JPH061991B2 - AC power supply - Google Patents

AC power supply

Info

Publication number
JPH061991B2
JPH061991B2 JP59107441A JP10744184A JPH061991B2 JP H061991 B2 JPH061991 B2 JP H061991B2 JP 59107441 A JP59107441 A JP 59107441A JP 10744184 A JP10744184 A JP 10744184A JP H061991 B2 JPH061991 B2 JP H061991B2
Authority
JP
Japan
Prior art keywords
power
output
current
voltage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59107441A
Other languages
Japanese (ja)
Other versions
JPS60255070A (en
Inventor
敏男 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59107441A priority Critical patent/JPH061991B2/en
Publication of JPS60255070A publication Critical patent/JPS60255070A/en
Publication of JPH061991B2 publication Critical patent/JPH061991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inverter Devices (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、発電出力の合成を効率良く行なうことがで
きる熱電子発電方法に関するものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a thermoelectron power generation method capable of efficiently synthesizing power generation outputs.

〔従来技術〕[Prior art]

従来、エミッタ電極とコレクタ電極の間をセラミックな
どの絶縁物で絶縁してエミッタ・コレクタの間にガスを
適当な圧力で封入しておき、エミッタ電極を高温に加熱
してコレクタ電極を低温に冷却すると、両電極間に直流
起電力が発生する熱電子発電素子が知られていた。
Conventionally, the emitter electrode and collector electrode are insulated with an insulator such as ceramic, and gas is sealed between the emitter and collector at an appropriate pressure. The emitter electrode is heated to a high temperature and the collector electrode is cooled to a low temperature. Then, a thermoelectron power generation element in which a DC electromotive force is generated between both electrodes has been known.

しかしながら、この素子の個々の発生電力は小さいの
で、実用的な電力を得るためには素子を並列に接続する
必要があるが、この場合は出力電流が大きくなるので電
路での電圧降下が大きくなる。例えば、1Kwの電力用の
電路として断面図500m2という大きな導体を用いても距
離1m(往復線長2m)で約0.12ボルトの電圧降下とな
り、約160ワットの電路損失が生じる。また各素子の
出力差を補償するために各々の素子間に抵抗器を挿入す
る必要があり、これが電路を複雑にするとともに、この
抵抗器で電力損失が発生して発電効率が低下するという
欠点があった。出力電流を小さくするには、素子を直列
にして電圧を高くすることが考えられるが、この場合は
各素子への加熱状況の相違が出力差を生じ低出力の素子
の電流値が電路の電流を支配することになり、合成効率
を低下させてしまう。このような欠点を除去するため
に、個々の素子の近くに交流への変換と取り扱い易い電
圧への昇圧を行う変換器を設け、それからの交流出力を
直並列接続して電力をとり出せば良いが、設置の場所的
条件および経済性が悪いという欠点があった。
However, since the power generated by each element is small, it is necessary to connect the elements in parallel to obtain practical power, but in this case the output current is large and the voltage drop in the circuit is large. . For example, even if a large conductor having a cross section of 500 m 2 is used as a power line for 1 Kw of power, a voltage drop of about 0.12 volt occurs at a distance of 1 m (round trip line length of 2 m), resulting in a line loss of about 160 watts. In addition, it is necessary to insert a resistor between each element in order to compensate for the output difference of each element, which complicates the electric path and also causes a power loss in this resistor to reduce the power generation efficiency. was there. In order to reduce the output current, it is possible to increase the voltage by connecting the elements in series.In this case, the difference in the heating status of each element causes an output difference, and the current value of the low output element is the current of the circuit. Will be controlled, and the synthesis efficiency will be reduced. In order to eliminate such a defect, a converter for converting to AC and boosting to a voltage that is easy to handle is provided near each element, and AC output from the converter may be connected in series and parallel to extract electric power. However, there is a drawback that the locational condition of installation and the economical efficiency are poor.

〔発明の目的および構成〕[Object and Structure of Invention]

したがってこの発明の目的は、電力損失が小さく、また
合成効率の低下させることなく、しかも経済性の良い熱
電子発電方法を提供することにある。このような目的を
達成するためにこの発明は、個々の熱電子発電素子から
発生した起電力に交番信号を重畳して間歇出力を生じ、
これを数多く直並列接続して電力を得るようにしたもの
である。以下、実施例を示す図面を用いてこの発明を詳
細に説明する。
Therefore, an object of the present invention is to provide a thermoelectron power generation method that has a small power loss, does not reduce the synthesis efficiency, and is economical. In order to achieve such an object, the present invention superimposes an alternating signal on the electromotive force generated from each thermoelectron power generating element to generate an intermittent output,
A large number of these are connected in series and parallel to obtain electric power. Hereinafter, the present invention will be described in detail with reference to the drawings illustrating an embodiment.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す回路図である。同図
において、1は熱電子発電素子、2は電圧計、3は電流
計、4は変圧器、5は交番信号を発生する電源である。
熱電子発電素子1はエミッタ1、,コレクタ1b、絶縁
部材1cから構成されており、変圧器4は鉄心4a、1
次および2次側のコイル4b,4cから構成されてい
る。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. In the figure, 1 is a thermoelectron power generation element, 2 is a voltmeter, 3 is an ammeter, 4 is a transformer, and 5 is a power source for generating an alternating signal.
The thermoelectron power generation element 1 is composed of an emitter 1, a collector 1b, and an insulating member 1c, and a transformer 4 includes iron cores 4a and 1c.
It is composed of coils 4b and 4c on the secondary and secondary sides.

