JPH06196831A - Manufacture of conductive pattern for aln substrate - Google Patents

Manufacture of conductive pattern for aln substrate

Info

Publication number
JPH06196831A
JPH06196831A JP34413892A JP34413892A JPH06196831A JP H06196831 A JPH06196831 A JP H06196831A JP 34413892 A JP34413892 A JP 34413892A JP 34413892 A JP34413892 A JP 34413892A JP H06196831 A JPH06196831 A JP H06196831A
Authority
JP
Japan
Prior art keywords
paste
conductive pattern
aln substrate
layer
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34413892A
Other languages
Japanese (ja)
Inventor
Hitoshi Sato
斉 佐藤
Ryoji Muramatsu
良二 村松
Eikichi Yoshida
栄吉 吉田
Shinichi Iwata
伸一 岩田
Yohei Watabe
洋平 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP34413892A priority Critical patent/JPH06196831A/en
Publication of JPH06196831A publication Critical patent/JPH06196831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To form a metallized film having sufficient bonding strength between the metallized film and an AlN substrate and high conductivity. CONSTITUTION:A composition element mainly comprising copper fine powder, titanium fine powder and a binding agent and using an organic solvent as a dispersion medium is kneaded and dispersed to prepare Cu-Ti paste, a composition element mainly comprising copper fine powder and the binding agent and employing the organic solvent as the dispersion medium is kneaded and dispersed to prepare Cu paste, a Cu-Ti paste layer is formed onto an AlN substrate, and a Cu paste layer is formed onto the Cu-Ti layer, thus shaping a conductive pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子回路基板として利
用されるAlN(窒化アルミニウム)セラミックス基板
用導電パターンの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a conductive pattern for an AlN (aluminum nitride) ceramic substrate used as an electronic circuit substrate.

【0002】[0002]

【従来の技術】一般に、電子回路基板には高絶縁性、機
械的強度、他の電子素子を劣化させない、金属導体と容
易に接合体となる、熱伝導率が大きいなどの性質が要求
される。このような電子回路基板として、アルミナ、窒
化物セラミックスなどが知られている。
2. Description of the Related Art Generally, an electronic circuit board is required to have properties such as high insulation, mechanical strength, deterioration of other electronic elements, easy joining with a metal conductor, and high thermal conductivity. . Alumina, nitride ceramics, and the like are known as such electronic circuit boards.

【0003】近年、LSIなどの電子部品の高集積化・
高速化にともない、その放熱対策改善の要求が高まって
おり、電子回路基板材料として現在主流のアルミナより
も熱伝導率が7倍以上高く、放熱性に優れる窒化アルミ
ニウム(AlN)セラミックスを用いた基板の開発が急
務となっている。
In recent years, high integration of electronic parts such as LSI
Along with the increase in speed, there is an increasing demand for improved heat dissipation measures. A substrate using aluminum nitride (AlN) ceramics, which has a thermal conductivity 7 times higher than that of alumina, which is currently the mainstream as an electronic circuit board material, and has excellent heat dissipation. Development is urgent.

【0004】ここで、電子回路基板としてセラミックス
を単体で用いると、トランジスター、ダイオード、I
C、LSI等の電子部品を直接実装することができない
ので、セラミックス表面に金属化膜(導電パターン)を
形成して使用する。このセラミックス基板表面上への金
属化膜の形成には、銅(Cu)導電ペーストを10〜3
0μm程度の厚みにスクリーン印刷し、乾燥させた後、
窒素雰囲気下で焼成するという方法がある。
Here, when ceramics are used alone as an electronic circuit board, transistors, diodes, I
Since electronic components such as C and LSI cannot be directly mounted, a metallized film (conductive pattern) is formed on the ceramic surface before use. To form a metallized film on the surface of the ceramic substrate, a copper (Cu) conductive paste is used in an amount of 10 to 3
After screen printing to a thickness of about 0 μm and drying,
There is a method of firing in a nitrogen atmosphere.

【0005】しかしながら、この方法で形成された金属
化膜はセラミックス基板との接着強度が不十分であり、
特に窒化アルミニウムに代表される窒化セラミックスで
はこの傾向が顕著であるため、前述の銅導電ペーストの
代わりに銅−チタン(Cu-Ti)導電ペースト等を用
いて金属化膜を形成し、接着強度を確保していた。
However, the metallized film formed by this method has insufficient adhesive strength with the ceramic substrate,
Since this tendency is particularly remarkable in nitride ceramics typified by aluminum nitride, a metallized film is formed by using a copper-titanium (Cu-Ti) conductive paste or the like instead of the above-mentioned copper conductive paste to improve the adhesive strength. Had secured.

