用いられる。
For example, the first group of monomers and the second group of monomers
Group 2 monomers selected from the group of monomers are essential
Co-weight of two or more types of monomers
A polymer; one or more polymers of the second group of monomers;
The second group of monomers, trifluoromethanesulfone
Acid, fluoroethane, sulfonic acid, trifluoroethane
Sulfonic acid, tetrafluoropropane sulfonic acid,
-Fluoroalkyl (CFour~ C12) Sulfonic acid, 3-
[Fluoroalkyl (C6~ C11) Oxine] -1-a
Rukiru (C3~ CFour) Sulfonic acid, 3- [ω-fluoro
Alkanoyl (C 6~ C8) -N-Ethylamino] -1
-Monofunctional fluorine-containing hydro such as propanesulfonic acid
Carbon sulfonic acids; difluoromethane disulfone
Bifunctionality of acid, tetrafluoroethanedisulfonic acid, etc.
Fluorine-containing hydrocarbon sulfonic acids; trifluoro
Fluorine-containing aromatic sulfo such as methanebenzenesulfonic acid
Acid derivatives; trifluoro acids, fluoroalkyl (C
2~ C20) Carboxylic acid, perfluoroalkyl (C7~
C13) Monofunctional fluorine-containing hydrocar such as carboxylic acid
Boncarboxylic acids; tetrafluoroethanedicarboxylic acid
Bifunctional fluorine-containing hydrocarbon carboxylic acid such as
Kinds; Fluorine-containing high, such as difluoromethanedicarboxylic acid
Drocarbonphosphonic acids; Thiosulfonic acids; Trif
Fluorosulfones such as luoromethanesulfonimide
Mides; monoperfluoroalkyl (C6~ C16)Rin
Acids, etc., which can be used alone or as a mixture of two or more kinds.
Used in combination.

【0009】重合体はモノマー2分子以上結合しておれ
ばよく、好ましくはその分子量が5000以上である。
分子量が大きい方が触媒層の導電材への絡まりが良好と
なり耐久性の点でより好ましい。これらは、例えばメタ
ノール、エタノール、プロパノール、ブタノール等のア
ルコール類、N,N′−ジメチルアセトアミド、N,
N′−ジメチルホルムアミド、ジメチルスルホキシド、
スルホラン等の極性溶媒、テトラヒドロフラン等の環状
エーテル類、および上記溶媒群から選ばれた2種類以上
の混合物、さらには、上記溶媒群と水との混合物等の水
溶性媒体に溶解して用いることができる。
It is sufficient that the polymer has two or more molecules of the monomer bonded thereto, and the molecular weight thereof is preferably 5,000 or more.
The larger the molecular weight, the better the entanglement of the catalyst layer with the conductive material, which is more preferable in terms of durability. These include alcohols such as methanol, ethanol, propanol, butanol, N, N'-dimethylacetamide, N,
N'-dimethylformamide, dimethyl sulfoxide,
It may be used by dissolving in a polar solvent such as sulfolane, cyclic ethers such as tetrahydrofuran, and a mixture of two or more kinds selected from the above solvent group, and further dissolved in an aqueous medium such as a mixture of the above solvent group and water. it can.

【0010】本発明のガス拡散電極は、少なくとも触媒
金属の微粒子を担持した導電材を必須構成物とする多孔
性触媒層を有しており、必要に応じて撥水剤と結着剤を
含んでもよい。触媒金属としては、水素の酸化反応ある
いは酸素の還元反応に触媒作用を有するものであれば良
く、例えば、鉛、鉄、マンガン、コバルト、クロム、ガ
リウム、バナジウム、タングステン、ルテニウム、イリ
ジウム、パラジウム、ロジウム、又はそれらの合金から
選択することができる。触媒粒径は、10Åから300
Åが良く、好ましくは15Åから100Åである。触媒
粒径10Å未満のものは現実的に作成が困難であり、一
方300Åより大きいと触媒性能が低下する。
The gas diffusion electrode of the present invention has at least a porous catalyst layer having an electrically conductive material carrying fine particles of catalytic metal as an essential component, and optionally contains a water repellent and a binder. But it's okay. The catalyst metal may be any one that has a catalytic action on the hydrogen oxidation reaction or the oxygen reduction reaction, and for example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium, iridium, palladium, rhodium. , Or their alloys. Catalyst particle size is 10Å to 300
Å is good, preferably 15 Å to 100 Å. If the catalyst particle size is less than 10Å, it is practically difficult to prepare, while if it is larger than 300Å, the catalyst performance is deteriorated.

