JPH06196731A - Performance recovery method for photoelectric conversion body having short-circuited area - Google Patents

Performance recovery method for photoelectric conversion body having short-circuited area

Info

Publication number
JPH06196731A
JPH06196731A JP33A JP33561291A JPH06196731A JP H06196731 A JPH06196731 A JP H06196731A JP 33 A JP33 A JP 33A JP 33561291 A JP33561291 A JP 33561291A JP H06196731 A JPH06196731 A JP H06196731A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
short
conversion body
electrolytic solution
circuited portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33A
Other languages
Japanese (ja)
Inventor
Takashi Midorikawa
敬史 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33A priority Critical patent/JPH06196731A/en
Publication of JPH06196731A publication Critical patent/JPH06196731A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To recover the performance of a short-circuited part of a photoelectric conversion body having a large area by removing transparent conductive oxides corresponding to a short-circuited part with a first electrolyte, by precipitating metal on the short-circuited part with a second electrolyte which contains metal ions, and by causing the precipitated metal to change into an insoluble compound having an insulating property using a third electrolyte. CONSTITUTION:A photoelectric conversion body having a short-circuited part 603 is immersed into the first electrolyte, and a voltage is applied to the photoelectric conversion body with a conductive substrate thereof being used as a cathode and with a counter electrode thereof being used as an anode. Transparent conductive oxides 602, which are on the cathode side of the conductive substrate and correspond to the short-circuited part, are dissolved and removed by the electrolytic reduction reaction. The photoelectric conversion conductive substrate is then immersed into the second electrolyte which contains metal, and a voltage is applied to the photoelectric conversion conductive substrate with the conductive substrate thereof being used as a cathode and with the counter electrode thereof being used as an anode to precipitate metal on the short-circuited part 603. Subsequently, the photoelectric conversion body is immersed into the third electrolyte, and the resultantly precipitated metal is formed into an insoluble compound 604 having an insulating property. Hence, it is possible to recover the performance of the photoelectric conversion body by processing which only takes a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、少なくとも導電体層、
半導体層、透明導電層から構成された太陽電池のような
光電変換体であって、導電体層と透明導電層の間にシャ
ント部あるいは短絡部(本明細書では短絡箇所という)
を有する光電変換体の性能回復方法に関するものであ
る。
The present invention relates to at least a conductor layer,
A photoelectric conversion body such as a solar cell composed of a semiconductor layer and a transparent conductive layer, wherein a shunt portion or a short-circuited portion (hereinafter referred to as a short-circuited portion) between the conductive layer and the transparent conductive layer.
The present invention relates to a method for recovering the performance of a photoelectric conversion body having the above.

【0002】[0002]

【従来の技術】近年、化石燃料エネルギーの使用等によ
りCO2 の増加に基づく温室効果による地球の温暖化
や、原子力エネルギーの使用により放射性物質の廃棄に
基づく安全性の問題等が大きくクローズアップされてお
り、地球環境を破壊することなくクリーンで安全性の高
いエネルギー開発が熱望され、これに呼応し、十分な実
用化には至っていないがいくつかのエネルギー源が提案
されている。
2. Description of the Related Art In recent years, the warming of the earth due to the greenhouse effect due to the increase of CO 2 due to the use of fossil fuel energy, and the safety problem due to the disposal of radioactive substances due to the use of nuclear energy have been greatly highlighted. Therefore, there is a strong demand for clean and safe energy development without destroying the global environment, and in response to this, some energy sources have been proposed although they have not been put to practical use sufficiently.

【0003】就中、新たなエネルギー源として近年脚光
を浴びている太陽電池は、クリーン性、安全性、容易取
扱性等の好ましい条件を具備しており、また、太陽電池
は、非晶質シリコン、銅インジュウムセレナイド等を原
材料とし、出力の増大につながる設置面積の拡大を容易
に実現でき、製造コストも安価であるので、将来的にも
拡大普及は必至であり、多大の研究投資が行われてい
る。
In particular, solar cells, which have recently been spotlighted as a new energy source, have preferable conditions such as cleanliness, safety, and easy handling. Further, the solar cells are amorphous silicon. , Copper indium selenide, etc. are used as raw materials, the expansion of the installation area leading to increased output can be easily realized, and the manufacturing cost is also low, so expansion and diffusion will be inevitable in the future, and a large amount of research investment will be required. Has been done.

【0004】ところが、太陽電池は、設置面積を大にす
る程、電気的な短絡箇所が多く発生するので、歩留まり
低下を招来させる。そのため、例えば特公昭62−53
958号公報(第1従来例)には、太陽電池等の光電変
換体の短絡箇所の除去を図る手法として、当該短絡箇所
にレーザビーム等のエネルギービームを照射し、もって
該短絡箇所を除去するように構成された手法が提案され
ている。
However, in a solar cell, the larger the installation area, the more electrical short-circuit points are generated, resulting in a decrease in yield. Therefore, for example, Japanese Patent Publication No. 62-53
As a technique for removing a short-circuited portion of a photoelectric conversion body such as a solar cell, Japanese Patent Publication No. 958 (first conventional example) irradiates the short-circuited portion with an energy beam such as a laser beam to remove the short-circuited portion. A method configured as follows is proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記第
1従来例による手法は、エネルギービームを照射する前
に、短絡箇所を確定する必要があること、短絡箇所が多
いときには、処理時間がかかること、エネルギービーム
の照射装置が高価であること等の欠点がある。
However, in the method according to the first conventional example, it is necessary to determine the short-circuited portion before irradiating the energy beam, and it takes a long processing time when there are many short-circuited portions. There are drawbacks such as an expensive energy beam irradiation device.

