JPH06200357A - Amorphous alloy - Google Patents

Amorphous alloy

Info

Publication number
JPH06200357A
JPH06200357A JP33505791A JP33505791A JPH06200357A JP H06200357 A JPH06200357 A JP H06200357A JP 33505791 A JP33505791 A JP 33505791A JP 33505791 A JP33505791 A JP 33505791A JP H06200357 A JPH06200357 A JP H06200357A
Authority
JP
Japan
Prior art keywords
alloy
amorphous alloy
amorphous
magnetic
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33505791A
Other languages
Japanese (ja)
Inventor
Yasunobu Ogata
安伸 緒方
Taku Meguro
卓 目黒
Ryozo Sawada
良三 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP33505791A priority Critical patent/JPH06200357A/en
Publication of JPH06200357A publication Critical patent/JPH06200357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain an amorphous alloy minimal in sensitivity to stress and excellent in exciting current characteristics by specifying a composition which consists of Fe, Co, Si, and B or the composition where Be, etc., are further added. CONSTITUTION:This alloy is an amorphous alloy represented by' composition formula FedCoeSigBh or FedCoeTfSigBh (in the formula, T means one or more elements among Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ru, Ni, Pd, Cu, Zn, Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy, d+e+g+h=100 or d+e+f+g+h=100, 72<=d+e<=85, 0.70<=e/-(d+e)<=0.99, f<=3, 7<g<16, 7<h<10, and 15<=g+h<=25). This alloy is excellent in exciting current characteristics, minimal in sensitivity to strain, and also minimal in deterioration in magnetic properties due to mechanical strain, such as impact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、励磁電流特性の良好な
非晶質合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous alloy having good exciting current characteristics.

【0002】[0002]

【従来の技術】磁気移相器、磁気増幅器、直流電流検出
器、磁気変調器などには、例えば、異方性50%Niパ
ーマロイ、スーパーマロイ、方向性ケイ素鋼などから成
る巻鉄心が使用されている。これら従来の巻鉄心は、励
磁電流特性に優れ、また飽和までの急峻性が大きいこと
で知られているが、近年より小さい電流による励磁、飽
和電圧の増加、飽和に至る急峻なI−V特性が求められ
ている。
2. Description of the Related Art For magnetic phase shifters, magnetic amplifiers, DC current detectors, magnetic modulators, etc., for example, wound iron cores made of anisotropic 50% Ni permalloy, supermalloy, directional silicon steel, etc. are used. ing. It is known that these conventional wound iron cores are excellent in exciting current characteristics and have a large steepness until saturation, but in recent years, excitation by a smaller current, increase in saturation voltage, and steep IV characteristics leading to saturation are known. Is required.

【0003】[0003]

【発明が解決しようとする課題】また、従来の鉄心のう
ち、特に50Niパーマロイ、スーパーマロイ等のパー
マロイ系鉄心は、構成材料の歪感受性が大きいために、
運搬、輸送、巻線などの作業の際に、機械的歪による磁
気特性の劣化が著しく、巻鉄心としての所要機能、電気
的平衡を損なうなど大きな欠点を有している。加うる
に、これら従来の巻鉄心構成材料を製造するには、溶
解、造塊、熱間圧延、酸洗、冷間圧延などの複雑で周到
な工程を必要とするため、巻鉄心の価格を高価なものと
していた。本発明は、上記従来技術の欠点を解消し、励
磁電流特性に優れた非晶質合金を提供することを目的と
するものである。
Among conventional iron cores, permalloy-based iron cores such as 50Ni permalloy and supermalloy have a large strain sensitivity of constituent materials.
When carrying, transporting, winding, etc., the magnetic properties are significantly deteriorated by mechanical strain, and there are major drawbacks such as the required function as a wound iron core and the electrical balance being impaired. In addition, in order to manufacture these conventional wound core constituent materials, complicated and elaborate processes such as melting, ingot making, hot rolling, pickling, cold rolling are required. It was expensive. An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide an amorphous alloy having excellent exciting current characteristics.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本願発明者らは、式Fed Coe f Sig h (式
中TはBe、Mg、Ca、Sr、Ba、Ti、Zr、H
f、V、Nb、Ta、Cr、Mo、W、Mn、Ru、N
i、Pd、Cu、Zn、Y、Ce、Pr、Nd、Sm、
Eu、Gd、Tb、Dyのうちの1種または2種以上で
あり、d+e+f+g+h=100)で示される非晶質
合金、特に上記式において、72≦d+e≦85、0.
70≦e/d+e≦0.99、f≦3、7<g<16、
7<h<10、15≦g+h≦25なる条件を満足する
非晶質合金を磁場中で焼なまし、冷却したものを用いて
巻鉄心を構成すると優れた励磁電流特性が得られること
を見出し、本発明を完成したものである。
The present inventors to achieve the above object In order to achieve the above formula Fe d Co e T f Si g B h ( wherein T is Be, Mg, Ca, Sr, Ba, Ti, Zr, H
f, V, Nb, Ta, Cr, Mo, W, Mn, Ru, N
i, Pd, Cu, Zn, Y, Ce, Pr, Nd, Sm,
One or more of Eu, Gd, Tb, and Dy, and an amorphous alloy represented by d + e + f + g + h = 100), particularly 72 ≦ d + e ≦ 85, 0.
70 ≦ e / d + e ≦ 0.99, f ≦ 3, 7 <g <16,
It has been found that excellent exciting current characteristics can be obtained by constructing a wound core using an amorphous alloy that satisfies the conditions of 7 <h <10, 15 ≦ g + h ≦ 25, which is annealed in a magnetic field and cooled. The present invention has been completed.

