JPH06200079A - Thermal conductor for cooling - Google Patents

Thermal conductor for cooling

Info

Publication number
JPH06200079A
JPH06200079A JP36011292A JP36011292A JPH06200079A JP H06200079 A JPH06200079 A JP H06200079A JP 36011292 A JP36011292 A JP 36011292A JP 36011292 A JP36011292 A JP 36011292A JP H06200079 A JPH06200079 A JP H06200079A
Authority
JP
Japan
Prior art keywords
heat
aluminum
conductor
rubber
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36011292A
Other languages
Japanese (ja)
Inventor
Hiroshi Oka
浩史 岡
Tamio Kuba
多美男 久場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAYASU RUBBER KK
Original Assignee
OKAYASU RUBBER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAYASU RUBBER KK filed Critical OKAYASU RUBBER KK
Priority to JP36011292A priority Critical patent/JPH06200079A/en
Publication of JPH06200079A publication Critical patent/JPH06200079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve the moldability, adhesiveness thermal conductivity, corrosion resistance. and elasticity of the title conductor by dispersing an aluminum or aluminum alloy powder in an elastic base material. CONSTITUTION:An elastic base material comprising a vulcanizable rubber or a soft synthetic resin is mixed with 50-70wt.% aluminum or aluminum alloy powder having a particle size of 100-200 mesh, press molded and vulcanized into a sheet, and die-cut into a desired shape, giving a heat conductor 1 for cooling having a JIS A hardness of 40-70 deg.. The conductor is compressed by 1-7% in the thicknessvise direction and inserted into between a low-temp. section of a case 2, etc., built in an electric appliance and a base plate 4 of a heat- generating part 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷却用熱伝導体に関す
る。さらに詳しくは、発熱する部品を内蔵する電気製品
などにおいて、その熱をケース外板または低温部へ誘導
するための熱伝導体の改良に関する。
FIELD OF THE INVENTION The present invention relates to a heat conductor for cooling. More specifically, it relates to improvement of a heat conductor for guiding the heat to a case outer plate or a low temperature part in an electric product or the like having a built-in heat generating component.

【0002】[0002]

【従来の技術】従来、ケースやキュービクル内に抵抗
器、整流器、変圧器などの発熱部品を組み込む電気機器
において、他の高温を嫌う部品との間隔を充分にとる
か、排気ファンを内蔵させて外部空気を導入し、いわば
放射ないし対流による熱移動で温度が上昇しないように
している。他方、高温体から熱伝導により熱移動させる
方法に関しては、いわゆる「冷やし金」と呼ばれる金属
製の熱伝導板が従来用いられている。
2. Description of the Related Art Conventionally, in an electric device in which a heat generating component such as a resistor, a rectifier, and a transformer is incorporated in a case or a cubicle, a sufficient space is provided between the component and other components that dislike high temperature, or an exhaust fan is built in. External air is introduced to prevent the temperature from rising due to heat transfer due to radiation or convection. On the other hand, as a method of transferring heat from a high temperature body by heat conduction, a metal heat conduction plate called a "chiller" has been conventionally used.

【0003】[0003]

【発明が解決しようとする課題】前記部品の間隔を大き
くとる方法や排気ファンを利用する方法は、近年の電気
製品の小型化、高機能化の要請により部品点数を増加し
たり、高密度配置化することに対して充分に対応できな
い。また前記冷やし金による方法は、部品形状が簡単で
あればよいが、複雑な形状の部品とケース外板などとの
間の狭い間隙に利用しようとすると、技術的にむずかし
くなり(成型および密接が困難)、またコストも高くな
る難点がある。さらにかかる金属製の冷やし金は発熱部
品などで発生する微細振動や唸り音をケース外板などに
伝達し、場合により共振や共鳴を生ずる。本発明はかか
る従来の冷却方法および熱伝導板の問題に鑑みてなされ
たものであり、近時の製品の小型化および高機能化に対
応するべく、複雑な形状への成型が容易で、振動を伝え
にくく、しかも安価に製造しうる熱伝導体を提供するこ
とを技術課題とするものである。
The method of increasing the space between the parts and the method of using the exhaust fan increase the number of parts and increase the density of the parts due to the recent demand for miniaturization and high functionality of electric products. It cannot fully cope with the change. Further, the chilling method is sufficient if the shape of the parts is simple, but if it is used for a narrow gap between a part having a complicated shape and the case outer plate, it is technically difficult (molding and contact are difficult). (Difficulty), and the cost is high. Further, the metal chiller transmits minute vibrations and howling noises generated in the heat-generating components to the case outer plate and the like, and causes resonance and resonance in some cases. The present invention has been made in view of the problems of the conventional cooling method and the heat conduction plate, and in order to cope with the recent miniaturization and high functionality of products, it is easy to mold it into a complicated shape and vibrates. It is an object of the invention to provide a heat conductor which is difficult to transmit and can be manufactured at low cost.