【0006】[0006]

【発明が解決しようとする課題】銅は電気抵抗が最も小
さい金属の中のひとつで、コストも安価であるため、電
子回路基板の導電パターン形成には最適の金属である。
しかしながら、特に窒化セラミックスを電子回路基板材
料として用いた場合には、基板との接着強度が不十分で
あるという欠点を有している。この欠点は、5〜30%
のチタンを添加し、導体組成を銅−チタン(Cu−T
i)合金化することによりかなり改善することができ
る。しかし、その結果として比抵抗が増大し、しかも材
料コストも増大するという問題があった。
Copper is one of the metals having the smallest electric resistance and is inexpensive, and is therefore the most suitable metal for forming a conductive pattern on an electronic circuit board.
However, in particular, when nitride ceramics is used as an electronic circuit board material, there is a drawback that the adhesive strength with the board is insufficient. This drawback is 5-30%
Of titanium is added, and the conductor composition is changed to copper-titanium (Cu-T
i) It can be considerably improved by alloying. However, as a result, there has been a problem that the specific resistance increases and the material cost also increases.

【0007】そこで、本発明の技術的課題は、上記欠点
に鑑み、AlN基板との間の充分な接着強度と、高い導
電性を有する金属化膜を形成することができるAlN基
板用導電パターンの製造方法を提供することである。
Therefore, in view of the above-mentioned drawbacks, a technical problem of the present invention is to provide a conductive pattern for an AlN substrate capable of forming a metallized film having sufficient adhesive strength with the AlN substrate and high conductivity. It is to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】本発明によれば、銅微粉
末、チタン微粉末と結合剤を主成分とし、有機溶剤を分
散媒とする組成要素を、混練分散することにより、Cu
- Tiペーストを調製し、銅微粉末と結合剤を主成分と
し有機溶剤を分散媒とする組成要素を混練分散すること
によりCuペーストを調製し、AlN基板上に上記Cu
- TiペーストからなるCu- Ti層を形成し、そのC
u- Ti層の上に上記Cuペーストの層からなるCu層
を形成することを特徴とするAlN基板用導電パターン
の製造方法が得られる。
According to the present invention, a composition element containing copper fine powder, titanium fine powder, a binder as a main component, and an organic solvent as a dispersion medium is kneaded and dispersed to obtain Cu.
-A Ti paste is prepared, and a Cu paste is prepared by kneading and dispersing copper fine powder and a composition element having a binder as a main component and an organic solvent as a dispersion medium, and the Cu paste is formed on the AlN substrate.
-Cu-Ti layer consisting of Ti paste is formed and its C
A method of manufacturing a conductive pattern for an AlN substrate is obtained, which comprises forming a Cu layer made of the Cu paste layer on the u-Ti layer.

【0009】[0009]

【作用】本発明は、AlN基板表面上のCu- Ti層に
より、基板と導電パターンとの接着強度を確保し、その
上にCu層を設けることにより導電性を確保する。ま
た、本発明は、導電パターン全体としてのチタン量を減
少することができることから、コストの低減を図ること
ができる。
According to the present invention, the adhesion strength between the substrate and the conductive pattern is secured by the Cu-Ti layer on the surface of the AlN substrate, and the conductivity is secured by providing the Cu layer thereon. Further, according to the present invention, the amount of titanium in the entire conductive pattern can be reduced, so that the cost can be reduced.

【0010】[0010]

【実施例】以下、本発明に係るAlN基板用導電パター
ンの実施例を比較例と比較して詳細に説明する。
EXAMPLES Examples of conductive patterns for an AlN substrate according to the present invention will be described in detail below in comparison with comparative examples.

【0011】<実施例> (1)ビヒクルの調製 結合剤(エチルセルロース) 15重量% 溶剤(α−テルピネオール) 35重量% 溶剤(キシレン) 45重量% 分散剤(ステアリン酸) 5重量% 上記組成を混合し、30分間ホモジェナイザーを用いて
攪拌し、これをビヒクルとした。このビヒクルが、次の
(2)および(3)で用いられる。
<Examples> (1) Preparation of vehicle Binder (ethyl cellulose) 15% by weight Solvent (α-terpineol) 35% by weight Solvent (xylene) 45% by weight Dispersant (stearic acid) 5% by weight Mixing the above composition Then, the mixture was stirred for 30 minutes using a homogenizer, and this was used as a vehicle. This vehicle is used in (2) and (3) below.