【0005】[0005]

【作用】本発明において、非晶質形成元素であるSiと
Bの総和が15原子%(以下単に%と記す)未満では非
晶質化そのものが困難となり、25%をこえると磁束密
度の低下をきたすので、15〜25%とする。非晶質形
成元素として他の半金属元素、たとえばC、P、Ge、
Bi、Alが知られているが、熱的安定性および靭性の
点でSiとBとの組合せが優れている。C、P、Ge、
Bi、Alを含んでいても特に本発明の効果を大きく損
なうことはないが、5%以下であることが望ましい。
In the present invention, if the total amount of Si and B, which are amorphous forming elements, is less than 15 atomic% (hereinafter simply referred to as%), it becomes difficult to amorphize itself, and if it exceeds 25%, the magnetic flux density decreases. It causes 15% to 25%. Other semi-metal elements such as C, P, Ge, as an amorphous forming element,
Bi and Al are known, but the combination of Si and B is excellent in terms of thermal stability and toughness. C, P, Ge,
Even if Bi and Al are contained, the effect of the present invention is not particularly impaired, but it is preferably 5% or less.

【0006】Bの含有量は7%未満では非晶質化が困難
であり、10%以上では耐環境特性、たとえば耐湿性、
耐アルカリ性が大巾に低下して好ましくない。Siの含
有量は7%未満では熱的安定性が損われ16%以上では
Hcが0.10e以上となり好ましくない。FeとCo
の総和は72%から85%であり、85%をこえると非
晶質化が困難となり、72%未満では磁束密度の低下が
あり好ましくない。
If the content of B is less than 7%, it is difficult to amorphize, and if it is more than 10%, environmental resistance characteristics such as moisture resistance,
Alkali resistance is greatly reduced, which is not preferable. When the Si content is less than 7%, the thermal stability is impaired, and when it is 16% or more, Hc is 0.10e or more, which is not preferable. Fe and Co
Is 72% to 85%, and if it exceeds 85%, it becomes difficult to amorphize, and if it is less than 72%, the magnetic flux density decreases, which is not preferable.

【0007】FeはCoとの相互作用により磁場中焼な
まし及び冷却による誘導磁気異方性を発生せしめB−H
曲線の角型性を、改善し、従って励磁電流特性における
飽和までの急峻度を生じる効果を有す。また、FeとC
oの比率を0.70≦Co/Fe+Co≦0.99に限
定した理由は、これ以外の組成では、磁歪定数λS を実
質的に小さくできない為である。なお、磁歪定数は、非
晶質材料の軟磁気特性を支配する重要な定数であり、こ
れを実質的に零にする事は優れた励磁電流特性を得るた
めに極めて重要である。
Fe causes induced magnetic anisotropy by annealing in a magnetic field and cooling by interaction with Co B-H
It has the effect of improving the squareness of the curve and thus producing a steepness to saturation in the excitation current characteristic. Also, Fe and C
The reason that the ratio of o is limited to 0.70 ≦ Co / Fe + Co ≦ 0.99 is that the magnetostriction constant λ S cannot be substantially reduced with other compositions. The magnetostriction constant is an important constant that governs the soft magnetic characteristics of the amorphous material, and making it substantially zero is extremely important for obtaining excellent exciting current characteristics.