【0011】導電材への触媒の担持は、粉末状カーボン
に担持しても良いし、触媒層成形後に担持しても良い。
触媒担持量は電極成形後において0.01〜10mg/cm2
であり、好ましくは0.1〜0.5mg/cm2である。触媒
が0.01mg/cm2未満では性能が低下し、一方、10mg
/cm2より大では触媒によるコストが大きい。触媒層を構
成する導電材は電子導伝性物質であればよく、例えば各
種金属やカーボン材料などがある。カーボン材料として
は、例えばファーネスブラック、チャンネルブラック、
アセチレンブラック等のカーボンブラック、活性炭、黒
鉛等があり、単独あるいは混合して使用できる。必要に
応じて用いる撥水剤は撥水性を有していれば良く、例え
ば、フッ素化カーボン等が好ましい。必要に応じて用い
る結着剤は結着性を有していれば良く、例えば、各種樹
脂などが用いられる。これらの中で一般に用いられるの
が撥水剤と結着剤を兼ねるテフロン系化合物であり、好
ましくは融点が400℃以下の物が適しており、より好
ましくはポリテトラフルオロエチレン、テトラフルオロ
エチレン−パーフルオロアルキルビニルエーテル共重合
体、テトラフルオロエチレン−ヘキサフルオロプロピレ
ン共重合体などがある。
The catalyst may be supported on the conductive material by powdery carbon or after forming the catalyst layer.
The amount of catalyst supported is 0.01 to 10 mg / cm 2 after forming the electrode.
And preferably 0.1 to 0.5 mg / cm 2 . If the catalyst is less than 0.01 mg / cm 2 , the performance will decrease, while 10 mg
If it is larger than / cm 2, the cost of the catalyst is large. The conductive material forming the catalyst layer may be an electron conductive material, and examples thereof include various metals and carbon materials. Examples of carbon materials include furnace black, channel black,
There are carbon black such as acetylene black, activated carbon, graphite and the like, which can be used alone or in combination. The water repellent that is used if necessary has water repellency, and for example, fluorinated carbon or the like is preferable. The binder used as necessary may have a binding property, and for example, various resins are used. Of these, a Teflon-based compound that also serves as a water repellent and a binder is generally used, preferably one having a melting point of 400 ° C. or less is suitable, and more preferably polytetrafluoroethylene or tetrafluoroethylene- Examples include perfluoroalkyl vinyl ether copolymers and tetrafluoroethylene-hexafluoropropylene copolymers.

【0012】プロトン導伝材を電極原料粉末に溶液ある
いは粉末で混合した後触媒層として成形してもよいし、
電極成形後に電極の触媒を担持している側からプロトン
導伝材溶液を含浸してもよい。また、電極は触媒を担持
した導電材を含有する触媒層だけから成っていても良い
し、該触媒層と触媒を担持しない導電材層との積層でも
よい。さらに、この電極と導電材を用いたクロスとの複
合物として使用してもよい。
The proton conductive material may be mixed with the electrode raw material powder as a solution or powder and then formed into a catalyst layer,
After forming the electrode, the proton conducting material solution may be impregnated from the side of the electrode supporting the catalyst. Further, the electrode may be composed only of a catalyst layer containing a catalyst-supporting conductive material, or may be a laminate of the catalyst layer and a catalyst-free conductive material layer. Further, it may be used as a composite of this electrode and a cloth using a conductive material.