【0004】[0004]

【課題を解決するための手段】本発明の冷却用熱伝導体
は、発熱する部品と放熱用部品との間に介在させる冷却
用熱伝導体であって、加硫ゴムないし軟質合成樹脂から
なる弾力性を有する基材と、該基材中に分散充填されて
いるアルミニウムないしアルミニウム合金の粉末からな
る充填材とを備えていることを構成上の特徴としてい
る。前記基材の材質は、電気部品などとの密着性、間隙
の公差に追従する柔軟性(弾性)、耐熱性、密着部品に
対する非腐蝕性および耐汚染性、耐老化性、さらに場合
により耐油性を有するものが好ましい。そのような材質
として、たとえ天然ゴム(NR)、あるいはスチレンブ
タジエンゴム(SBR)、クロロプレン(CR)、ニト
リルゴム(NBR)、ブチルゴム(IIR)、シリコン
ゴムなどの合成ゴムなど、ゴム材料があげられる。しか
し使用状況により、EVA(エチレン酢酸ビニル共重合
体)、軟質塩化ビニルあるいはオレフィン系、スチレン
系、ポリエステル系などの合成樹脂エラストマーなども
使用しうる。上記材料のうち、熱伝導率が高いこと(表
1参照)、および耐油性の点からニトリルゴムがもっと
も好ましい。またゴム硬度は前記密着性を確保するた
め、40〜70度(JIS−A)の範囲がもっとも適し
ている。
The cooling heat conductor of the present invention is a cooling heat conductor interposed between a heat generating component and a heat radiating component, and is made of vulcanized rubber or soft synthetic resin. A structural feature is that the base material has elasticity and a filler made of aluminum or aluminum alloy powder dispersed and filled in the base material. The material of the base material is adhesion to electric parts, flexibility (elasticity) that follows gap tolerances, heat resistance, non-corrosion and stain resistance to adhered parts, aging resistance, and in some cases oil resistance. Those having are preferred. Examples of such a material include rubber materials such as natural rubber (NR) or synthetic rubber such as styrene-butadiene rubber (SBR), chloroprene (CR), nitrile rubber (NBR), butyl rubber (IIR), and silicon rubber. . However, depending on the conditions of use, EVA (ethylene vinyl acetate copolymer), soft vinyl chloride, or synthetic resin elastomer such as olefin series, styrene series, or polyester series may be used. Among the above materials, nitrile rubber is most preferable from the viewpoints of high thermal conductivity (see Table 1) and oil resistance. Further, the rubber hardness is most suitable in the range of 40 to 70 degrees (JIS-A) in order to secure the above adhesion.

【0005】[0005]

【表1】 [Table 1]