【0006】一方、例えば米国特許4451970号
(第2従来例)、特開昭59−94473号公報(第3
従来例)には、基板上に半導体層と導電性光透過材膜と
が存在することによって形成されている光電池デバイス
において、その短絡電流エリアで前記導電性光透過材膜
に電解液の被膜を形成させ、前記基板に対して電解質を
正に維持するように電圧を印加して、短絡電流経路を除
去する手法が提案されている。
On the other hand, for example, US Pat. No. 4,451,970 (second conventional example) and JP-A-59-94473 (third example).
In the conventional example), in the photovoltaic device formed by the presence of the semiconductor layer and the conductive light transmitting material film on the substrate, in the short-circuit current area, the conductive light transmitting material film is coated with an electrolytic solution film. A method has been proposed in which a short-circuit current path is removed by applying a voltage to the substrate so as to keep the electrolyte positive with respect to the substrate.

【0007】また、前記第2従来例には、短絡電流経路
が除去されたエリアに絶縁材料を堆積させるという手法
が記載されている。
The second conventional example describes a method of depositing an insulating material in the area where the short-circuit current path is removed.

【0008】しかし、前記電解液の電解質にはカソード
とアノードとがそれぞれ接しており、電解質全体に正の
電荷を付与させることはできないので、かかる手法は完
成された技術とはいえない。
However, since the cathode and the anode are in contact with the electrolyte of the electrolytic solution and a positive charge cannot be applied to the entire electrolyte, such a technique cannot be said to be a completed technique.

【0009】さらに、米国特許4729970号明細書
(第4従来例)には、透明導電性酸化物を電極にする薄
膜電子デバイスの短絡電流経路の欠陥被覆方法が提案さ
れている。
Further, US Pat. No. 4,729,970 (fourth conventional example) proposes a defect coating method for a short-circuit current path of a thin film electronic device using a transparent conductive oxide as an electrode.

【0010】この方法は、ルイス酸である塩化アルミニ
ウム、塩化亜鉛、塩化第二錫、四塩化チタンなどの塩を
含む溶液中で半導体と対向電極との間に電流を流し、前
記透明導電性酸化物を酸化又は還元して、その化学量論
比を変え、もって、透明導電性酸化物を高抵抗にすると
いうものである。
According to this method, an electric current is passed between a semiconductor and a counter electrode in a solution containing a Lewis acid such as aluminum chloride, zinc chloride, stannic chloride or titanium tetrachloride, and the transparent conductive oxidation is performed. The substance is oxidized or reduced to change its stoichiometric ratio, thereby making the transparent conductive oxide have high resistance.

【0011】しかし、該方法の効果を検証したものとし
て本出願人が入手した報告には、塩化亜鉛、塩化第二錫
又は塩化第一錫の水溶液を用い、太陽電池の基板を負極
(カソード)とし、対向電極を正極(アノード)として
試したが、デバイスの短絡箇所は修復されず、それどこ
ろか短絡箇所には金属塩の金属(Zn、Sn)が析出
し、却って短絡箇所が拡大したという旨がある。
However, in the report obtained by the present applicant as a verification of the effect of the method, an aqueous solution of zinc chloride, stannic chloride or stannous chloride was used, and the substrate of the solar cell was used as a negative electrode (cathode). Then, the counter electrode was tried as a positive electrode (anode), but the short circuit part of the device was not repaired, and on the contrary, the metal salt metal (Zn, Sn) was deposited at the short circuit part, and the short circuit part was rather expanded. is there.

【0012】このように、上記各従来例では、光電変換
体における短絡箇所の除去方法は、処理効率、実施条
件、実効性等に問題がある。
As described above, in each of the conventional examples described above, the method of removing the short-circuited portion in the photoelectric conversion body has problems in processing efficiency, implementation conditions, effectiveness, and the like.

【0013】本発明は、上記従来の課題を解決すべくな
されたものであり、大面積の短絡箇所を有する光電変換
体の性能回復にも適用でき、処理性に優れ、安価に行え
る等とした性能回復方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and can be applied to the performance recovery of a photoelectric conversion body having a large-area short-circuited portion, and has excellent processability and can be performed at low cost. The purpose is to provide a performance recovery method.