このように構成された装置において、熱電子発電素子1
のエミッタ1aを加熱し、コレクタ1bを冷却すると両
電極間に直流起電力が発生し、この信号は変圧器4の1
次コイル4bに供給される。この信号に対し、電源5か
らの交番信号が重畳して供給されているので、負荷があ
る変圧器4のコイル4bにはエミッタ1aの電位と電源
5の電位が等しくなる第2図(a)の点イから電流が流
れはじめ、どの電流は点ロで最大となり、エミッタ1a
の電位と電源5の電位が等しくなる点ハで遮断される。
このため、コイル4b,4cに流れる電流は第2図
(b)に示すよう、電源5の信号周期に同期した間歇半
波波形となり、鉄心4aには(c)に示す磁束変化が発
生し、コイル4cには(d)に示す電圧が誘起される。
この電圧はコイル4b,4cの巻数比に対応した値とな
り、巻数比を適当に設定すれば取扱の容易な電圧が得ら
れる。
In the device configured as described above, in the thermoelectron power generation element 1
When the emitter 1a of 1 is heated and the collector 1b is cooled, a DC electromotive force is generated between both electrodes.
It is supplied to the next coil 4b. Since the alternating signal from the power source 5 is superimposed and supplied to this signal, the potential of the emitter 1a and the potential of the power source 5 become equal to the coil 4b of the transformer 4 having a load. Current begins to flow from point a, which current becomes maximum at point b, and emitter 1a
The voltage is cut off at the point C where the potential of 1 and the potential of the power source 5 become equal.
Therefore, as shown in FIG. 2 (b), the current flowing through the coils 4b, 4c has an intermittent half-wave waveform synchronized with the signal period of the power source 5, and the magnetic flux change shown in (c) occurs in the iron core 4a. The voltage shown in (d) is induced in the coil 4c.
This voltage has a value corresponding to the turn ratio of the coils 4b and 4c, and if the turn ratio is set appropriately, a voltage that is easy to handle can be obtained.

このような回路を第3図に示すように直並列に接続すれ
ば、大電力、高電力の出力を得ることができ電路の電力
損失を減らすことができる。そして、電源5からの交番
信号はコイル4b-1と、コイル4b-2に対し位相を反転(電
気角で180°の位相差を生ずる)ように接続すること
によってコイル4c-1とコイル4c-2に生ずるそれぞれの電
流iと電流iは第4図(a),(b)に示すように位相が
異なる間歇出力となるので、2種類の出力を重ね合わせ
ることによって、(c)に示すように連続した交流出力を
得ることができる。第5図は出力の重ね合わせ方法を示
す回路図である。同図において、6a,6bはスイッチ
ング素子、7は第3図の電流iを発生する変圧器4の
2次側のコイル4cをS個直列に接続して直列体を構成
し、その直列体をP個並列に接続したものであり、その
うち2次側のコイル部分のみを示したものである。8は
同様に電流iを発生する部分について示したものであ
る。このように構成した回路において、i×Pの電流
がIとしスイッチング素子6aから取り出され、i
×Pの電流Iがスイッチング素子6bから取り出され
また、それぞれの出力電流は変圧器出力電圧のS倍の電
圧となっている。そして、スイッチング素子6a,6b
を交流信号の周期に同期させて半周期毎に交互に開閉す
るようにしておけば、電流I,Iはそれぞれ間歇部分
を埋め合わせ、連続した交流出力となる。
If such circuits are connected in series and parallel as shown in FIG. 3, it is possible to obtain high power and high power output and reduce power loss in the electric circuit. The alternating signal from the power source 5 is connected to the coil 4b-1 and the coil 4b-2 so that the phase is inverted (a phase difference of 180 ° in electrical angle is generated) to connect the coil 4c-1 and the coil 4c-. The current i 1 and the current i 2 generated in 2 are intermittent outputs with different phases as shown in FIGS. 4 (a) and 4 (b), so by superimposing two types of outputs, A continuous alternating current output can be obtained as shown. FIG. 5 is a circuit diagram showing an output superimposing method. In the figure, 6a and 6b are switching elements, and 7 is a series body formed by connecting S secondary coils 4c of the transformer 4 for generating the current i 1 shown in FIG. 3 in series. Are connected in parallel, and only the coil portion on the secondary side is shown. Reference numeral 8 shows the portion that similarly generates the current i 2 . In the circuit configured as described above, a current of i 1 × P is taken as I 1 and is taken out from the switching element 6a, i 2
A current I 2 of × P is taken out from the switching element 6b, and each output current is a voltage that is S times the transformer output voltage. Then, the switching elements 6a and 6b
Is synchronized with the cycle of the AC signal and alternately opened and closed every half cycle, the currents I 1 and I fill up the intermittent portions, respectively, and become a continuous AC output.