【0008】また、添加元素としてTで示す各元素を総
量で3%以下含むことが可能である。Ti、Zr、H
f、V、Nb、Ta、Mo、W、Ni、Pdの一群は添
加により非晶質形成能を向上させ、Cr、Pdは耐食
性、耐湿性を向上させる。Y、Ce、Pr、Nd、S
m、Eu、Gd、Tb、Dyの一群は硬さを向上せしめ
るとともに結晶化温度を上げ熱的安定性を増大させる。
Be、Mg、Ca、Sr、Ba、Ruは非晶質形成能を
向上させ、特に他の添加元素と複合されて用いるとその
傾向が強まる。MnはHcを低くする効果がある。これ
らの添加元素Tの総量は3%以下であることが高い磁束
密度を保証する上で必要である。3%をこえるとたとえ
ばB10は急激に低下する傾向にあり、好ましくない。
Further, it is possible to contain each element represented by T as an additive element in a total amount of 3% or less. Ti, Zr, H
A group of f, V, Nb, Ta, Mo, W, Ni and Pd improves amorphous forming ability by addition, and Cr and Pd improve corrosion resistance and moisture resistance. Y, Ce, Pr, Nd, S
The group of m, Eu, Gd, Tb and Dy improves hardness and raises crystallization temperature to increase thermal stability.
Be, Mg, Ca, Sr, Ba, and Ru improve the amorphous forming ability, and the tendency is strengthened particularly when they are used in combination with other additive elements. Mn has the effect of lowering Hc. The total amount of these additional elements T is required to be 3% or less in order to ensure a high magnetic flux density. If it exceeds 3%, for example, B 10 tends to decrease sharply, which is not preferable.

【0009】以上の組成範囲の非晶質合金をトロイダル
鉄心とし10Oe以上の直流ないし交流磁場中で、25
0℃から450℃の間の適切な温度で焼なまし、毎時3
00℃以下の冷却速度で磁場中冷却することにより、H
cで0.02Oe以下、B10で8000G、Br/
10:90%以上の低保磁力、高磁束密度、高角型比巻
鉄心が容易に得られる。磁界の波形は従来直流が一般的
に採用されているが、半波整流及び交流(商用周波数)
でも効果はほとんど減じない。
An amorphous alloy having the above composition range is used as a toroidal iron core in a direct current or alternating current magnetic field of 10 Oe or more and 25
Anneal at a suitable temperature between 0 ° C and 450 ° C, 3 per hour
By cooling in a magnetic field at a cooling rate of 00 ° C or less, H
c is 0.02 Oe or less, B 10 is 8000 G, Br /
B 10 : A low coercive force of 90% or more, a high magnetic flux density, and a high rectangular specific winding iron core can be easily obtained. The direct current is generally used for the waveform of the magnetic field, but half-wave rectification and alternating current (commercial frequency)
But the effect is almost the same.

【0010】熱処理温度は組成の変化により最適温度が
ずれるが450℃をこえると脆化が著しくなり、また、
250℃未満では焼なましによる応力緩和が不可能であ
り、効果がほとんどない。磁場中冷却速度が毎時300
℃をこえると冷却むらが発生し易く75%以上のBr/
10が得られない。
The heat treatment temperature deviates from the optimum temperature due to a change in composition, but when it exceeds 450 ° C., embrittlement becomes remarkable, and
If it is less than 250 ° C., stress relaxation due to annealing is impossible and there is almost no effect. Cooling rate in magnetic field is 300 per hour
If the temperature exceeds ℃, uneven cooling is likely to occur and the ratio of Br / of 75% or more
I can't get B 10 .