【0013】膜とガス拡散電極の接合は加温、加圧でき
る装置を用いて実施される。特定の装置はなく、一般的
には例えばホットプレス機、ロールプレス機等が用いら
れる。プレス温度は使用した電解質膜のガラス転移温度
以上であれば良く、好ましくは120℃から250℃で
ある。プレス圧力は使用するガス拡散電極(触媒層)の
固さに依存し、約5kg/cm2 から200kg/cm
2 であり、好ましくは20kg/cm2 から100kg
/cm2 である。5kg/cm2 より小さい圧力では膜
と電極の接着が不充分になり、一方、200kg/cm
2 以上では触媒層内空孔の減少が大きい。ホットプレス
時に電極の厚さより薄いスペーサーを入れると効果が大
きい。また、水の共存下で電解質膜を湿潤させた状態で
ホットプレスするのもよい。接合された触媒層の空孔率
は65から90容量%であり、より好ましくは70から
80容量%のものである。空孔率65容量%より小さい
と原料ガスの供給が不充分となり、一方90容量%より
大では触媒を担持した反応点の絶対量が少なくなって性
能の低下の原因となる。
Bonding of the membrane and the gas diffusion electrode is carried out by using a device capable of heating and pressurizing. There is no specific device, and, for example, a hot press machine, a roll press machine or the like is generally used. The pressing temperature may be higher than the glass transition temperature of the used electrolyte membrane, and is preferably 120 ° C to 250 ° C. The pressing pressure depends on the hardness of the gas diffusion electrode (catalyst layer) used, and is about 5 kg / cm 2 to 200 kg / cm 2.
2 , preferably from 20 kg / cm 2 to 100 kg
/ Cm 2 . If the pressure is less than 5 kg / cm 2, the adhesion between the membrane and the electrode will be insufficient, while the pressure of 200 kg / cm
When it is 2 or more, the number of voids in the catalyst layer is greatly reduced. Inserting a spacer thinner than the thickness of the electrode during hot pressing has a great effect. Further, hot pressing may be performed while the electrolyte membrane is wet in the coexistence of water. The bonded catalyst layers have a porosity of 65 to 90% by volume, more preferably 70 to 80% by volume. If the porosity is less than 65% by volume, the supply of the raw material gas will be insufficient, while if it is more than 90% by volume, the absolute amount of the reaction points supporting the catalyst will be small, which will cause deterioration in performance.

【0014】前述のように電気化学反応が生じるのは、
液体(水)、固体(電子、及びプロトン)、気体(水素
ガスあるいは酸素ガス)の三相界面であり、この中で気
体及び液体は、電極内の孔を通って反応点に移動あるい
は反応点から排出される。従って電極内の孔の量及び形
状が重要であり、特に、触媒が存在する層(触媒層)の
孔量が最も性能に影響を与える。ガス拡散電極の構成物
により、固さ(孔の保持力)が各々異なってくる。従っ
てその接合条件が同一であっても、得られる触媒層内孔
量は電極によって全く違う。燃料電池として使用する状
態での触媒層内孔量を制御したガス拡散電極を用いるこ
とは燃料電池の発電メカニズムに直結した発想であり、
性能向上に大きく寄与するものである。
As described above, the electrochemical reaction occurs
It is a three-phase interface of liquid (water), solid (electrons and protons), and gas (hydrogen gas or oxygen gas), in which the gas and liquid move or react to the reaction point through the pores in the electrode. Emitted from. Therefore, the amount and shape of the holes in the electrode are important, and in particular, the amount of holes in the layer in which the catalyst is present (catalyst layer) has the greatest effect on the performance. The hardness (holding force of the holes) varies depending on the composition of the gas diffusion electrode. Therefore, even if the bonding conditions are the same, the amount of pores in the obtained catalyst layer is completely different depending on the electrode. The use of a gas diffusion electrode in which the amount of pores in the catalyst layer is controlled when used as a fuel cell is an idea directly connected to the power generation mechanism of the fuel cell.
It greatly contributes to performance improvement.