【0006】ゴム系の材料の場合は、相手部材に合わせ
て可塑変形しやすいことから、未加硫のゴムを用いるこ
とも考えられる。しかし長期間使用すると弾力性や密着
性が低下するので、本発明では加硫ゴムを用いる。本発
明においては、充填材の材質として、熱伝導率が高いこ
と、耐腐蝕性が高いことから、アルミニウムあるいはア
ルミニウム合金(たとえば少量の銅、シリコン、マグネ
シウムなどとの合金)を採用している。なお熱伝導率に
ついては、表2に示すように銅がもっとも高い。しかし
ニトリルゴムなどの加硫のために硫黄を用いる場合、銅
と硫黄とが反応し、銅腐蝕がみられるなど、耐蝕性に問
題がある。またフェロシリコンなどの金属化合物粉末を
ゴム中に含有させることも考えられるが、全体の熱伝導
率が0.5〜0.7W/m・Kと充分でない。そのため
本発明においては、アルミニウムまたはアルミニウム合
金を採用している。なおアルミニウムおよびその合金は
比重が2.7程度と軽く、機器の軽量化にも役立つ。
In the case of a rubber type material, it is possible to use an unvulcanized rubber because it is likely to be plastically deformed according to the mating member. However, vulcanized rubber is used in the present invention because elasticity and adhesiveness are deteriorated after long-term use. In the present invention, aluminum or an aluminum alloy (for example, an alloy with a small amount of copper, silicon, magnesium, etc.) is adopted as the material of the filler because of its high thermal conductivity and high corrosion resistance. Regarding the thermal conductivity, copper is the highest as shown in Table 2. However, when sulfur is used for vulcanization of nitrile rubber or the like, there is a problem in corrosion resistance such that copper reacts with sulfur and copper corrosion is observed. It is also possible to incorporate a metal compound powder such as ferrosilicon into the rubber, but the overall thermal conductivity is not sufficient at 0.5 to 0.7 W / mK. Therefore, in the present invention, aluminum or aluminum alloy is used. Aluminum and its alloys have a low specific gravity of about 2.7, which is also useful for reducing the weight of equipment.

【0007】[0007]

【表2】 (*)天然ゴム・カーボン配合[Table 2] (*) Contains natural rubber and carbon

【0008】充填材の粒度は200メッシュを超える細
かさにしても熱伝導率がそれほど向上せず、かえって取
り扱いが面倒となり、またコストが高くなる。逆に10
0メッシュ未満の大きい粒度のものでは、成型品の表面
に粗粒が表われ、表面肌がきたなくなるのみならず、粗
粒が剥離・落下しやすくなる。そのためショートなどの
機能障害の原因になる。したがって充填材の粒度は10
0〜200メッシュのものが最も好ましい。充填材の混
合量は、重量比率で50%(容積比率32.5%)未満
では熱伝導度の上昇が僅かである。一方、重量比率70
%(容積比率53.%)を超えると硬度の上昇が大であ
り、また表面に粉末が浮き出して剥離落下の可能性があ
る。そのため重量比率で50〜70%が好ましい。
[0008] Even if the particle size of the filler is more than 200 mesh, the thermal conductivity is not improved so much, and the handling becomes troublesome and the cost becomes high. Conversely 10
When the particle size is larger than 0 mesh, coarse particles appear on the surface of the molded product, which not only makes the surface smooth, but also causes the coarse particles to be easily peeled off and dropped. Therefore, it may cause a malfunction such as a short circuit. Therefore, the particle size of the filler is 10
The most preferable one is 0 to 200 mesh. When the amount of the filler mixed is less than 50% by weight (volume ratio 32.5%), the increase in thermal conductivity is slight. On the other hand, weight ratio 70
% (Volume ratio 53.%), the hardness is greatly increased, and the powder may float on the surface and peel off. Therefore, the weight ratio is preferably 50 to 70%.

【0009】[0009]

【作用】本発明の熱伝導体はシート状に成型して所定形
状に打ち抜き、あるいは所望の凹凸部を備えた立体形状
に成型し、発熱部品と放熱部品との間に介在させて使用
する。熱伝導体の基材は弾力性を備えているので、発熱
部品および放熱用部品のいずれに対しても密着性が高
い。その結果、相手部材との間に空気層を介在させずに
密着固定しうるので、境界部の熱伝導性は金属板などに
比してかえって高い。またアルミニウムないしその合金
の粉末を充填しているので、内部の熱伝導率(たとえば
0.7〜1.6W/m・K)が通常のゴム(0.14W
/m・K)やゴム配合加硫品(0.17〜0.20W/
m・K)などに比して1桁近く高い。充填材の重量比率
が50%(容積比率3.25%)を超えると熱伝導比率
が急に高くなる。これは充填材の粉粒同士が接触する比
率が高くなり、その結果、熱がK値の低いゴム部分より
も連結した充填材を短絡して伝えられるためと推察され
る。
The heat conductor of the present invention is molded into a sheet and punched into a predetermined shape, or molded into a three-dimensional shape having a desired uneven portion, and is used between the heat generating component and the heat radiating component. Since the base material of the heat conductor has elasticity, it has high adhesion to both the heat generating component and the heat radiating component. As a result, since it can be fixed in close contact with the mating member without interposing an air layer, the thermal conductivity at the boundary is higher than that of a metal plate or the like. Further, since it is filled with powder of aluminum or its alloy, the internal thermal conductivity (for example, 0.7 to 1.6 W / mK) is normal rubber (0.14 W).
/ MK) and rubber compounded vulcanized products (0.17 to 0.20 W /
It is nearly an order of magnitude higher than m / K). When the weight ratio of the filler exceeds 50% (volume ratio 3.25%), the heat conduction ratio suddenly increases. It is presumed that this is because the ratio of the powder particles of the filler contacting each other becomes high, and as a result, heat is transferred by short-circuiting the connected filler rather than the rubber portion having a low K value.