【0014】[0014]

【課題を解決するための手段】前述した従来の課題を解
決するための手段として、導電性基板上に、半導体層と
透明導電性酸化物膜層とがその順序で形成された光電変
換体を第1の電解液中に浸漬し、カソードたる前記導電
性基板と前記第1の電解液中に配設されるアノードたる
対向電極との間に直流電圧を印加し、前記導電性基板と
透明導電性酸化物膜との間に形成される短絡箇所に対応
する該透明導電性酸化物を電解還元により除去し、次い
で、前記光電変換体を金属のイオンを含む第2の電解液
中に浸漬し、カソードたる前記導電性基板と前記第2の
電解液中に配設されるアノードたる対向電極との間に直
流電圧を印加し、前記金属を前記短絡箇所に析出させ、
さらに、アルカリイオン、ケイ酸イオン、有機酸イオン
のうち少なくとも1のイオンを含む第3の電解液中に前
記光電変換体を浸漬し、前記導電性基板と前記第3の電
解液中に配設される対向電極との間に直流電圧を印加
し、前記金属を不溶性かつ電気絶縁性の化合物に形成す
ることを特徴とする。
As a means for solving the above-mentioned conventional problems, a photoelectric conversion body in which a semiconductor layer and a transparent conductive oxide film layer are formed in that order on a conductive substrate is provided. By immersing in a first electrolytic solution, a DC voltage is applied between the conductive substrate that is a cathode and a counter electrode that is an anode arranged in the first electrolytic solution, and the conductive substrate and the transparent conductive material are transparent. The transparent conductive oxide corresponding to the short-circuited portion formed with the conductive oxide film is removed by electrolytic reduction, and then the photoelectric conversion body is immersed in a second electrolytic solution containing metal ions. A DC voltage is applied between the conductive substrate serving as a cathode and a counter electrode serving as an anode disposed in the second electrolytic solution to deposit the metal at the short-circuited portion,
Further, the photoelectric conversion body is immersed in a third electrolytic solution containing at least one ion selected from alkali ions, silicate ions, and organic acid ions, and the photoelectric conversion body is disposed in the conductive substrate and the third electrolytic solution. A direct current voltage is applied between the counter electrode and the counter electrode to form the metal into an insoluble and electrically insulating compound.

【0015】[0015]

【作用】まず、短絡箇所を有する光電変換体を第1の電
解液中に浸漬し、その導電性基板をカソード、対向電極
をアノードとして電圧を印加し、該カソード側に存在す
る透明導電性酸化物層を電解還元反応によって溶解除去
させる。次いで、該光電変換導電性基板を金属のイオン
を含む第2の電解液中に浸漬し、導電性基板をカソー
ド、対向電極をアノードとして電圧を印加し、該金属を
前記短絡箇所に析出させる。続いて、前記光電変換体を
第3の電解液中に浸漬し、前記析出した金属を不溶性か
つ電気絶縁性の化合物に形成する。
First, a photoelectric conversion body having a short-circuited portion is dipped in a first electrolytic solution, a voltage is applied with the conductive substrate as a cathode and the counter electrode as an anode, and the transparent conductive oxide existing on the cathode side is applied. The material layer is dissolved and removed by an electrolytic reduction reaction. Next, the photoelectric conversion conductive substrate is immersed in a second electrolytic solution containing metal ions, and a voltage is applied using the conductive substrate as a cathode and the counter electrode as an anode to deposit the metal at the short-circuited portion. Then, the photoelectric conversion body is immersed in a third electrolytic solution to form the deposited metal into an insoluble and electrically insulating compound.

【0016】前記短絡箇所の透明導電性酸化物を電解還
元するために用いる第1の電解液には、透明導電性酸化
物を容易には溶解しない濃度の塩酸、硝酸、硫酸等の
酸、水酸化カリウム、水酸化ナトリウム等のアルカリの
水溶液、又は金属塩の水溶液を用いる。なお、該金属塩
としては、該塩を構成する金属が、その標準電極電位が
負で、水素過電圧の値が標準電極電位の絶対値よりも小
さい塩が用いられる。
The first electrolytic solution used for electrolytically reducing the transparent conductive oxide at the short-circuited portion includes an acid such as hydrochloric acid, nitric acid, sulfuric acid, or water having a concentration that does not easily dissolve the transparent conductive oxide. An aqueous solution of an alkali such as potassium oxide or sodium hydroxide, or an aqueous solution of a metal salt is used. As the metal salt, a salt having a negative standard electrode potential and a hydrogen overvoltage smaller than the absolute value of the standard electrode potential is used as the metal constituting the salt.

【0017】前記透明導電性酸化物としては、三酸化イ
ンジウム、酸化第二錫、酸化亜鉛等が挙げられる。な
お、光電変換体を電解液に浸漬した場合、該電解液は透
明導電性酸化物を容易に溶解させてはならない。また、
電解還元により短絡箇所の透明導電性酸化物が除去され
るためには、電解還元された透明導電性酸化物を構成す
る元素が電解液中に溶出する必要がある。
Examples of the transparent conductive oxide include indium trioxide, stannic oxide, zinc oxide and the like. When the photoelectric conversion body is immersed in the electrolytic solution, the electrolytic solution should not easily dissolve the transparent conductive oxide. Also,
In order to remove the transparent conductive oxide at the short-circuited portion by electrolytic reduction, the elements constituting the electrolytically reduced transparent conductive oxide need to be eluted in the electrolytic solution.