【0015】[0015]

【実施例】【Example】

【0016】[0016]

【実施例1】本実施例で使用したガス拡散電極(米国E
−TEK Inc.社製)は、触媒層とカーボンファイ
バー織布部から成っており、触媒層が52重量%を占め
ること、及び触媒層は、直径10μm以下の孔のみ有
し、カーボンファイバー層はそれより大きな孔のみ有し
ていることを水銀圧入法ポロシメーターポアサイザー9
320((株)島津製作所製)による測定で確認した。
Example 1 The gas diffusion electrode used in this example (US E
-TEK Inc. (Made by the company) consists of a catalyst layer and a carbon fiber woven cloth portion, the catalyst layer occupies 52% by weight, and the catalyst layer has only pores with a diameter of 10 μm or less, and the carbon fiber layer has pores larger than that. Mercury porosimetry porosimeter Poisizer 9
It was confirmed by measurement with 320 (manufactured by Shimadzu Corporation).

【0017】面積が10cm2 のガス拡散電極(米国E
−TEK Inc.社製)、白金担持量の0.38mg
/cm2 を6枚用意し、5重量%濃度のナフィオン溶液
(米国Aldrich社製)を電極表面に0.162m
l塗布後70℃にて2時間減圧乾燥した。乾燥後重量測
定したところ、ナフィオン塗布量は0.6mg/cm2
あった。得られた電極の2枚で厚み120μmのアシプ
レックス膜(商標 旭化成工業(株)製)をはさみ、加
えて電極の大きさに穴をあけた厚み270μmのガラス
繊維を含むテフロンシートを膜の両側にスペーサーとし
て用いて、30kg/cm2 の圧力で140℃、90秒
間プレスした。同様な方法で合計2枚の接合体を作成し
た。接合しない電極及び接合後の電極を水銀圧入法ポロ
シメーターポアサイザー9320((株)島津製作所
製)にて測定したところ、接合前の触媒層空孔率77
%、接合後の触媒層空孔率74%であった。この接合体
を用いて、図3に示す評価装置にて出力評価を行った。
セル温度90℃圧力3atmである。限界電流密度が
2.3A/cm2 であった。
A gas diffusion electrode having an area of 10 cm 2 (US E
-TEK Inc. Manufactured by the company), 0.38 mg of platinum loading
6 sheets / cm 2 are prepared, and a Nafion solution having a concentration of 5% by weight (manufactured by Aldrich, USA) is applied to the electrode surface for 0.162 m.
After coating, the coating was dried under reduced pressure at 70 ° C. for 2 hours. When dried and weighed, the amount of Nafion applied was 0.6 mg / cm 2 . A 120 μm thick aciplex film (trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.) was sandwiched between two of the obtained electrodes, and a Teflon sheet containing glass fibers with a thickness of 270 μm in which a hole was formed in the size of the electrode was added to both sides of the film. Was used as a spacer at 140 ° C. for 90 seconds at a pressure of 30 kg / cm 2 . A total of two bonded bodies were prepared by the same method. The non-bonded electrode and the electrode after bonding were measured with a mercury porosimetry porosimeter Poisizer 9320 (manufactured by Shimadzu Corporation), and the porosity of the catalyst layer before bonding was 77.
%, And the porosity of the catalyst layer after bonding was 74%. Using this bonded body, output evaluation was performed with the evaluation device shown in FIG.
The cell temperature is 90 ° C. and the pressure is 3 atm. The limiting current density was 2.3 A / cm 2 .