【0010】[0010]

【実施例】つぎに図面を参照しながら本発明の冷却用熱
伝導体の実施例を説明する。図1は本発明の熱伝導体の
一実施例を使用状態において示す断面図、図2は本発明
の熱伝導体の他の実施例を示す斜視図、図3は本発明の
熱伝導体の実施例におけるアルミニウム含有率と熱伝導
率の関係を示すグラフである。図1の熱伝導体1は電気
製品に内蔵される送風機のケース2などの低温部と、変
圧器などの発熱部品3用の基板4との間に挿入して用い
る。このとき熱伝導体1は厚さ方向にいくらか(1〜7
%程度)圧縮させておく。たとえば基板4とケース2と
の間に約7mmの隙間δがあいている場合、熱伝導体1の
厚さは約7.1〜7.5mmとする。
Embodiments of the cooling heat conductor of the present invention will now be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the heat conductor of the present invention in use, FIG. 2 is a perspective view showing another embodiment of the heat conductor of the present invention, and FIG. 3 is a heat conductor of the present invention. It is a graph which shows the relationship between the aluminum content rate and thermal conductivity in an Example. The heat conductor 1 of FIG. 1 is used by inserting it between a low temperature part such as a case 2 of a blower built in an electric product and a substrate 4 for a heat generating component 3 such as a transformer. At this time, the heat conductor 1 has some amount (1 to 7) in the thickness direction.
Compress (about%). For example, when there is a gap δ of about 7 mm between the substrate 4 and the case 2, the thickness of the heat conductor 1 is about 7.1 to 7.5 mm.

【0011】上記の熱伝導体1は、合成ゴム(たとえば
ニトリルゴム)などのコンパウンドにアルミニウム粉末
を混練し、成型し、さらに加硫したものである。このも
のはたとえば厚さ7mmのシート状に成形した熱伝導体
(以下、シート材という)8を所定の形状に打ち抜いて
製造することができる。しかし量産する場合は、密着性
を上げるため、およびコストの低減のため、図2に示す
ように、あらかじめ発熱部品3を固定するビスの頭5と
の干渉を避けるための凹部6を設けたり、必要により段
差7を設けた成型物12とするのが好ましい。すなわち
未加硫のゴムパウンドにアルミニウムの粉末を混練した
材料を所定の金型でプレス成型し、加硫して製造する。
この場合、表面層の領域にはアルミニウム粉末があまり
現われないので、ゴム基材からアルミニウム粉末が脱落
しにくく、さらに表面が平滑になる利点がある。
The above-mentioned heat conductor 1 is obtained by kneading aluminum powder into a compound such as synthetic rubber (for example, nitrile rubber), molding, and further vulcanizing. This can be manufactured, for example, by punching a heat conductor (hereinafter referred to as a sheet material) 8 formed into a sheet having a thickness of 7 mm into a predetermined shape. However, in the case of mass production, in order to improve the adhesion and to reduce the cost, as shown in FIG. 2, a recess 6 for preventing interference with the head 5 of the screw for fixing the heat-generating component 3 is provided in advance, It is preferable to use a molded product 12 provided with a step 7 if necessary. That is, a material obtained by kneading aluminum powder into an unvulcanized rubber pound is press-molded in a predetermined mold and vulcanized to manufacture.
In this case, since the aluminum powder does not appear so much in the area of the surface layer, there is an advantage that the aluminum powder does not easily fall off from the rubber base material and the surface becomes smooth.