【0011】[0011]

【実施例】以下、実施例に基き詳細に説明する。表1
は、従来のスーパーマロイと50Niパーマロイに対す
る本発明の巻鉄心を構成する非晶質合金鉄心の直流磁性
の例を示す。いずれの組成においても表1中に示す直流
磁場中にて同表中の熱処理条件により製造した場合であ
る。また、比較例については最適の熱処理温度を採った
場合である。
Embodiments will be described in detail below based on embodiments. Table 1
Shows an example of direct-current magnetism of the amorphous alloy core that constitutes the wound core of the present invention with respect to the conventional supermalloy and 50Ni permalloy. Both compositions were produced under the heat treatment conditions shown in Table 1 in the DC magnetic field shown in Table 1. The comparative example is a case where the optimum heat treatment temperature is adopted.

【0012】[0012]

【表1】 [Table 1]

【0013】表1から明らかなように、本発明の非晶質
合金はスーパーマロイと同等以下の低い保磁力を示して
おり、Br/B10は50Niパーマロイと同等レベルの
ものがあり総合的に従来材の長所を兼備した優れた性能
をもっており、良好な励磁電流特性を示すことが明らか
である。
As is clear from Table 1, the amorphous alloy of the present invention exhibits a low coercive force equal to or lower than that of Supermalloy, and Br / B 10 has a level equivalent to that of 50Ni permalloy. It is clear that it has excellent performance that combines the advantages of conventional materials, and exhibits good exciting current characteristics.

【0014】図1は、表1中の合金No.2(3)、N
o.16(4)よりなる巻鉄心の50Hzにおける励磁
電流特性をスーパーマロイ(1)、50Niパーマロイ
(2)との対比で示したものである(()内は図中の符
号を示す)。巻鉄心の鉄心寸法は内径25mmφ、外径
35mmφ、高さ5mm、励磁巻数は1次、2次側とも
15ターンである。図1から明らかなように本発明によ
ると低い励磁起磁力(励磁電流)が出力電圧の高いレベ
ルまで維持され、またこの間の直線性が良好であり、優
れた励磁特性を有している。
FIG. 1 shows alloy No. 1 in Table 1. 2 (3), N
o. The exciting current characteristics of the wound iron core made of 16 (4) at 50 Hz are shown in comparison with Supermalloy (1) and 50Ni Permalloy (2) (indicated by the symbols in the figure). The wound core has an iron core size of 25 mmφ, an outer diameter of 35 mmφ, a height of 5 mm, and the number of exciting turns is 15 turns on both the primary and secondary sides. As is apparent from FIG. 1, according to the present invention, a low exciting magnetomotive force (exciting current) is maintained up to a high level of the output voltage, and the linearity during this period is good, and the excitability is excellent.

【0015】表2, 表3は、本発明合金を用いた巻鉄心
の直流の角形比Br/B10とBm =2KG、周波数10
0kHzの鉄損W2 100 kを、従来のスーパーマロ
イ、50Niパーマロイと比較した例を示したものであ
る。いずれも各組成のものについて、表2, 3中に示す
直流磁場中にて同表中の熱処理条件により製造した場合
である。また、比較例については最適の熱処理温度を採
った場合である。
Tables 2 and 3 show the DC squareness ratios Br / B 10 and B m = 2KG, and the frequency 10 of the wound core using the alloy of the present invention.
The iron loss W 2/100 k of 0 kHz, conventional Supermalloy, illustrates an example of comparison with 50Ni permalloy. In each case, each composition was manufactured under the DC magnetic fields shown in Tables 2 and 3 under the heat treatment conditions shown in the table. The comparative example is a case where the optimum heat treatment temperature is adopted.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】表2, 表3から明らかなように、本発明合
金は従来の50%Niパーマロイと角形比は同等である
が高周波における鉄損は著しく小さく、スーパーマロイ
より角形比が高く鉄損も小さい。このため、従来の巻鉄
心より発熱が小さく制御性も同等以上である。
As is clear from Tables 2 and 3, the alloys of the present invention have the same squareness ratio as the conventional 50% Ni permalloy, but the iron loss at high frequencies is remarkably small, and the squareness ratio is higher and the iron loss is also higher than that of supermalloy. small. Therefore, the heat generation is smaller than that of the conventional wound iron core, and the controllability is equal to or higher than that.

