JPH06199547A - High strength cement composition - Google Patents

High strength cement composition

Info

Publication number
JPH06199547A
JPH06199547A JP35883792A JP35883792A JPH06199547A JP H06199547 A JPH06199547 A JP H06199547A JP 35883792 A JP35883792 A JP 35883792A JP 35883792 A JP35883792 A JP 35883792A JP H06199547 A JPH06199547 A JP H06199547A
Authority
JP
Japan
Prior art keywords
fine powder
cement
high strength
strength
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35883792A
Other languages
Japanese (ja)
Other versions
JP3207956B2 (en
Inventor
Hiroyuki Sakakibara
弘幸 榊原
Kiyohiko Uchida
清彦 内田
Kazuo Inada
和夫 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP35883792A priority Critical patent/JP3207956B2/en
Publication of JPH06199547A publication Critical patent/JPH06199547A/en
Application granted granted Critical
Publication of JP3207956B2 publication Critical patent/JP3207956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To provide a high strength cement compsn. having satisfactory fluidity even when water cement ratio is reduced and exhibiting high strength over a long period of time as well as high strength in the early stage. CONSTITUTION:Portland cement is classified into fine powder having 5-15mum max. particle diameter and coarse powder having >15mum max. particle diameter, the fine powder is brought into contact with gaseous CO2 and steam to increase the ignition loss by 0.1-5.0wt.% and the resulting fine powder is mixed with the coarse powder. The objective high strength cement compsn. is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度セメント組成物
に関し、特に水/セメント比を低減させても流動性がよ
く、且つ初期及び長期高強度を発現するセメント組成物
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength cement composition, and more particularly to a cement composition having good fluidity even when the water / cement ratio is reduced and exhibiting high strength in the initial and long term.

【0002】[0002]

【従来の技術】従来、セメント全体に、水蒸気を接触さ
せたり、スプレーにより散水を行って、0.1〜5重量
%の水を均質に吸収させて部分的に水和させた部分水和
セメントに、高性能減水剤を添加してなるモルタル又は
コンクリートは、部分水和させていない元のセメントに
高性能減水剤を添加してなるモルタル又はコンクリート
より、流動性が向上することが知られている(特開昭6
2−162506号公報)。
2. Description of the Related Art Conventionally, partially hydrated cement in which water vapor is sprayed or sprayed on the entire cement to uniformly absorb 0.1 to 5% by weight of water to partially hydrate the cement. In addition, it is known that mortar or concrete obtained by adding a high-performance water reducing agent has higher fluidity than mortar or concrete obtained by adding a high-performance water reducing agent to original cement that has not been partially hydrated. (JP-A-6
No. 2 162506).

【0003】また、微粉砕した不活性もしくは低活性の
石灰石やスラグを添加したセメントに、高性能減水剤を
添加してなるモルタル又はコンクリートは、前記石灰石
やスラグを未添加の元のセメントに高性能減水剤を添加
してなるモルタルやコンクリートより、流動性が向上す
ることも知られている。
In addition, mortar or concrete obtained by adding a high-performance water-reducing agent to a cement to which finely ground inert or low-active limestone or slag is added is higher than the original cement to which the limestone or slag has not been added. It is also known that fluidity is improved as compared with mortar and concrete to which a performance reducing agent is added.

【0004】これらの従来法による、部分水和セメント
を用いるモルタルやコンクリート、又は微粉砕した不活
性もしくは低活性の石灰石やスラグを添加したセメント
を用いるモルタルやコンクリートでは、前記のように流
動性が改善され、しかも流動性を一定にした場合、水/
セメント比を数%低減させることができる。
Mortars and concretes using partially hydrated cements or mortars and concretes using finely ground inert or low activity limestone and cements added with slag by these conventional methods have the above-mentioned fluidity. If it is improved and the fluidity is kept constant, water /
The cement ratio can be reduced by several percent.