【0018】従って、透明導電性酸化物が三酸化インジ
ウムである場合には、インジウムはアルカリには溶けな
いので当該第1の電解液は酸性であることを要する。透
明導電性酸化物が酸化第二錫である場合には、第1の電
解液は酸性でもアルカリ性でもよく、食塩、塩化カリウ
ム、塩化カルシウムまたは塩化マグネシウムなどの水溶
液を用いてもよい。透明導電性酸化物が酸化亜鉛である
場合は、酸化亜鉛が両性酸化物であるので第1の電解液
をpH7付近の弱酸性に調整する方がよい。
Therefore, when the transparent conductive oxide is indium trioxide, indium does not dissolve in alkali, so the first electrolytic solution must be acidic. When the transparent conductive oxide is stannic oxide, the first electrolytic solution may be acidic or alkaline, and an aqueous solution of sodium chloride, potassium chloride, calcium chloride, magnesium chloride or the like may be used. When the transparent conductive oxide is zinc oxide, zinc oxide is an amphoteric oxide, so it is better to adjust the first electrolytic solution to a weak acidity around pH 7.

【0019】対向電極であるアノード極の材料として
は、電解液に不溶性の物質を用いる。具体的には、不活
性な白金、チタンが、あるいは電解液に応じて鉛−銀、
鉛−アンチモン−銀合金、黒鉛、ニッケルなどが用いら
れる。鉛−銀、鉛−アンチモン−銀合金は硫酸水溶液用
に、黒鉛は硫酸根イオン、強酸またはアルカリの何れを
も含まない電解液用に、ニッケルは酸または塩素イオン
の何れをも含まない電解液用に用いられる。
A material insoluble in the electrolytic solution is used as the material of the anode which is the counter electrode. Specifically, inert platinum, titanium, or lead-silver, depending on the electrolytic solution,
Lead-antimony-silver alloy, graphite, nickel, etc. are used. Lead-silver and lead-antimony-silver alloys are for sulfuric acid aqueous solution, graphite is for electrolyte solution containing neither sulfate radical ion, strong acid nor alkali, and nickel is electrolyte solution containing neither acid nor chloride ion. Used for.

【0020】上記の短絡箇所除去の電気分解を行うため
には、対向電極(アノード)と導電性基板(カソード)
との間には、ネルンストの式で定義される電極電位から
計算される水素発生電位以上の電圧を印加する。具体的
には、水の理論分解電圧にオーム損と過電圧とを考慮し
た値である2ボルト以上の電圧が必要である。
In order to carry out the above electrolysis for removing the short-circuited portion, a counter electrode (anode) and a conductive substrate (cathode) are used.
A voltage higher than the hydrogen generation potential calculated from the electrode potential defined by the Nernst equation is applied between and. Specifically, the theoretical decomposition voltage of water requires a voltage of 2 V or more, which is a value that takes into consideration ohmic loss and overvoltage.

【0021】電流密度は0.1〜50mA/cm2 が副
反応を抑制するためにも好適である。上記導電性基板と
しては、金属基体または絶縁性基体上に導電体薄膜が形
成された基体を用いる。具体的には、ステンレス基板、
ガラスやプラスチック表面に金属薄膜を蒸着またはメッ
キした基板が使用される。
A current density of 0.1 to 50 mA / cm 2 is also suitable for suppressing side reactions. As the conductive substrate, a metal base or an insulating base on which a conductive thin film is formed is used. Specifically, a stainless steel substrate,
A substrate in which a metal thin film is vapor-deposited or plated on the surface of glass or plastic is used.

【0022】[0022]

【実施例】図3は、導電性基板と透明導電性酸化物層と
の間に短絡箇所が形成された光電変換体の構造を示すも
のである。同図において、100は導電性基板、101
は半導体層、l02は透明導電性酸化物層、l03は短
絡箇所である。
EXAMPLE FIG. 3 shows a structure of a photoelectric conversion body in which a short circuit portion is formed between a conductive substrate and a transparent conductive oxide layer. In the figure, 100 is a conductive substrate, 101
Is a semiconductor layer, 102 is a transparent conductive oxide layer, and 103 is a short circuit location.

【0023】図1は、前記短絡箇所を除去するべく透明
導電性酸化物層を電解還元するための装置(電解還元装
置)を示すものである。同図において、200は導電性
基板、201は半導体層、202は透明導電性酸化物
層、203はアセチルセルロースなどの被覆膜、204
はアノード電極、205は第1の電解液、206は直流
電源、207は電解槽である。
FIG. 1 shows an apparatus (electrolytic reduction apparatus) for electrolytically reducing the transparent conductive oxide layer to remove the short-circuited portion. In the figure, 200 is a conductive substrate, 201 is a semiconductor layer, 202 is a transparent conductive oxide layer, 203 is a coating film such as acetyl cellulose, and 204.
Is an anode electrode, 205 is a first electrolytic solution, 206 is a DC power source, and 207 is an electrolytic cell.

【0024】短絡箇所のみについて効率的に電解反応を
起こさせるためには、カソード電極側になる導電性基板
が直接に電解液と接している場合、該導電性基板をアセ
チルセルロース膜等により被覆し、電解液205と直接
に接触しないようにすることが望ましい。
In order to efficiently cause the electrolytic reaction only at the short-circuited portion, when the conductive substrate on the cathode electrode side is in direct contact with the electrolytic solution, the conductive substrate is covered with an acetyl cellulose film or the like. It is desirable not to directly contact the electrolytic solution 205.