【0019】表4は、従来のアモルファス巻鉄心と本発
明にかかるアモルファス巻鉄心を、温度80℃、湿度9
5%の恒温槽に入れて加速試験を行ない、120時間後
の鉄損の変化率ΔWを比較した表である。 ここで、ΔW=(W2 120100 k−W2 0100 k)/W
2 0100 k ただし、W2 120100 k:120時間後のBm=2K
G, f=100kHzの鉄損 W2 0100 k:Bm=2KG, f=100kHzの初期
の鉄損 なお、いずれも各組成のものについて、表4中に示す交
流磁場中にて同表中の熱処理条件により製造した場合で
ある。また、比較例については最適の熱処理温度を採っ
た場合である。
Table 4 shows a conventional amorphous winding iron core and an amorphous winding iron core according to the present invention, at a temperature of 80 ° C. and a humidity of 9
It is a table comparing the change rate ΔW of the iron loss after 120 hours by putting it in a constant temperature bath of 5% and performing an acceleration test. Here, ΔW = (W 2 120/ 100 k-W 2 0/100 k) / W
2 0/100 k However, W 2 120/100 k: after 120 hours Bm = 2K
G, f = 100kHz iron loss W 2 0/100 k of: Bm = 2KG, initial iron loss f = 100kHz Note that both the ones of each composition in the same table C. in an alternating magnetic field shown in Table 4 This is the case when manufactured under the heat treatment conditions. The comparative example is a case where the optimum heat treatment temperature is adopted.

【0020】[0020]

【表4】 [Table 4]

【0021】表4から明らかなように、本発明合金を用
いた巻鉄心は従来のアモルファス巻鉄心と比較し、温度
の高い環境下においても特性の変化が小さく優れている
ものである。
As is clear from Table 4, the wound core using the alloy of the present invention is superior to the conventional amorphous wound core in that the change in characteristics is small even under a high temperature environment.

【0022】上記実施例から明らかな如く、本発明合金
の励磁特性は極めて優れており、磁気増巾器、磁気移相
器、直流電流検出器、磁気変調器などの制御用巻鉄心と
して優れたものである。また、鉄心素材の非晶質合金が
本来的に持っている強度と靭性から本発明の巻鉄心は応
力感受性が低く、耐衝撃性に優れた信頼性の高いもので
ある。
As is clear from the above examples, the magnetizing properties of the alloys of the present invention are extremely excellent, and they are excellent as control winding iron cores for magnetic amplifiers, magnetic phase shifters, DC current detectors, magnetic modulators and the like. It is a thing. Further, because of the inherent strength and toughness of the amorphous alloy of the core material, the wound core of the present invention has low stress sensitivity and excellent impact resistance and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明合金を用いた巻鉄心の50Hzにおける
励磁電流特性を従来合金を用いた巻鉄心の特性と対比し
て示した図である。
FIG. 1 is a diagram showing an exciting current characteristic of a wound core using an alloy of the present invention at 50 Hz in comparison with a characteristic of a wound core using a conventional alloy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成式Fed Coe Sig h (式中、
d+e+g+h=100、72≦d+e≦85、0.7
0≦e/(d+e)≦0.99、7<g<16、7<h
<10、15≦g+h≦25)で示されることを特徴と
する非晶質合金。
1. A composition formula Fe d Co e Si g B h (wherein:
d + e + g + h = 100, 72 ≦ d + e ≦ 85, 0.7
0 ≦ e / (d + e) ≦ 0.99, 7 <g <16, 7 <h
<10, 15 ≦ g + h ≦ 25), an amorphous alloy.
【請求項2】 組成式Fed Coe f Sig h (式
中、TはBe、Mg、Ca、Sr、Ba、Ti、Zr、
Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ru、
Ni、Pd、Cu、Zn、Y、Ce、Pr、Nd、S
m、Eu、Gd、Tb、Dyのうちの1種または2種以
上、d+e+f+g+h=100、72≦d+e≦8
5、0.70≦e/(d+e)≦0.99、f≦3、7
<g<16、7<h<10、15≦g+h≦25)で示
されることを特徴とする非晶質合金。
Wherein in the composition formula Fe d Co e T f Si g B h ( wherein, T is Be, Mg, Ca, Sr, Ba, Ti, Zr,
Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ru,
Ni, Pd, Cu, Zn, Y, Ce, Pr, Nd, S
One or more of m, Eu, Gd, Tb and Dy, d + e + f + g + h = 100, 72 ≦ d + e ≦ 8
5, 0.70 ≦ e / (d + e) ≦ 0.99, f ≦ 3, 7
<G <16, 7 <h <10, 15 ≦ g + h ≦ 25).
JP33505791A 1991-12-18 1991-12-18 Amorphous alloy Pending JPH06200357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33505791A JPH06200357A (en) 1991-12-18 1991-12-18 Amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33505791A JPH06200357A (en) 1991-12-18 1991-12-18 Amorphous alloy