【0005】一方、高強度セメント硬化体を製造するに
は、配合の水/セメント比を低減させることが一般に行
われている。
On the other hand, in order to produce a high strength cement hardened product, it is generally practiced to reduce the water / cement ratio of the mixture.

【0006】しかしながら、前記従来法によるモルタル
やコンクリートを使用する場合には、水/セメント比が
数%低下するにもかかわらず、硬化体の強度発現性、特
に初期における強度発現性が極めて低く、このため、高
強度の硬化体を得るためには配合中の単位セメント量を
増加させることになり、これが硬化体の乾燥収縮や温度
応力の発生原因となり、クラックの発生につながり、コ
ンクリートの耐久性上問題となっている。
However, when the mortar or concrete produced by the conventional method is used, the strength of the cured product, particularly the strength at the initial stage, is extremely low, even though the water / cement ratio is reduced by several percent. Therefore, in order to obtain a high-strength hardened product, the amount of unit cement in the mix must be increased, which causes the dry shrinkage and temperature stress of the hardened product, which leads to the occurrence of cracks and the durability of concrete. It is a problem above.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記従来技
術の有する問題を解決して、水/セメント比を低減させ
ても流動性がよく、且つ初期高強度を発現するのみなら
ず、長期高強度をも発現することのできる高強度セメン
ト組成物を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the above-mentioned prior art so that the fluidity is good even when the water / cement ratio is reduced, and not only the initial high strength is exhibited, but also the long-term It is an object of the present invention to provide a high-strength cement composition capable of expressing high strength.

【0008】[0008]

【課題を解決するための手段】本発明の高強度セメント
組成物は、ポルトランドセメントを、最大粒径5〜15
μmの微粉と、15μmを越える粒径の粗粉とに分級
し、該微粉を炭酸ガス及び水蒸気に接触させて強熱減量
を0.1〜5.0重量%増加させた後、前記粗粉と混合
してなる。
The high-strength cement composition of the present invention comprises Portland cement with a maximum particle size of 5-15.
The fine powder having a particle size of more than 15 μm and a coarse powder having a particle size of more than 15 μm are classified, and the fine powder is brought into contact with carbon dioxide gas and steam to increase the loss on ignition by 0.1 to 5.0% by weight. It is mixed with.

【0009】本発明に用いられるポルトランドセメント
としては、JIS規格に適合する普通ポルトランドセメ
ント、早強ポルトランドセメント、中庸熱ポルトランド
セメント、耐硫酸塩ポルトランドセメント等、更にこれ
らのポルトランドセメントに高炉スラグ粉末、フライア
ッシュ、珪石粉、シリカフューム等のセメント混和材
を、1種又は2種以上混合して得られる混合セメント等
が挙げられる。
Examples of the Portland cement used in the present invention include ordinary Portland cement conforming to JIS standard, early strength Portland cement, moderate heat Portland cement, sulfate resistant Portland cement, and the like. Examples include mixed cements obtained by mixing one or more cement admixtures such as ash, silica stone powder, and silica fume.

【0010】本発明の高強度セメント組成物を製造する
に際しては、先ず、前記ポルトランドセメントを慣用の
分級機を用いて微粉と粗粉とに分級する。
In producing the high-strength cement composition of the present invention, first, the Portland cement is classified into a fine powder and a coarse powder by using a conventional classifier.

【0011】この際、微粉の最大粒径は5〜15μm、
好ましくは8〜12μmであり、この微粉の最大粒径が
5μm未満又は15μmを越える場合には、いずれも強
度増進が少ない。
At this time, the maximum particle size of the fine powder is 5 to 15 μm,
It is preferably from 8 to 12 μm, and when the maximum particle size of the fine powder is less than 5 μm or more than 15 μm, strength enhancement is small in all cases.

【0012】また、15μmを越える粒径のものは粗粉
として分級する。
Particles having a particle size exceeding 15 μm are classified as coarse powder.

【0013】分級に際し用いられる分級機としては、例
えばスターテバンド型セパレーター、サイクロン型セパ
レーター、ターボクラシファイヤー等の、粉体の分級に
慣用されているものが挙げられる。
Examples of classifiers used for classification include those commonly used for classifying powders, such as starter band type separators, cyclone type separators and turbo classifiers.