【0012】(2)Cu- Tiペーストの作製 銅微粉末(平均粒径0.5μm) 70重量% チタン微粉末(平均粒径10μm) 15重量% ビヒクル 15重量% を加え、サンドミルにて5時間混練分散し、Cu- Ti
ペーストを得た。
(2) Preparation of Cu-Ti paste Copper fine powder (average particle size 0.5 μm) 70% by weight Titanium fine powder (average particle size 10 μm) 15% by weight Vehicle 15% by weight was added to the mixture in a sand mill for 5 hours. Knead and disperse, Cu-Ti
I got a paste.

【0013】(3)Cuペーストの作製 銅微粉末(平均粒径0.5μm) 85重量% ビヒクル 15重量% を加え、サンドミルにて5時間混練分散し、Cuペース
トを得た。
(3) Preparation of Cu Paste Fine copper powder (average particle size 0.5 μm) 85% by weight Vehicle 15% by weight was added and kneaded and dispersed in a sand mill for 5 hours to obtain a Cu paste.

【0014】(4)AlN基板上へのパターン印刷 AlN基板表面上に、上記(2)のCu- Tiペースト
を10μm程度の厚みに、250メッシュのスクリーン
を用いて印刷し乾燥させた後、上記(3)のCuペース
トを20μm程度の厚さにスクリーン印刷して乾燥さ
せ、窒素雰囲気下で800℃で焼成を行って、導体パタ
ーンを形成した。
(4) Pattern Printing on AlN Substrate The Cu—Ti paste of (2) above is printed on the surface of the AlN substrate to a thickness of about 10 μm using a 250 mesh screen and dried, The Cu paste of (3) was screen-printed to a thickness of about 20 μm, dried, and fired at 800 ° C. in a nitrogen atmosphere to form a conductor pattern.

【0015】<比較例1>上記(2)のCu- Tiペー
ストのみを用いて、AlN基板上に30μm程度の導体
パターンを形成した以外は、上記実施例と動揺にして試
料を作成した。
<Comparative Example 1> A sample was prepared in the same manner as in the above-mentioned Example except that a conductor pattern of about 30 μm was formed on an AlN substrate using only the Cu—Ti paste of (2) above.

【0016】<比較例2>上記(3)のCuペーストの
みを用いて、AlN基板上に30μm程度の導電パター
ンを形成した以外は、上記実施例と同様にして試料を作
成した。
<Comparative Example 2> A sample was prepared in the same manner as in the above Example except that a conductive pattern of about 30 μm was formed on an AlN substrate using only the Cu paste of (3) above.

【0017】<評価>これらの試料に関し、以下に述べ
る種々の評価を行った。
<Evaluation> These samples were subjected to various evaluations described below.

【0018】接着強度 AlN基板上に、導電ペーストを2mm角にスクリーン
印刷し、乾燥させ、真空中で800℃で焼き付けを行っ
て形成したメタライズ層に、半田によりFe-Ni製の
ピンを垂直に立て、基板表面に対し垂直に引っ張ったと
きの引っ張り力を測定した。
Adhesion Strength A conductive paste is screen-printed in a 2 mm square on an AlN substrate, dried, and baked at 800 ° C. in a vacuum to form a metallized layer. The pulling force when standing and pulling perpendicularly to the substrate surface was measured.

【0019】導電性 実施例、比較例1、比較例2の試料の直流抵抗値を測定
して、その値を導電パターンの膜厚で補正し、比較例1
の数値を100としたときの比率を求めた。
Conductivity The DC resistance values of the samples of Examples, Comparative Examples 1 and 2 were measured, and the values were corrected by the film thickness of the conductive pattern.
The ratio when the numerical value of 100 was set to 100 was calculated.