【0012】前記シート材から一定形状に打ち抜く場
合、シート材自体の表面にはアルミニウム粉末があまり
露出しないが、打ち抜いたときの切断面に多数のアルミ
ニウム粉末が露出し、ポロポロと剥離・脱落しやすい。
そのため図2のような成型したものが一層好ましい。上
記のごとく電気機器に組み込まれた熱伝導体1は、発熱
部品3が発生する熱を広い熱伝導面積によって送風機の
ケース2などの低温部品まで伝導することにより発熱部
品3を冷却する。このとき周囲の部品に熱の影響を及ぼ
さない。また熱伝導体1を介在させると、発熱部品3に
対し、ケース2から伝わる振動や発熱部品3自体が発生
する微細振動を減衰させる効果がある。なお図1の矢印
Rは送風機内を流れている風を示しており、その風によ
りケース2が冷却される。熱伝導体1はこのようにそれ
自体冷却されるケース2や、外気と接触するケース外板
に密接させて用いる。また図1では発熱部品3の熱を基
板4を介して熱伝導体1に伝えているが、もちろんケー
ス2と発熱部品3とが直接向き合っている個所があれ
ば、その間に介在させてもよい。
When the sheet material is punched out into a certain shape, the aluminum powder is not so exposed on the surface of the sheet material itself, but a large number of aluminum powders are exposed on the cut surface after punching, and easily peel off / fall off. .
Therefore, a molded product as shown in FIG. 2 is more preferable. As described above, the heat conductor 1 incorporated in the electric device cools the heat-generating component 3 by conducting the heat generated by the heat-generating component 3 to the low-temperature component such as the case 2 of the blower with a wide heat-conducting area. At this time, the surrounding parts are not affected by heat. Further, the interposition of the heat conductor 1 has an effect of damping the vibration transmitted from the case 2 and the minute vibration generated by the heat generating component 3 itself to the heat generating component 3. It should be noted that the arrow R in FIG. 1 indicates the wind flowing in the blower, and the case 2 is cooled by the wind. The heat conductor 1 is used by being brought into close contact with the case 2 that is cooled by itself and the case outer plate that comes into contact with the outside air. Further, in FIG. 1, the heat of the heat generating component 3 is transferred to the heat conductor 1 via the substrate 4, but of course, if there is a portion where the case 2 and the heat generating component 3 directly face each other, they may be interposed therebetween. .

【0013】つぎに具体的な実施例をあげて本発明の熱
伝導体の効果を説明する。 〔実施例1〜9〕未加硫コンパウンドとして表3のもの
を採用した。
The effects of the heat conductor of the present invention will be described with reference to specific examples. [Examples 1 to 9] The unvulcanized compounds shown in Table 3 were used.

【表3】 (*1〜3)亜鉛華、カーボンブラック7および可塑剤
については、最終的に熱伝導体の硬度が40〜70度
(JIS−A)となるように調整した。 (*4)その他の薬品には老化防止剤、加工助成剤など
が含まれている。アルミニウム粉末は原則として150
メッシュのものを用い、全体の52〜71重量%となる
ように配合した。各実施例についのて配合割合は表4に
示す。このものを厚さ7mm(+0.1〜+0.5mm)、
幅50mm、長さ75mmにプレス成型し、実施例1〜9の
熱伝導体をえた。
[Table 3] (* 1 to 3) Zinc white, carbon black 7 and plasticizer were finally adjusted so that the hardness of the heat conductor was 40 to 70 degrees (JIS-A). (* 4) Other chemicals include anti-aging agents, processing aids, etc. Aluminum powder is 150 in principle
A mesh was used and blended so as to be 52 to 71% by weight of the whole. The compounding ratios for each example are shown in Table 4. This one has a thickness of 7 mm (+0.1 to +0.5 mm),
The heat conductors of Examples 1 to 9 were obtained by press molding into a width of 50 mm and a length of 75 mm.

【0014】なお実施例4についてはカーボンブラック
を10%減少し、亜鉛華を10%増加した(表4の*
5)ほかは実施例3と同じである。また実施例7につい
てはアルミニウム粉末として200メッシュのものを用
いた(表4の*6および図3の*6)ほかは実施例6と
同じである。 [測定方法]上記のようにしてえられた実施例1〜9の
熱伝導体について、熱線式熱伝導率測定器により熱伝導
率を求めた。その結果を表4および図3に示す。
In Example 4, carbon black was reduced by 10% and zinc white was increased by 10% (* in Table 4).
5) Others are the same as in Example 3. Moreover, about Example 7, it is the same as Example 6 except having used 200 mesh as an aluminum powder (* 6 of Table 4 and * 6 of FIG. 3). [Measurement Method] The thermal conductivities of the thermal conductors of Examples 1 to 9 obtained as described above were determined by a hot wire type thermal conductivity measuring instrument. The results are shown in Table 4 and FIG.