【0014】これらの慣用分級機を用いてポルトランド
セメントを分級する場合、目標とする最大粒径で完全に
分級されるわけではなく、通常、前記微粉部分には目標
とする分級粒径を越える粗粉が含まれており、一方、前
記粗粉部分にも目標とする分級粒径未満の微粉が含まれ
ている。
When classifying Portland cement using these conventional classifiers, it is not possible to completely classify at a target maximum particle size, and usually, in the fine powder portion, a coarse particle size exceeding a target classifying particle size is used. On the other hand, the coarse powder portion also contains fine powder having a particle size smaller than the target classification particle size.

【0015】本発明においては、最大粒径5〜15μm
の微粉の5〜50重量%が、前記微粉中に分級されてい
ることが好ましい。
In the present invention, the maximum particle size is 5 to 15 μm.
It is preferable that 5 to 50% by weight of the fine powder is classified in the fine powder.

【0016】次いで、このように分級して得られる微粉
を、炭酸ガス及び水蒸気に接触させて強熱減量増加を
0.1〜5.0重量%とした炭酸化微粉とする。
Then, the fine powder thus obtained by classification is brought into contact with carbon dioxide gas and steam to obtain carbonated fine powder having an increase in ignition loss of 0.1 to 5.0% by weight.

【0017】即ち、前記微粉を慣用の装置を利用して炭
酸化し、該微粉表面を部分的に炭酸化させる。
That is, the fine powder is carbonized using a conventional apparatus, and the surface of the fine powder is partially carbonated.

【0018】セメント鉱物の炭酸化は相対湿度で約50
%以上の水蒸気が存在しないと迅速に進行せず、炭酸化
に時間がかかり、効率的でなく、また、炭酸化温度は高
温であることが好ましい。
Carbonation of cement minerals is about 50 at relative humidity.
% Of water vapor does not proceed rapidly, carbonation takes time, is not efficient, and the carbonation temperature is preferably high.

【0019】本発明において炭酸化は、微粉を高速で攪
拌しながら、又は浮遊状態において、水蒸気を含んだ炭
酸ガスを吹き付け、均一に微粉が炭酸化されるように行
なわれる。
In the present invention, carbonation is carried out while stirring the fine powder at a high speed or in a suspended state so that carbon dioxide gas containing water vapor is sprayed to uniformly carbonize the fine powder.

【0020】炭酸化は、炭酸化前後の微粉の強熱減量の
増加が、0.1〜5.0重量%、好ましくは1.0〜
3.0重量%となるまで行なわれる。
In carbonation, the increase in ignition loss of fine powder before and after carbonation is 0.1 to 5.0% by weight, preferably 1.0 to
It is performed until it reaches 3.0% by weight.

【0021】更に、このように炭酸化して得られる炭酸
化微粉と、当初に分級された前記粗粉とを、慣用の混合
機で十分に均質になるように混合することにより、本発
明の高強度セメント組成物が得られる。
Further, by mixing the carbonated fine powder obtained by the carbonation in this way with the coarse powder initially classified so as to be sufficiently homogenous in a conventional mixer, the high powder of the present invention can be obtained. A strong cement composition is obtained.

【0022】[0022]

【作用】本発明の高強度セメント組成物を用いて得られ
るモルタルやコンクリート硬化体は、長期材令において
のみならず、初期材令においても格段に優れた高強度を
発現する。
The mortar and hardened concrete obtained by using the high-strength cement composition of the present invention exhibit remarkably excellent high strength not only in long-term age but also in early age.

【0023】本発明において分級した微粉は元々セメン
トの一部であり、粉末度が高く、且つ高活性の珪酸3カ
ルシウム、アルミン酸3カルシウム、アルミン酸鉄4カ
ルシウムが多く含まれており、主に、この微粉の水和に
より、モルタルやコンクリートの流動性が時間の経過と
共に低下していく。
The fine powder classified in the present invention is originally a part of cement, and contains a large amount of highly active and highly active tricalcium silicate, tricalcium aluminate, and tetracalcium iron aluminate. Due to the hydration of this fine powder, the fluidity of mortar and concrete decreases over time.