【0025】前記短絡箇所を除去する手順は、まず、図
1に示す電解還元装置を用い、対向電極204と光電変
換体とを電解液205に浸漬し、対向電極204をアノ
ードとし、光電変換体の導電性基板200をカソードと
して、両者の間に2.5ボルト程度の電圧を印加して電
解反応を行なわせる。
The procedure for removing the short-circuited portion is as follows. First, using the electrolytic reduction device shown in FIG. 1, the counter electrode 204 and the photoelectric conversion body are immersed in the electrolytic solution 205, and the counter electrode 204 is used as the anode, and the photoelectric conversion body is used. Using the conductive substrate 200 as a cathode, a voltage of about 2.5 V is applied between the two to cause an electrolytic reaction.

【0026】これにより、直流電源206からアノード
204とカソード200との間に電圧が印加され、電子
はアノードから直流電源206へ、続いて直流電源20
6からカソード200へと流れ、電解反応が生じた短絡
箇所の透明導電性酸化物202は、水素イオンによって
還元される結果、金属イオンとして電解液205に溶出
する。即ち、短絡箇所に対応する透明導電性酸化物20
2が除去されることになる。この場合、短絡箇所以外の
部分には電流が流れないので透明導電性酸化物は除去さ
れない。
As a result, a voltage is applied from the DC power supply 206 between the anode 204 and the cathode 200, and the electrons flow from the anode to the DC power supply 206, and subsequently to the DC power supply 20.
The transparent conductive oxide 202 flowing from 6 to the cathode 200 at the short-circuited portion where the electrolytic reaction has occurred is reduced by hydrogen ions, and as a result, is eluted into the electrolytic solution 205 as metal ions. That is, the transparent conductive oxide 20 corresponding to the short circuit location
2 will be removed. In this case, the transparent conductive oxide is not removed because the current does not flow to the portion other than the short-circuited portion.

【0027】図4は、前記短絡箇所に対応する透明導電
性酸化物層が除去された状態を示すものである。同図に
おいて、400は導電性基板、401は半導体層、40
2は透明導電性酸化物層、403は露出した短絡箇所で
ある。
FIG. 4 shows a state in which the transparent conductive oxide layer corresponding to the short-circuited portion is removed. In the figure, 400 is a conductive substrate, 401 is a semiconductor layer, and 40
Reference numeral 2 is a transparent conductive oxide layer, and 403 is an exposed short circuit portion.

【0028】図2は前記短絡箇所に金属マンガンを電析
させる装置(電解析出装置)を示すものである。同図に
おいて、300は導電性基板、301は半導体層、30
2は透明導電性酸化物層、303はアセチルセルロース
などの被覆膜、304はアノード電極、305は第2の
電解液、306は直流電源、307は電解槽、308は
ビニロンなどの隔膜である。
FIG. 2 shows an apparatus (electrolytic deposition apparatus) for depositing metal manganese on the short-circuited portion. In the figure, 300 is a conductive substrate, 301 is a semiconductor layer, and 30
2 is a transparent conductive oxide layer, 303 is a coating film such as acetyl cellulose, 304 is an anode electrode, 305 is a second electrolytic solution, 306 is a DC power source, 307 is an electrolytic cell, and 308 is a diaphragm such as vinylon. .

【0029】短絡箇所のみについて効率的に電析反応を
起こさせるためには、カソード電極側になる導電性基板
300が直接に電解液と接している場合、該導電性基板
300をアセチルセルロース膜などにより被覆して電解
液305と直接には接触させないようにすることが望ま
しい。
In order to cause the electrodeposition reaction only at the short-circuited portion efficiently, when the conductive substrate 300 on the cathode electrode side is in direct contact with the electrolytic solution, the conductive substrate 300 is formed into an acetyl cellulose film or the like. It is desirable to cover it with the above so as not to come into direct contact with the electrolytic solution 305.

【0030】前記第2の電解液305は、マンガン塩及
びアンモニウム塩から成り、マンガン塩としては、塩化
マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン
などが用いられ、アンモニウム塩としては塩化アンモニ
ウム、硫酸アンモニウム、硝酸アンモニウム、酢酸アン
モニウム、スルファミン酸アンモニウムなどが用いられ
る。
The second electrolytic solution 305 comprises a manganese salt and an ammonium salt. As the manganese salt, manganese chloride, manganese sulfate, manganese nitrate, manganese acetate, etc. are used, and as the ammonium salt, ammonium chloride, ammonium sulfate, Ammonium nitrate, ammonium acetate, ammonium sulfamate, etc. are used.

【0031】対向電極であるアノードの材料としては、
第2の電解液305に不溶性の物質を用いる。具体的に
は、不活性な白金、黒鉛等である。
As the material of the anode which is the counter electrode,
An insoluble substance is used as the second electrolytic solution 305. Specifically, it is inert platinum, graphite or the like.