Publications (1)

Publication Number Publication Date
JPH06200357A true JPH06200357A (en) 1994-07-19

Family

ID=18284272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33505791A Pending JPH06200357A (en) 1991-12-18 1991-12-18 Amorphous alloy

Country Status (1)

Country Link
JP (1) JPH06200357A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519927A (en) * 2003-02-14 2006-08-31 ザ・ナノスティール・カンパニー Method for modifying iron-based glass to increase crystallization temperature without changing melting temperature
JP2016117929A (en) * 2014-12-22 2016-06-30 新日鐵住金株式会社 Fe-BASED AMORPHOUS ALLOY EXCELLENT IN SOFT MAGNETIC PROPERTY AND AMORPHOUS ALLOY RIBBON
CN108597795A (en) * 2018-04-13 2018-09-28 河南宝泉电力设备制造有限公司 Amorphous dry-type transformer
WO2019039921A1 (en) * 2017-08-24 2019-02-28 인제대학교 산학협력단 Pressure sensor using amorphous alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519927A (en) * 2003-02-14 2006-08-31 ザ・ナノスティール・カンパニー Method for modifying iron-based glass to increase crystallization temperature without changing melting temperature
JP2016117929A (en) * 2014-12-22 2016-06-30 新日鐵住金株式会社 Fe-BASED AMORPHOUS ALLOY EXCELLENT IN SOFT MAGNETIC PROPERTY AND AMORPHOUS ALLOY RIBBON
WO2019039921A1 (en) * 2017-08-24 2019-02-28 인제대학교 산학협력단 Pressure sensor using amorphous alloy
KR20190022415A (en) * 2017-08-24 2019-03-06 인제대학교 산학협력단 Pressure sensor which uses amorphous alloy
CN108597795A (en) * 2018-04-13 2018-09-28 河南宝泉电力设备制造有限公司 Amorphous dry-type transformer
CN108597795B (en) * 2018-04-13 2020-11-06 河南宝泉电力设备制造有限公司 Amorphous dry-type transformer

Similar Documents

Publication Publication Date Title
US4038073A (en) Near-zero magnetostrictive glassy metal alloys with high saturation induction
JP2008231462A (en) Magnetic alloy, amorphous alloy strip and magnetic component
JP2011102438A (en) Iron-based amorphous alloy having linear bh loop
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
EP0086485B1 (en) Wound iron core
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JPH01294847A (en) Soft-magnetic alloy
JPH08188858A (en) Glass alloy having permimber characteristic
JPH05140703A (en) Amorphous alloy thin strip f0r iron core of transformer having high magnetic flux density
KR950014314B1 (en) Iron-base soft magnetic alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
JPH06200357A (en) Amorphous alloy
JPH0123926B2 (en)
JPH0323619B2 (en)
JPS59147415A (en) Wound core
JPS5919304A (en) Wound core
JPH053126A (en) Manufacture of wound magnetic core of large squareness ratio in high frequency and wound magnetic core
JPH0257683B2 (en)
JPH055164A (en) Iron base soft magnetic alloy
JPS58155704A (en) Wound iron core
JPH01290746A (en) Soft-magnetic alloy
JP2835127B2 (en) Magnetic core and manufacturing method thereof
JPS62167840A (en) Magnetic material and its manufacture
JPH05117818A (en) Ultramicrocrystalline soft magnetic alloy
JP2000252111A (en) High-frequency saturable magnetic core and device using the same