【0024】そこで、本発明においては、該微粉を炭酸
化して炭酸化微粉としている。この炭酸化微粉は、前記
炭酸化によりその表面を部分的に炭酸化したものであ
り、その核はセメントのクリンカーであるが、その表面
のみが不活性な炭酸カルシウムに覆われている。
Therefore, in the present invention, the fine powder is carbonated to be carbonated fine powder. This carbonated fine powder is one whose surface has been partially carbonated by the above-mentioned carbonation, and its core is the clinker of cement, but only its surface is covered with inactive calcium carbonate.

【0025】即ち、本発明のセメント組成物において
は、この炭酸カルシウム被覆により、モルタルやコンク
リートの初期の流動性を向上させ、同一流動性を得るた
めの混練水量を低減させ、また、長期材令においては、
炭酸カルシウムに覆われた核のクリンカーが水和するこ
とにより、長期の強度発現性も良好となる。
That is, in the cement composition of the present invention, this calcium carbonate coating improves the initial fluidity of mortar and concrete, reduces the amount of kneading water for obtaining the same fluidity, and also long-term age. In
By hydrating the nucleus clinker covered with calcium carbonate, the long-term strength development is also improved.

【0026】以下、本発明を実施例により詳細に説明す
る。
The present invention will be described in detail below with reference to examples.

【0027】[0027]

【実施例】【Example】

実施例1〜5及び比較例1〜4 Examples 1-5 and Comparative Examples 1-4

【0028】セメント組成物の調製 普通ポルトランドセメント(住友セメント(株)製、強
熱減量1.0%)を、ターボクラシファイアー(日清エ
ンジニアリング社製 TC−15N)を用いて、4種類
(最大粒径5、10、15及び20μm)の微粉と粗粉
とに分級した。各微粉の最大粒径を表1に示す。
Preparation of Cement Composition Ordinary Portland cement (manufactured by Sumitomo Cement Co., Ltd., loss on ignition of 1.0%) was used with a turbo classifier (TC-15N manufactured by Nisshin Engineering Co., Ltd.) in four types (maximum). The powder was classified into fine powder and coarse powder having a particle size of 5, 10, 15 and 20 μm). The maximum particle size of each fine powder is shown in Table 1.

【0029】分級した各微粉を流動層混合機中に入れ、
流動媒体として純炭酸ガス及び水蒸気を用いて炭酸化さ
せた。この際、水蒸気及び炭酸ガスによる流動層中での
炭酸化時間を適宜増減させ、表1に示すような強熱減量
の増加した各炭酸化微粉を得た。
Put each classified fine powder into a fluidized bed mixer,
Carbonation was carried out using pure carbon dioxide and steam as the fluidizing medium. At this time, the carbonation time in the fluidized bed with water vapor and carbon dioxide was appropriately increased or decreased to obtain each carbonation fine powder with increased ignition loss as shown in Table 1.

【0030】このようにして得られる各炭酸化微粉と、
当初に分級された、対応する前記粗粉とを、それぞれV
型混合機で十分に混合し、本発明の各高強度セメント組
成物を得た。
Each carbonated fine powder thus obtained,
The corresponding coarse powder that was initially classified was
The mixture was thoroughly mixed with a mold mixer to obtain each high-strength cement composition of the present invention.