【表4】 [Table 4]

【0015】なお図3の曲線Aは実測に基づくものであ
り、曲線Bはアルミニウム粉末粒子が基材ゴム中に完全
に均一に分散して粒子同士が接触していない状態と仮定
した場合の平均熱伝導率(K=KA・VA/V+KR・VR
V)に基づく理論曲線である。ただしKAおよびKRはそれ
ぞれアルミニウムおよび基材ゴムの熱伝導率であり、VA
/VおよびVR/Vはそれぞれアルミニウムおよび基材ゴ
ムの全体に対する容積比率である。図3のグラフによれ
ば、アルミニウム粉末の含有率が高くなるほど熱伝導率
が上昇することがわかる。これは平均熱伝導率がアルミ
ニウムの熱伝導率と基材ゴムの熱伝導率との間の値をと
ること、およびその値が両者の容積比率に依存するとの
推定からも理解できる。しかし実測値(曲線A)におい
ては、容積比率Vが30%(重量比率で50%)を超え
たときから、とくに43%を超えたあたりから、熱伝導
率が急激に上昇し、理論値から大きく離れていることが
わかる。このような現象は前記「作用」の項で述べたよ
うに、アルミニウム粉末の含有率が容積比率Vで30%
以上になると粉粒同士が接触し合う確率が高くなり、そ
の結果、熱がK値(熱伝導率)の低いゴム部分により
も、連結したアルミニウム粒子を短絡して伝えられるこ
とにより生ずると推定される。
The curve A in FIG. 3 is based on actual measurement, and the curve B is an average when the aluminum powder particles are completely uniformly dispersed in the base rubber and the particles are not in contact with each other. Thermal conductivity (K = K A · V A / V + K R · V R /
It is a theoretical curve based on V). Where K A and K R are the thermal conductivity of aluminum and base rubber, respectively, and V A
/ V and V R / V are the volume ratios of aluminum and base rubber to the whole, respectively. From the graph of FIG. 3, it can be seen that the higher the content of aluminum powder, the higher the thermal conductivity. This can be understood from the fact that the average thermal conductivity takes a value between the thermal conductivity of aluminum and the thermal conductivity of the base rubber, and that the value depends on the volume ratio of both. However, in the measured value (curve A), the thermal conductivity sharply increases from when the volume ratio V exceeds 30% (50% by weight ratio), and particularly when it exceeds 43%. You can see that they are far apart. Such a phenomenon is caused by the aluminum powder content of 30% in the volume ratio V, as described in the above "Operation".
If the above is the case, the probability that the powder particles will come into contact with each other will increase, and as a result, it is presumed that heat is transmitted by short-circuiting the connected aluminum particles even by the rubber part with a low K value (thermal conductivity). It

【0016】硬度についてはアルニウムの混入量の増加
と共に上昇し、45度(実施例1)から65度(実施例
9)の範囲となった。ただし表3における配合薬品中の
カーボンブラックおよび可塑材を適宜変量することによ
り、それぞれのアルミニウム充填率において±5度の範
囲で、実用性を損なうことなく、比較的容易に硬度を変
更しうることが確認された。
The hardness increased with an increase in the amount of mixed aluminum, and was in the range of 45 degrees (Example 1) to 65 degrees (Example 9). However, by appropriately varying the amounts of carbon black and the plasticizer in the compounded chemicals in Table 3, the hardness can be relatively easily changed within the range of ± 5 degrees in each aluminum filling rate without impairing the practicality. Was confirmed.