このようにして得られる総合出力の周波数は交流信号の
周波数の2倍の値となるので、総合出力の周波数を50
ヘルツとするためには、交流信号の周波数は25ヘルツ
としなければならない。また、スイッチング素子6a,
6bは理解し易いように開閉器で示したが、実際は半導
体スイッチなどで構成することが出来る。
The frequency of the total output obtained in this way is twice the frequency of the AC signal.
To be hertz, the frequency of the AC signal must be 25 hertz. In addition, the switching element 6a,
Although the switch 6b is shown as a switch for easy understanding, it can actually be configured by a semiconductor switch or the like.

〔発明の効果〕〔The invention's effect〕

以上説明したようにこの発明は、熱電子発電素子の出力
を取扱いの容易な電圧の交流としてとり出すものである
から、電路の電力損失が小さく、また合成効率を低下さ
せることなく高電圧、高出力の電力が取り出せ、しかも
経済性の良い熱電子発電方法を容易に構成することがで
きるという効果を有する。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, the output of the thermoelectron power generation element is taken out as an alternating current having a voltage that is easy to handle, so that the power loss in the electric path is small, and the high efficiency and high voltage can be achieved without lowering the synthesis efficiency. It has an effect that the output electric power can be taken out and that the thermionic power generation method with good economical efficiency can be easily configured.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す回路図、第2図は第
1図の回路の出力電流波形図、第3図および第5図は他
の実施例を示す回路図、第4図は第3図に示す回路の出
力電流波形図である。 1・・・・熱電子発電素子、1a・・・・エミッタ、1
b・・・・コレクタ、1c・・・・絶縁部材、2・・・
・電圧計、3・・・・電流計、4・・・・変圧器、4
b、4c・・・・コイル、5・・・・信号電源、6・・
・・スイッチング素子。
1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is an output current waveform diagram of the circuit of FIG. 1, FIGS. 3 and 5 are circuit diagrams showing other embodiments, and FIG. FIG. 4 is an output current waveform diagram of the circuit shown in FIG. 1 ... Thermionic power generating element, 1a ... Emitter, 1
b ... Collector, 1c ... Insulation member, 2 ...
・ Voltmeter, 3 ・ ・ ・ ・ Ammeter, 4 ・ ・ ・ ・ ・ ・ Transformer, 4
b, 4c ... Coil, 5 ... Signal power supply, 6 ...
..Switching elements

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】直流電圧を発生する熱電子発電素子(1)
と、 交番電圧を発生する電源(5)と、 前記熱電子発電素子で発生した直流電圧と前記電源で発
生した交番電圧とが並列に供給される変圧器とから構成
される交流電源装置。
1. A thermoelectron power generation element (1) for generating a DC voltage.
An AC power supply device comprising: a power supply (5) for generating an alternating voltage; and a transformer to which a DC voltage generated by the thermionic power generating element and an alternating voltage generated by the power supply are supplied in parallel.
JP59107441A 1984-05-29 1984-05-29 AC power supply Expired - Lifetime JPH061991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107441A JPH061991B2 (en) 1984-05-29 1984-05-29 AC power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107441A JPH061991B2 (en) 1984-05-29 1984-05-29 AC power supply

Publications (2)

Publication Number Publication Date
JPS60255070A JPS60255070A (en) 1985-12-16
JPH061991B2 true JPH061991B2 (en) 1994-01-05

Family

ID=14459225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107441A Expired - Lifetime JPH061991B2 (en) 1984-05-29 1984-05-29 AC power supply

Country Status (1)

Country Link
JP (1) JPH061991B2 (en)

Also Published As

Publication number Publication date
JPS60255070A (en) 1985-12-16

Similar Documents

Publication Publication Date Title
JP5069686B2 (en) Foil winding pulse transformer
JP2800383B2 (en) High frequency inverter
US2324634A (en) Electromagnetic inductance apparatus
JPH061991B2 (en) AC power supply
CA1285987C (en) Switching mode power supply
US2313938A (en) Frequency doubler device
GB190405688A (en) Improvements in, and Apparatus for, Producing Reactions in Gases by Means of Electricity.
KR860000411B1 (en) Circuit breaker
US2289119A (en) Electric valve control circuit
US2274356A (en) Polarity control system
JP2818063B2 (en) Earth leakage breaker
JP2000002738A (en) Direct current leak detector
JP3015863B2 (en) Variable impedance element, variable impedance current limiter, and variable impedance superconducting converter
SU951551A1 (en) Power supply source
TW202228376A (en) Redundancy switching power supply
SU504603A1 (en) System of electrocontact heating of blanks for upsetting
JP2695417B2 (en) Waveform control device
JPS5863058A (en) Revolving-field type welding generator
JPH064575Y2 (en) Power supply current detection circuit
JP2000341952A (en) Ultralow-frequency high voltage power source
JPS62198109A (en) Magnetic adjusting electromagnetic converter
US669662A (en) Multiphase transformer.
JPH0644310Y2 (en) Switching power supply
KR100290154B1 (en) Antiphase transformer
SU773779A1 (en) Electromagnet power supply device