【0032】前記電解析出装置を用いて、短絡箇所に金
属マンガンを電析するには、まず、対向電極304と光
電変換体とを電解液305に浸漬し、次いで、対向電極
304をアノードとし、光電変換体の導電性基板300
をカソードとして、両者の間に3ボルト程度の電圧を印
加して電析反応を行なわせる。
In order to deposit metal manganese on the short-circuited portion using the electrolytic deposition apparatus, first, the counter electrode 304 and the photoelectric conversion body are immersed in the electrolytic solution 305, and then the counter electrode 304 is used as an anode. , Conductive Substrate 300 for Photoelectric Converter
Is used as a cathode, and a voltage of about 3 V is applied between them to cause an electrodeposition reaction.

【0033】直流電源306からアノード304とカソ
ード300との間に電圧が印加され、電子はアノードか
ら直流電源306へ、続いて直流電源306からカソー
ド200へ流れ、電析反応が生じて電解液305と接す
る短絡箇所の表面に金属マンガンが析出し、短絡箇所の
表面が金属マンガンにより被覆される。
A voltage is applied from the DC power supply 306 between the anode 304 and the cathode 300, and electrons flow from the anode to the DC power supply 306, and then from the DC power supply 306 to the cathode 200, and an electrodeposition reaction occurs to cause an electrolytic solution 305. Metallic manganese is deposited on the surface of the short-circuited portion in contact with, and the surface of the short-circuited portion is covered with the metallic manganese.

【0034】図5は、前記金属マンガンにより被覆され
た短絡箇所の構造を示すものである。同図において、5
00は導電性基板、501は半導体層、502は透明導
電性酸化物層、503は電流短絡箇所、504は電析し
たマンガン層である。
FIG. 5 shows the structure of the short-circuited portion coated with the metal manganese. In the figure, 5
00 is a conductive substrate, 501 is a semiconductor layer, 502 is a transparent conductive oxide layer, 503 is a current short-circuited portion, and 504 is a deposited manganese layer.

【0035】図7は、前記電流短絡箇所を被覆すべく電
析させた金属マンガンを不溶性かつ電気絶縁性の化合物
に化学変化させるための装置(電解酸化装置)を示すも
のである。同図において、700は導電性基板、701
は半導体層、702は透明導電性酸化物層、703はア
セチルセルロースなどの被覆膜、704はカソード電
極、705は第3の電解液、706は直流電源、707
は電解槽である。
FIG. 7 shows an apparatus (electrolytic oxidation apparatus) for chemically changing metallic manganese electrodeposited so as to cover the current short-circuited portion into an insoluble and electrically insulating compound. In the figure, 700 is a conductive substrate, 701.
Is a semiconductor layer, 702 is a transparent conductive oxide layer, 703 is a coating film such as acetyl cellulose, 704 is a cathode electrode, 705 is a third electrolytic solution, 706 is a DC power supply, and 707.
Is an electrolytic cell.

【0036】この場合、前記金属マンガンの部分のみに
効率的に電解酸化反応を起こさせるために、アノード電
極としての導電性基板500が直接に第3の電解液と接
している場合、該導電性基板500をアセチルセルロー
ス膜などで被覆し、第3の電解液と直接には接触しない
ようにすることが望ましい。
In this case, if the conductive substrate 500 as the anode electrode is in direct contact with the third electrolytic solution in order to efficiently cause the electrolytic oxidation reaction only in the metal manganese part, the conductive It is desirable that the substrate 500 be covered with an acetyl cellulose film or the like so as not to come into direct contact with the third electrolytic solution.

【0037】前記第3の電解液705に用いられる電解
質は、アルカリイオン、ケイ酸イオン、又は有機酸イオ
ンを供給するものから選ばれる。ここで、アルカリイオ
ン供給源としてはアルカリ金属、アルカリ土類金属の水
酸化物、アンモニア等が挙げられ、ケイ酸イオン供給源
としてはケイ酸カリウム、ケイ酸ナトリウム等のアルカ
リが挙げられ、有機酸イオン供給源としてはシュウ酸、
マレイン酸等が挙げられる。
The electrolyte used in the third electrolytic solution 705 is selected from those which supply alkali ions, silicate ions, or organic acid ions. Here, examples of the alkali ion source include alkali metals, hydroxides of alkaline earth metals, and ammonia, and examples of the source of silicate ions include alkali such as potassium silicate and sodium silicate. Oxalic acid as an ion source,
Maleic acid etc. are mentioned.

【0038】対向電極であるカソード電極704は、電
解液に不溶性の物質、具体的には不活性な白金、チタ
ン、黒鉛等の材料から成る。
The cathode electrode 704, which is a counter electrode, is made of a material insoluble in the electrolytic solution, specifically, an inert material such as platinum, titanium, or graphite.

【0039】前記電解酸化装置を用いて前記電析した金
属マンガンを不溶性かつ電気絶縁性の物質に化学変化さ
せるには、まず、前記対向電極704と光電変換体とを
電解液705に浸漬し、次いで、対向電極704をカソ
ードとし、光電変換体の導電性基板700をアノードと
して、両者の間に電圧を印加することにより電解酸化反
応を行なわせる。
In order to chemically change the electrodeposited metallic manganese into an insoluble and electrically insulating substance using the electrolytic oxidation device, first, the counter electrode 704 and the photoelectric conversion body are immersed in an electrolytic solution 705, Then, using the counter electrode 704 as a cathode and the conductive substrate 700 of the photoelectric conversion body as an anode, a voltage is applied between the two to cause an electrolytic oxidation reaction.