【0017】[0017]

【発明の効果】本発明の熱伝導体は、ゴムなどの基材に
アルミニウムまたはアルミニウム合金の粉末を充填した
ものであるので、複雑な形状への成型が容易であり、振
動を伝えにくく、しかも安価に製造することができる。
また耐腐蝕性が高い。さらに弾力性により発熱部品およ
び放熱用部品の表面との密着性が高く、そのため物品間
の境界域での熱伝導率が高い。また内部の熱伝導率も比
較的高い。
Since the heat conductor of the present invention is obtained by filling the base material such as rubber with the powder of aluminum or aluminum alloy, it can be easily molded into a complicated shape, and it is difficult to transmit vibration. It can be manufactured at low cost.
It also has high corrosion resistance. Further, due to its elasticity, the adhesiveness with the surfaces of the heat-generating component and the heat-radiating component is high, so that the thermal conductivity in the boundary region between the articles is high. In addition, the internal thermal conductivity is relatively high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱伝導体の一実施例を使用状態におい
て示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a heat conductor of the present invention in use.

【図2】本発明の熱伝導体の他の実施例を示す斜視図で
ある。
FIG. 2 is a perspective view showing another embodiment of the heat conductor of the present invention.

【図3】本発明の熱伝導体の実施例におけるアルミニウ
ム含有率と熱伝導率の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the aluminum content and the thermal conductivity in the examples of the thermal conductor of the present invention.

【符号の説明】[Explanation of symbols]

1 熱伝導体 2 ケース 3 発熱部品 4 基材 5 頭 6 凹部 7 段差 8 成型物 DESCRIPTION OF SYMBOLS 1 Heat conductor 2 Case 3 Heating component 4 Base material 5 Head 6 Recessed portion 7 Step 8 Molded product

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月18日[Submission date] February 18, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【作用】本発明の熱伝導体はシート状に成型して所定形
状に打ち抜き、あるいは所望の凹凸部を備えた立体形状
に成型し、発熱部品と放熱部品との間に介在させて使用
する。熱伝導体の基材は弾力性を備えているので、発熱
部品および放熱用部品のいずれに対しても密着性が高
い。その結果、相手部材との間に空気層を介在させずに
密着固定しうるので、境界部の熱伝導性は金属板などに
比してかえって高い。またアルミニウムないしその合金
の粉末を充填しているので、内部の熱伝導率(たとえば
0.7〜1.6W/m・K)が通常のゴム(0.14W
/m・K)やゴム配合加硫品(0.17〜0.20W/
m・K)などに比して1桁近く高い。充填材の重量比率
が50%(容積比率32.5%)を超えると熱伝導比率
が急に高くなる。これは充填材の粉粒同士が接触する比
率が高くなり、その結果、熱がK値の低いゴム部分より
も連結した充填材を短絡して伝えられるためと推察され
る。
The heat conductor of the present invention is molded into a sheet and punched into a predetermined shape, or molded into a three-dimensional shape having a desired uneven portion, and is used between the heat generating component and the heat radiating component. Since the base material of the heat conductor has elasticity, it has high adhesion to both the heat generating component and the heat radiating component. As a result, since it can be fixed in close contact with the mating member without interposing an air layer, the thermal conductivity at the boundary is higher than that of a metal plate or the like. Further, since it is filled with powder of aluminum or its alloy, the internal thermal conductivity (for example, 0.7 to 1.6 W / mK) is normal rubber (0.14 W).
/ MK) and rubber compounded vulcanized products (0.17 to 0.20 W /
It is nearly an order of magnitude higher than m / K). When the weight ratio of the filler exceeds 50% (volume ratio 32.5 %), the heat conduction ratio suddenly increases. It is presumed that this is because the ratio of the powder particles of the filler contacting each other becomes high, and as a result, heat is transferred by short-circuiting the connected filler rather than the rubber portion having a low K value.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of code

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【符号の説明】 1 熱伝導体 2 ケース 3 発熱部品 4 基板 5 頭 6 凹部 7 段差 8 成型物[Explanation of reference numerals] 1 heat conductor 2 case 3 heat generating component 4 substrate 5 head 6 recessed portion 7 step 8 molded product