【0018】[0018]

【実施例2】実施例1と同じ濃度のナフィオン溶液を塗
布したガス拡散電極を4枚用意した。2枚の電極でアシ
プレックス膜をはさみ、そのまま、20kg/cm2
圧力にて140℃、90秒間ホットプレスした。同様に
合計2枚の接合体を作成した。1枚の接合体の触媒層内
空孔率を測定したところ73%であった。他の1枚を用
いて、図3の評価装置にて出力評価を行なった。限界電
流密度は2.1A/cm2 であった。
Example 2 Four gas diffusion electrodes coated with the Nafion solution having the same concentration as in Example 1 were prepared. The aciplex film was sandwiched between two electrodes, and hot pressed at 140 ° C. for 90 seconds at a pressure of 20 kg / cm 2 as it was. Similarly, a total of two joined bodies were prepared. The porosity in the catalyst layer of one bonded body was 73%. Output evaluation was performed using the other one with the evaluation device of FIG. The limiting current density was 2.1 A / cm 2 .

【0019】[0019]

【比較例1】実施例1,2と同じナフィオン溶液を塗布
した電極を4枚用意した。2枚の電極でアシプレックス
膜をはさみ、そのまま80kg/cm2 の圧力にて14
0℃、90秒間ホットプレスした。同様に合計2枚の接
合体を作成した。1枚の接合体の触媒層内空孔率を測定
したところ60%であった。他の1枚を用いて、図3の
評価装置にて出力評価を行なったところ限界電流密度は
1.5A/cm2 であった。
Comparative Example 1 Four electrodes coated with the same Nafion solution as in Examples 1 and 2 were prepared. Sandwich the Aciplex membrane with two electrodes, and press it at a pressure of 80 kg / cm 2 for 14
It was hot pressed at 0 ° C. for 90 seconds. Similarly, a total of two joined bodies were prepared. When the porosity in the catalyst layer of one bonded body was measured, it was 60%. When the output was evaluated by using the other one with the evaluation device of FIG. 3, the limiting current density was 1.5 A / cm 2 .

【0020】実施例1,2と比較例1における接合体の
触媒層内空孔率及び評価結果の限界電流密度を表1、ま
た出力特性を図1にまとめて示した。
Table 1 shows the porosity in the catalyst layer of the bonded bodies of Examples 1 and 2 and Comparative Example 1 and the limiting current density of the evaluation results, and the output characteristics are shown in FIG.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】以上説明したように本発明の燃料電池で
は反応界面への反応ガスの供給が充分行なわれ、その結
果として出力電圧の急激な減少がなく、性能が大幅に向
上する効果を奏する。
As described above, in the fuel cell of the present invention, the reaction gas is sufficiently supplied to the reaction interface, and as a result, the output voltage does not suddenly decrease and the performance is greatly improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜2及び比較例1における出力電圧と
電流密度の関係を示すグラフ図である。
FIG. 1 is a graph showing the relationship between output voltage and current density in Examples 1 and 2 and Comparative Example 1.

【図2】固体高分子電解質型燃料電池の接合体の説明図
である。
FIG. 2 is an explanatory view of a joined body of a solid polymer electrolyte fuel cell.

【図3】接合体の評価装置図の説明図である。FIG. 3 is an explanatory diagram of an evaluation device diagram of a bonded body.

【符号の説明】[Explanation of symbols]

1:酸素極のガス拡散電極 2:水素極ガス拡散電極 3:固体高分子電解質膜 4:燃料電池セル 5:加湿器 6:純水 1: Gas diffusion electrode of oxygen electrode 2: Hydrogen gas diffusion electrode 3: Solid polymer electrolyte membrane 4: Fuel cell 5: Humidifier 6: Pure water