【0040】そして、前記直流電源706からアノード
700とカソード704との間に電圧が印加されると、
電子はアノードから直流電源へ、続いて直流電源からカ
ソ−ド700ヘ流れ、電解酸化反応が生じて電解液70
5と接する金属マンガンが酸化され、その時点での電解
液705の組成に応じて不溶性かつ電気絶縁性の化合物
が形成される。
When a voltage is applied from the DC power source 706 between the anode 700 and the cathode 704,
Electrons flow from the anode to the DC power supply, and then from the DC power supply to the cathode 700, and an electrolytic oxidation reaction occurs to generate an electrolyte solution 70.
The metal manganese in contact with 5 is oxidized, and an insoluble and electrically insulating compound is formed depending on the composition of the electrolytic solution 705 at that time.

【0041】図6は、前記酸化反応により形成された化
合物たる酸化皮膜604を示すものである。同図におい
て、600は導電性基板、601は半導体層、602は
透明導電性酸化物層、603は電流短絡箇所である。
FIG. 6 shows an oxide film 604 which is a compound formed by the oxidation reaction. In the figure, reference numeral 600 is a conductive substrate, 601 is a semiconductor layer, 602 is a transparent conductive oxide layer, and 603 is a current short circuit location.

【0042】前記不溶性かつ電気絶縁性の化合物は、前
記電解酸化反応に拠らなくても、金属マンガンと該金属
イオンとを接触させるのみでも形成される。ただし、形
成された化合物はその安定性、緻密性等の点で前記電解
酸化反応で得られたものの方が優れている。
The insoluble and electrically insulating compound is formed without contacting the electrolytic oxidation reaction, only by bringing the metal manganese into contact with the metal ion. However, the formed compound is superior to the compound obtained by the electrolytic oxidation reaction in terms of stability, compactness, and the like.

【0043】以下、好適な第1及び第2の実験例を挙げ
てさらに詳細に説明する。
The preferred first and second experimental examples will be described below in more detail.

【0044】図8は、第1実験例に係る光電変換体の構
成を示すものであり、図9は、図8に示す構成の光電変
換体にグリッド電極を設ける構成としたものである。
FIG. 8 shows a structure of the photoelectric conversion body according to the first experimental example, and FIG. 9 shows a structure in which grid electrodes are provided on the photoelectric conversion body having the structure shown in FIG.

【0045】図8及び図9において、800は金属基板
(ステンレス基板)、801は裏面電極(銀)、802
は銀拡散防止層の酸化亜鉛、803はリンをドープした
n型アモルファスシリコン層、804はノンドープ(i
型)アモルファスシリコン・ゲルマニウム層、805は
ホウ素をドープしたp型アモルファスシリコン層、80
6はノンドープのアモルファスシリコン層、807は酸
化第二錫透明導電性酸化物層、808はCr/Ag/C
rの構成要素から成るグリッド電極である。
8 and 9, reference numeral 800 is a metal substrate (stainless steel substrate), 801 is a back surface electrode (silver), and 802.
Is zinc oxide of the silver diffusion preventing layer, 803 is an n-type amorphous silicon layer doped with phosphorus, and 804 is non-doped (i
Type) amorphous silicon-germanium layer, 805 is a p-type amorphous silicon layer doped with boron, 80
6 is a non-doped amorphous silicon layer, 807 is a stannic oxide transparent conductive oxide layer, and 808 is Cr / Ag / C.
It is a grid electrode composed of the components of r.

【0046】本実験例においては、図1に示した電解還
元装置を用いたとき、光電変換体は導電性基板たる金属
基板800の一面をアセチルセルロース膜により被覆
し、第1の電解液205として比導電率0.5s/cm
の硝酸水溶液を用い、対向電極204として白金板を用
いた。
In this experimental example, when the electrolytic reduction device shown in FIG. 1 was used, the photoelectric conversion body covered one surface of the metal substrate 800, which was a conductive substrate, with an acetyl cellulose film, and used it as the first electrolytic solution 205. Specific conductivity 0.5s / cm
And a platinum plate was used as the counter electrode 204.

【0047】そして、前記金属基板800及び白金板を
夫々カソード、アノードとし、該カソードとアノードと
の間に直流電圧3.0ボルトを印加し、カソード電極の
電流密度を20mA/cm2 として30sec間電解還
元反応を行なった。その後、前記直流電圧の印加を停止
し当該光電変換体を水洗した。
The metal substrate 800 and the platinum plate are respectively used as a cathode and an anode, a DC voltage of 3.0 V is applied between the cathode and the anode, and the current density of the cathode electrode is 20 mA / cm 2 for 30 seconds. An electrolytic reduction reaction was performed. Then, the application of the DC voltage was stopped and the photoelectric conversion body was washed with water.