【0020】<評価結果>表1は、得られた測定結果の
判定基準を示す。表2は、判定基準に基づく試験試料の
評価結果である。
<Evaluation Results> Table 1 shows the judgment criteria of the obtained measurement results. Table 2 shows the evaluation results of the test samples based on the criteria.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】接着強度については、その数値が大きい程
良く、導電性(直流抵抗の比で評価)は小さい程良い
が、AlN基板の導電パターンとしては表1の○で表さ
れる範囲で実用的には充分である。
As for the adhesive strength, the larger the numerical value is, the better the conductivity (evaluated by the ratio of direct current resistance) is, the better. However, the conductive pattern of the AlN substrate is practical within the range shown by ◯ in Table 1. Is enough for

【0024】実施例は、AlN基板との接着強度に於い
ては比較例1と遜色なく、また導電性に関しても比較例
1と比べて改善されており、実用上充分な値となってい
る。一方、比較例1は接着強度は充分であるが導電性は
最も悪い値となっており、比較例2は導電性は最も良い
が接着強度は実用に耐えないものとなっている。これは
実施例が、Cu- Ti層でAlN基板との接着強度を確
保し、Cu層で充分な導電性を得ているためと考えられ
る。
The example is comparable to the comparative example 1 in the adhesive strength with the AlN substrate, and the conductivity is also improved as compared with the comparative example 1, which is a practically sufficient value. On the other hand, in Comparative Example 1, the adhesive strength is sufficient, but the electrical conductivity is the worst value. In Comparative Example 2, the electrical conductivity is the best, but the adhesive strength is not practical. This is considered to be because the example secures the adhesive strength with the AlN substrate with the Cu-Ti layer and obtains sufficient conductivity with the Cu layer.

【0025】すなわち、本発明のAlN基板用導電パタ
ーンの製造方法を用いれば、AlN基板と接着強度と導
電性という相反する要素を解決することができる。
That is, the use of the method for producing a conductive pattern for an AlN substrate of the present invention can solve the conflicting elements of the adhesive strength and the conductivity with the AlN substrate.

【0026】[0026]

【発明の効果】上述したように、本発明に係るAlN基
板用導電パターンの製造方法は、AlN基板上にCu-
Tiペースト層を形成し、そのCu- Tiぺースト層の
上にCuペースト層を形成して導電パターンを形成する
から、その導電パターンは接着強度が確保され、導電性
も向上する。したがって、本発明によれば接着性および
導電性に優れた導電パターンを提供することができ、各
種電子部品の高集積化・高速化へ大きく寄与することが
できる。
As described above, according to the method of manufacturing a conductive pattern for an AlN substrate according to the present invention, Cu-
Since the Ti paste layer is formed, and the Cu paste layer is formed on the Cu-Ti paste layer to form the conductive pattern, the conductive pattern has sufficient adhesive strength and improved conductivity. Therefore, according to the present invention, it is possible to provide a conductive pattern having excellent adhesiveness and conductivity, which can greatly contribute to high integration and high speed of various electronic components.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩田 伸一 茨城県つくば市大字花島新田字北原28番1 株式会社トーキン内 (72)発明者 渡部 洋平 茨城県つくば市大字花島新田字北原28番1 株式会社トーキン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Iwata 28-1 Kitahara, Shinden Hanajima, Ibaraki, Ibaraki Prefecture Tokin Co., Ltd. (72) Yohei Watanabe 28th Kitahara, Nitta, Hanashima, Tsukuba, Ibaraki Prefecture 1 Tokin Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 銅微粉末、チタン微粉末と結合剤を主成
分とし、有機溶剤を分散媒とする組成要素を、混練分散
することにより、Cu- Tiペーストを調製し、銅微粉
末と結合剤を主成分とし有機溶剤を分散媒とする組成要
素を混練分散することによりCuペーストを調製し、A
lN基板上に上記Cu- TiペーストからなるCu- T
i層を形成し、そのCu- Ti層の上に上記Cuペース
トの層からなるCu層を形成することを特徴とするAl
N基板用導電パターンの製造方法。
1. A Cu-Ti paste is prepared by kneading and dispersing a composition element containing copper fine powder, titanium fine powder and a binder as a main component, and an organic solvent as a dispersion medium, and bonding with the copper fine powder. A Cu paste is prepared by kneading and dispersing a composition element containing an agent as a main component and an organic solvent as a dispersion medium.
Cu-T consisting of the above Cu-Ti paste on the 1N substrate
An i layer is formed, and a Cu layer composed of the above Cu paste layer is formed on the Cu-Ti layer.
A method for manufacturing a conductive pattern for an N substrate.
JP34413892A 1992-12-24 1992-12-24 Manufacture of conductive pattern for aln substrate Pending JPH06196831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34413892A JPH06196831A (en) 1992-12-24 1992-12-24 Manufacture of conductive pattern for aln substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34413892A JPH06196831A (en) 1992-12-24 1992-12-24 Manufacture of conductive pattern for aln substrate

Publications (1)

Publication Number Publication Date
JPH06196831A true JPH06196831A (en) 1994-07-15