【0031】比較のため、原料である普通ポルトランド
セメントのみを使用する元セメント(比較例1)、粗粉
に、最大粒径10μmで分級した微粉と同量の微粉末石
灰石粉(粉末度15000cm2 /g)を混合したセメ
ント組成物(比較例2)、強熱減量増加が本発明の範囲
を越える炭酸化微粉を混合したセメント組成物(比較例
3)及び最大粒径が本発明の範囲を越える微粉を使用し
たセメント組成物(比較例4)を得た。
For comparison, the original cement (comparative example 1) using only the normal Portland cement as the raw material, the coarse powder, and the same amount of fine limestone powder as the fine powder classified with the maximum particle size of 10 μm (fineness 15,000 cm 2 / G) mixed cement composition (Comparative Example 2), a cement composition mixed with carbonated fine powder whose ignition loss increase exceeds the range of the present invention (Comparative Example 3), and the maximum particle size is within the range of the present invention. A cement composition (comparative example 4) using fine powder exceeding the limit was obtained.

【0032】モルタルの製造及び強度測定 で得られる各セメント組成物を用いて、セメント:砂
=1:3、βナフタレンスルホン酸ホルマリン縮合物系
高性能減水剤(花王社製マイティ150、固形分40重
量%)を該セメント組成物に対して1.2重量%添加し
た配合で、モルタルフロー値が200±2mmになるよ
うに混練水量を変化させて、モルタル混練物を得た。
Using each cement composition obtained in the production and strength measurement of mortar, cement: sand = 1: 3, β-naphthalenesulfonic acid formalin condensate high-performance water reducing agent (Mighty 150 manufactured by Kao Corporation, solid content 40 (Wt%) was added to the cement composition in an amount of 1.2 wt%, and the amount of kneading water was changed so that the mortar flow value was 200 ± 2 mm to obtain a mortar kneaded product.

【0033】この際使用した砂は、豊浦標準砂(粒径
0.10〜0.30mm)、4号砂(粒径0.42〜
1.68mm)、3号砂(粒径0.84〜2.38m
m)を等重量で混合したものである。
The sand used at this time was Toyoura standard sand (particle size 0.10 to 0.30 mm), No. 4 sand (particle size 0.42 to 0.42).
1.68 mm) No. 3 sand (particle size 0.84 to 2.38 m)
m) is mixed in equal weight.

【0034】このようにして得られるモルタル混練物を
4×4×16cmに成形し、24時間、20℃、90%
RHの湿空養生し、脱型した後、所定材令まで20℃の
水中養生を行って、強度測定用供試体を得た。
The mortar-kneaded product thus obtained was molded into 4 × 4 × 16 cm and kept at 20 ° C. and 90% for 24 hours.
After curing with RH in a humid air and demolding, the specimen was subjected to curing in water at 20 ° C. to a predetermined age to obtain a strength measurement specimen.

【0035】各供試体は所定材令においてJIS R
5201のモルタル強さ試験に準じて、圧縮強度を測定
した。得られた結果を表1に示す。
Each specimen is JIS R according to the prescribed age
The compressive strength was measured according to the 5201 mortar strength test. The results obtained are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】表1の結果から、本発明の高強度セメント
組成物の場合には、初期強度だけでなく長期強度におい
ても、原料である普通ポルトランドセメントの場合より
著しく強度発現性がよく、一方、比較例1の場合には、
目標とするフロー値を得るための水量が多く、強度発現
性が実施例の場合に比して低く、比較例2の場合には、
水量は少なくできるが、特に初期強度発現性が低く、ま
た、比較例3又は4の場合には、原料である普通ポルト
ランドセメントの場合より強度発現性はよいが、実施例
の場合ほどではなく、また水量も多いことが分かる。
From the results shown in Table 1, in the case of the high-strength cement composition of the present invention, not only in the initial strength but also in the long-term strength, the strength development is significantly better than that of the ordinary Portland cement as the raw material, while In the case of Comparative Example 1,
In the case of Comparative Example 2, the amount of water for obtaining the target flow value is large, and the strength development is low compared to the case of the Example.
Although the amount of water can be reduced, especially the initial strength development is low, and in the case of Comparative Example 3 or 4, the strength development is better than in the case of the ordinary Portland cement as the raw material, but not so much as in the Examples, It can also be seen that the amount of water is large.