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解質であるイオン交換膜と、少なくと
も触媒層を有するガス拡散電極とを接合した燃料電池に
おいて、上記触媒層がプロトン導伝材を含有し、かつ、
接合後の上記触媒層内の空孔率が65から90容量%で
あることを特徴とする固体高分子電解質型燃料電池。
1. A fuel cell in which an ion exchange membrane, which is an electrolyte, and a gas diffusion electrode having at least a catalyst layer are joined, wherein the catalyst layer contains a proton conductive material, and
A solid polymer electrolyte fuel cell, wherein the porosity in the catalyst layer after joining is 65 to 90% by volume.
JP5001674A 1993-01-08 1993-01-08 Solid polyelectrolyte fuel cell Withdrawn JPH06203840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001674A JPH06203840A (en) 1993-01-08 1993-01-08 Solid polyelectrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001674A JPH06203840A (en) 1993-01-08 1993-01-08 Solid polyelectrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH06203840A true JPH06203840A (en) 1994-07-22

Family

ID=11508067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001674A Withdrawn JPH06203840A (en) 1993-01-08 1993-01-08 Solid polyelectrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH06203840A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050143A1 (en) * 1996-06-25 1997-12-31 The Dais Corporation Gas diffusion electrode
JP2001189155A (en) * 1995-10-06 2001-07-10 Dow Chem Co:The Electrochemical fuel cell
JP2005044815A (en) * 2004-10-05 2005-02-17 Asahi Glass Co Ltd Manufacturing method of solid polymer electrolyte fuel cell
US7094492B2 (en) 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
US8357475B2 (en) 2004-12-09 2013-01-22 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189155A (en) * 1995-10-06 2001-07-10 Dow Chem Co:The Electrochemical fuel cell
WO1997050143A1 (en) * 1996-06-25 1997-12-31 The Dais Corporation Gas diffusion electrode
US7094492B2 (en) 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
DE10247452B4 (en) * 2001-10-11 2007-08-16 Honda Giken Kogyo K.K. Electrode for polymer electrolyte fuel cell
JP2005044815A (en) * 2004-10-05 2005-02-17 Asahi Glass Co Ltd Manufacturing method of solid polymer electrolyte fuel cell
US8357475B2 (en) 2004-12-09 2013-01-22 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US8440369B2 (en) 2004-12-09 2013-05-14 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
USRE45703E1 (en) 2004-12-09 2015-09-29 Oned Material Llc Nanostructured catalyst supports
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
USRE48084E1 (en) 2004-12-09 2020-07-07 Oned Material Llc Nanostructured catalyst supports
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications
US11233240B2 (en) 2009-05-19 2022-01-25 Oned Material, Inc. Nanostructured materials for battery applications
US11600821B2 (en) 2009-05-19 2023-03-07 Oned Material, Inc. Nanostructured materials for battery applications

Similar Documents

Publication Publication Date Title
JP4023903B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
US7846614B2 (en) Electrode for solid polymer electrolyte fuel cell
JP5161097B2 (en) Nanocatalyst for fuel cell
KR101767267B1 (en) Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP5384335B2 (en) Ion conductive membrane
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP2010505222A (en) Structure for gas diffusion electrode
JP3714766B2 (en) Electrode and membrane / electrode assembly for polymer electrolyte fuel cell
JPH1140172A (en) Method for producing film-electrode joined body for fuel cell
JPH06203840A (en) Solid polyelectrolyte fuel cell
JPH06236762A (en) Polymer electrolytic flue cell
JPH06295729A (en) High performance high polymer electrolyte type fuel cell
JPH11135136A (en) Solid poly electrolyte type fuel cell
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JPH06349498A (en) Gas diffusion electrode, connecting body, fuel cell, and manufacture thereof
JPH06342667A (en) High molecular type fuel cell
JP2004273257A (en) Electrode catalyst layer for fuel cell
JPH11354129A (en) Electrode catalyst coating agent for fuel cell and membrane/electrode joint body using same coating agent
WO2008041622A1 (en) Membrane electrode assembly and method for producing the same
JP3931027B2 (en) Solid polymer electrolyte, solid polymer electrolyte membrane using the same, electrode catalyst coating solution, membrane / electrode assembly, and fuel cell
JP6105215B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JPH06342666A (en) Solid high molecular type fuel cell
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP6198388B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404