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発熱する部品と放熱用部品との間に介在
させる冷却用熱伝導体であって、加硫ゴムないし軟質合
成樹脂からなる弾力性を有する基材と、該基材中に分散
充填されているアルミニウムないしアルミニウム合金の
粉末からなる充填材とを備えた冷却用熱伝導体。
1. A heat conductor for cooling which is interposed between a heat generating component and a heat radiating component, and an elastic base material made of vulcanized rubber or soft synthetic resin, and dispersed in the base material. A heat conductor for cooling, comprising: a filler made of aluminum or aluminum alloy powder filled therein.
【請求項2】 前記充填材の粒度が100〜200メッ
シュであり、該充填材を50〜70重量%含有する請求
項1記載の熱伝導体。
2. The heat conductor according to claim 1, wherein the particle size of the filler is 100 to 200 mesh, and the filler contains 50 to 70% by weight.
【請求項3】 全体のJIS−Aゴム硬度が40〜70
度である請求項1または2記載の熱伝導体。
3. The overall JIS-A rubber hardness is 40 to 70.
The thermal conductor according to claim 1 or 2, wherein the thermal conductor is in degrees.
JP36011292A 1992-12-29 1992-12-29 Thermal conductor for cooling Pending JPH06200079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36011292A JPH06200079A (en) 1992-12-29 1992-12-29 Thermal conductor for cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36011292A JPH06200079A (en) 1992-12-29 1992-12-29 Thermal conductor for cooling

Publications (1)

Publication Number Publication Date
JPH06200079A true JPH06200079A (en) 1994-07-19

Family

ID=18467958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36011292A Pending JPH06200079A (en) 1992-12-29 1992-12-29 Thermal conductor for cooling

Country Status (1)

Country Link
JP (1) JPH06200079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072967A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Production of thermally conductive silicone rubber composition, and thermally conductive silicone rubber composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100148A (en) * 1980-12-13 1982-06-22 Denki Kagaku Kogyo Kk Heat dissipating sheet
JPS59184232A (en) * 1983-04-04 1984-10-19 Sumitomo Alum Smelt Co Ltd Filler for resin
JPH01215858A (en) * 1988-02-25 1989-08-29 Nec Corp Sealing resin
JPH0216135A (en) * 1988-07-05 1990-01-19 Tokuyama Soda Co Ltd Rubber composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100148A (en) * 1980-12-13 1982-06-22 Denki Kagaku Kogyo Kk Heat dissipating sheet
JPS59184232A (en) * 1983-04-04 1984-10-19 Sumitomo Alum Smelt Co Ltd Filler for resin
JPH01215858A (en) * 1988-02-25 1989-08-29 Nec Corp Sealing resin
JPH0216135A (en) * 1988-07-05 1990-01-19 Tokuyama Soda Co Ltd Rubber composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072967A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Production of thermally conductive silicone rubber composition, and thermally conductive silicone rubber composition

Similar Documents

Publication Publication Date Title
US7038009B2 (en) Thermally conductive elastomeric pad and method of manufacturing same
JP5752299B2 (en) Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
US6896045B2 (en) Structure and method of attaching a heat transfer part having a compressible interface
US20050109766A1 (en) Method for making thermoplastic thermally-conductive interface articles
CA2760003C (en) Thermally conductive foam product
CN108495897B (en) Heat conductive resin molded article
CN108461462B (en) Method for manufacturing thermally conductive sheet, and heat dissipating member
JP5407120B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME
KR100891719B1 (en) Sheet for conducting heat
US20040226707A1 (en) Method of manufacturing an elastomeric heat sink with a pressure sensitive adhesive backing
EP1739742A1 (en) Thermally conductive member and cooling system using the same
WO2002075755A1 (en) Electromagnetic wave absorbing thermally conductive composition and thermosoftening electromagnetic wave absorbing heat dissipation sheet and method of heat dissipation work
SK287825B6 (en) An electronic device
WO2008152934A9 (en) Metal-integral conductive rubber component
JPH11340673A (en) Electromagnetic wave shielding sheet of high thermal conductivity and its manufacture
US6756005B2 (en) Method for making a thermally conductive article having an integrated surface and articles produced therefrom
WO2013015233A1 (en) Thermally conductive composition and thermally conductive sheet formed by processing same
EP1160862B1 (en) Thermal conductive material and method for producing the same
EP1501135B1 (en) Thermally conductive holder
JP2001310984A (en) Thermal conductive moldings
JP2000327917A (en) Heat conductive and electrical insulating silicone composition
CN2358558Y (en) Flexible heat-conducting pad
JPH06200079A (en) Thermal conductor for cooling
JP3944741B2 (en) Electromagnetic wave absorbing heat conductive silicone composition and molded article thereof
US20080166552A1 (en) Silicone based compositions for thermal interface materials