【0038】[0038]

【発明の効果】本発明の高強度セメント組成物によれ
ば、水/セメント比を低減させても流動性がよく、且つ
初期高強度を発現するのみならず、長期高強度をも発現
することができる。
EFFECTS OF THE INVENTION According to the high-strength cement composition of the present invention, even if the water / cement ratio is reduced, the fluidity is good, and not only the initial high strength but also the long-term high strength is expressed. You can

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポルトランドセメントを、最大粒径5〜
15μmの微粉と、15μmを越える粒径の粗粉とに分
級し、該微粉を炭酸ガス及び水蒸気に接触させて強熱減
量を0.1〜5.0重量%増加させた後、前記粗粉と混
合してなる高強度セメント組成物。
1. Portland cement having a maximum particle size of 5
Fine powder of 15 μm and coarse powder having a particle size of more than 15 μm are classified, and the fine powder is brought into contact with carbon dioxide gas and steam to increase the ignition loss by 0.1 to 5.0% by weight, and then the coarse powder is added. A high-strength cement composition obtained by mixing with.
JP35883792A 1992-12-28 1992-12-28 High strength cement composition Expired - Lifetime JP3207956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35883792A JP3207956B2 (en) 1992-12-28 1992-12-28 High strength cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35883792A JP3207956B2 (en) 1992-12-28 1992-12-28 High strength cement composition

Publications (2)

Publication Number Publication Date
JPH06199547A true JPH06199547A (en) 1994-07-19
JP3207956B2 JP3207956B2 (en) 2001-09-10

Family

ID=18461364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35883792A Expired - Lifetime JP3207956B2 (en) 1992-12-28 1992-12-28 High strength cement composition

Country Status (1)

Country Link
JP (1) JP3207956B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162715A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Concrete composition and method for producing the same
JP2014162714A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Aggregate and method for producing the same
JP2014162716A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Concrete composition and method for producing the same
JP2015224168A (en) * 2014-05-29 2015-12-14 デンカ株式会社 Cement composition and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162715A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Concrete composition and method for producing the same
JP2014162714A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Aggregate and method for producing the same
JP2014162716A (en) * 2013-02-28 2014-09-08 Denki Kagaku Kogyo Kk Concrete composition and method for producing the same
JP2015224168A (en) * 2014-05-29 2015-12-14 デンカ株式会社 Cement composition and production method thereof

Also Published As

Publication number Publication date
JP3207956B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
US4336069A (en) High strength aggregate for concrete
CN110041028A (en) A kind of regeneration concrete and preparation method thereof using building waste
KR0183536B1 (en) Highly durable cement products containing siliceous ashes
US4451295A (en) Cements, mortars and concretes
JP2008254963A (en) Admixture for cement/concrete and low shrinkage high strength concrete, and high strength cement composition
CN110799472A (en) Concrete composition and method for producing same
JP7093189B2 (en) Manufacturing method of cement composition
JPH07267697A (en) Hydraulic composition
JP6597274B2 (en) Slag powder and method for producing slag powder
JP3215516B2 (en) Hydraulic composition and method for producing concrete pile using the composition
JP3207956B2 (en) High strength cement composition
JPH0231026B2 (en)
JPH0832575B2 (en) Portland cement with controlled particle size
JP2916482B2 (en) High strength cement composition
JPH11314947A (en) Cement composition
JPH0688854B2 (en) Manufacturing method of lightweight cellular concrete
JP3814860B2 (en) Method for producing non-fired aggregate
JP3183730B2 (en) Improved Portland cement and method for producing ALC
JPH0624812A (en) Cement composition for high strength mortar concrete
JP4695980B2 (en) Cement composition for steam curing product, mortar for steam curing product and concrete for steam curing product using the same
JPH05238787A (en) High-strength cement composition
JPH01242445A (en) Hydraulic cement composition
JPH07157347A (en) Cement composition, production and hardened body thereof
CN113788640B (en) Method for treating residual polymer of aliphatic water reducing agent
JP6721093B2 (en) Blast furnace cement and method for manufacturing blast furnace cement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9