Family

ID=18366938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34413892A Pending JPH06196831A (en) 1992-12-24 1992-12-24 Manufacture of conductive pattern for aln substrate

Country Status (1)

Country Link
JP (1) JPH06196831A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069217A (en) * 2001-08-22 2003-03-07 Kyocera Corp Method for manufacturing circuit board
WO2007088748A1 (en) * 2006-01-31 2007-08-09 Tokuyama Corporation Process for producing metallized ceramic substrate, metallized ceramic substrate produced by the process, and package
JP2007201346A (en) * 2006-01-30 2007-08-09 Mitsuboshi Belting Ltd Ceramics circuit board and its manufacturing method
JP2010109069A (en) * 2008-10-29 2010-05-13 Kyocera Corp Wiring board and method for manufacturing the same
US20120015152A1 (en) * 2009-03-30 2012-01-19 Tokuyama Corporation Process for producing metallized substrate, and metallized substrate
US20120321805A1 (en) * 2010-03-02 2012-12-20 Tokuyama Corporation Production method of metallized substrate
JP2014532996A (en) * 2011-11-03 2014-12-08 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Circuit board made of AlN having a copper structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069217A (en) * 2001-08-22 2003-03-07 Kyocera Corp Method for manufacturing circuit board
JP2007201346A (en) * 2006-01-30 2007-08-09 Mitsuboshi Belting Ltd Ceramics circuit board and its manufacturing method
WO2007088748A1 (en) * 2006-01-31 2007-08-09 Tokuyama Corporation Process for producing metallized ceramic substrate, metallized ceramic substrate produced by the process, and package
JP2007207914A (en) * 2006-01-31 2007-08-16 Tokuyama Corp Method for manufacturing metallized ceramic substrate, metallized ceramic substrate manufactured thereby, and package
JP4699225B2 (en) * 2006-01-31 2011-06-08 株式会社トクヤマ Metallized ceramic substrate manufacturing method, metallized ceramic substrate manufactured by the method, and package
US8071187B2 (en) 2006-01-31 2011-12-06 Tokuyama Corporation Method for fabricating metallized ceramics substrate, metallized ceramics substrate fabricated by the method, and package
JP2010109069A (en) * 2008-10-29 2010-05-13 Kyocera Corp Wiring board and method for manufacturing the same
US20120015152A1 (en) * 2009-03-30 2012-01-19 Tokuyama Corporation Process for producing metallized substrate, and metallized substrate
US9301390B2 (en) 2009-03-30 2016-03-29 Tokuyama Corporation Process for producing metallized substrate, and metallized substrate
US20120321805A1 (en) * 2010-03-02 2012-12-20 Tokuyama Corporation Production method of metallized substrate
US9374893B2 (en) * 2010-03-02 2016-06-21 Tokuyama Corporation Production method of metallized substrate
JP2014532996A (en) * 2011-11-03 2014-12-08 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Circuit board made of AlN having a copper structure

Similar Documents

Publication Publication Date Title
US4148761A (en) Conductor compositions comprising aluminum, silicon and glass
JPS6355807A (en) Conducting paste
JPS6341165B2 (en)
JPH06196831A (en) Manufacture of conductive pattern for aln substrate
US5766305A (en) Metal powder composition for metallization and a metallized substrate
US5431718A (en) High adhesion, solderable, metallization materials
JPH0574166B2 (en)
US4207369A (en) Conductor compositions comprising aluminum, silicon and glass
JPH11288801A (en) Resistor paste, formation method for thick-film resistor, and manufacture of thick-film substrate
JP2010225627A (en) Method of manufacturing resistor film, resistor film, and resistor
JPH05156303A (en) Metallizing metal powder composition and production of metallized substrate using the composition
JP2842926B2 (en) Metallized structure for ceramic
CA2123905C (en) Metal powder composition for metallization and a metallized substrate
JPH0341997B2 (en)
JPH06164089A (en) Method for making electrode pattern
JP3906881B2 (en) Conductor composition
JPH0725690A (en) Formation of metallized layer on the aln base
JPH01107592A (en) Electric circuit board
JP2002231049A (en) Conductive paste
JPH06131914A (en) Conducting paste and its manufacture
JPH01115007A (en) Composition of metalized ink
JPS6115522B2 (en)
JPH04280880A (en) Metallizer and ceramic metallized substrate
JP3926142B2 (en) Conductor paste
JPH03180092A (en) Electronic circuit device and conductor paste used therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010110