【0048】次に、図2に示した電解電析装置を用いた
とき、前記光電変換体の短絡箇所に金属マンガンを電析
した。この場合、第2の電解液305として、MnCl
2 ・4H2 Oが1.5mol/l,NH4 Clが2.0
m ol/l溶解された水溶液を用いた。アノードは対
向電極304たる黒鉛を用い、前記第2の電解液305
は、pH6.5、液温−10℃に調整し、電流密度が
0.6μA/cm2 に設定されるべくカソードたる金属
基板800とアノードたる黒鉛との間に直流電圧を印加
し、180sec間電析反応を行なわせた。その後、電
圧印加を停止し該光電変換体を水洗した。
Next, when the electrolytic electrodeposition apparatus shown in FIG. 2 was used, metallic manganese was electrodeposited on the short-circuited portion of the photoelectric conversion body. In this case, MnCl 2 is used as the second electrolytic solution 305.
2 · 4H 2 O is 1.5mol / l, NH 4 Cl 2.0
A mol / l dissolved aqueous solution was used. The anode uses graphite as the counter electrode 304, and the second electrolytic solution 305 is used.
Is adjusted to pH 6.5 and a liquid temperature of −10 ° C., and a DC voltage is applied between the metal substrate 800 serving as the cathode and the graphite serving as the anode so that the current density is set to 0.6 μA / cm 2 for 180 seconds. The electrodeposition reaction was carried out. After that, the voltage application was stopped and the photoelectric conversion body was washed with water.

【0049】続いて、図7に示した電解酸化装置を用い
たとき、前記光電変換体を電解処理した。この場合、第
3の電解液705として、シュウ酸の3%水溶液を用
い、液温を+25℃に調整し、電流密度が0.5μA/
cm2 に設定されるべくアノードたる金属基板800と
カソードたる対向電極704との間に直流電圧を印加
し、60secの間、電解酸化反応を行なった。その
後、電圧印加を停止し、該光電変換装置を水洗し、アル
コール洗浄の後に100℃雰囲気で乾燥した。
Subsequently, when the electrolytic oxidation apparatus shown in FIG. 7 was used, the photoelectric conversion body was subjected to electrolytic treatment. In this case, a 3% aqueous solution of oxalic acid is used as the third electrolytic solution 705, the liquid temperature is adjusted to + 25 ° C., and the current density is 0.5 μA /
A direct current voltage was applied between the metal substrate 800 as an anode and the counter electrode 704 as a cathode so as to be set to cm 2 , and the electrolytic oxidation reaction was performed for 60 seconds. After that, the voltage application was stopped, the photoelectric conversion device was washed with water, washed with alcohol, and then dried in an atmosphere of 100 ° C.

【0050】図13及び図14は、短絡箇所の除去処理
前後の光電変換体について、夫々AM1.5、100m
W/cm2 の光照射を行った場合における、電流−電圧
(I−V)特性の測定データを示すものである。
FIGS. 13 and 14 show the photoelectric conversion body before and after the removal processing of the short-circuited portion at AM 1.5 and 100 m, respectively.
It shows the measured data of the current-voltage (IV) characteristic when light irradiation of W / cm 2 was performed.

【0051】図12は、前記I−V特性の測定回路を示
すものである。同図において、1000は光、1001
は光電変換体、1002は電圧計、1003は電流計、
1004は直流電源である。
FIG. 12 shows a circuit for measuring the IV characteristic. In the figure, 1000 is light and 1001
Is a photoelectric converter, 1002 is a voltmeter, 1003 is an ammeter,
1004 is a DC power supply.

【0052】図13及び図14から、電流短絡箇所の除
去処理後には明らかに、光電変換効率もシャント抵抗も
増加して、電流短絡箇所を除去した効果が表われている
ことがわかった。
From FIGS. 13 and 14, it is apparent that the effect of removing the current short-circuited portion is apparently shown after the photoelectric conversion efficiency and the shunt resistance are increased after the treatment for removing the current short-circuited portion.

【0053】図10は、第2実験例に係る光電変換体の
構成を示すものであり、図11は、図10に示す構成の
光電変換体にグリッド電極を設ける構成としたものであ
る。図10及び図11において、900はステンレス基
板、901は裏面電極たるAg層、902はZnO層、
903はリンをドープしたn型アモルファスシリコン・
ゲルマニウム層、905はホウ素をドープしたp+ 型ア
モルフアスシリコン層、906はノンドープのアモルフ
ァスシリコン層、907はIn23 -SnO2 層、9
08はCr/Ag/Crの構成要素から成るグリッド電
極である。
FIG. 10 shows a structure of a photoelectric conversion body according to the second experimental example, and FIG. 11 shows a structure in which a grid electrode is provided on the photoelectric conversion body having the structure shown in FIG. In FIGS. 10 and 11, 900 is a stainless steel substrate, 901 is an Ag layer as a back electrode, 902 is a ZnO layer,
903 is phosphorus-doped n-type amorphous silicon.
A germanium layer, 905 is a p + -type amorphous silicon layer doped with boron, 906 is a non-doped amorphous silicon layer, 907 is an In 2 O 3 —SnO 2 layer, 9
Reference numeral 08 is a grid electrode composed of Cr / Ag / Cr components.

【0054】本実験例においては、光電変換体は前記電
解還元装置に浸漬する際、Ag層901をカソードと
し、アノードたる対向電極204として黒鉛を用いた。
第1の電解液205として比導電率0.08s/cmの
AlCl3水溶液を用いて、3ボルトの電圧をカソード
とアノードの間に印加し、50mA/cm2 で1分間、
電解還元反応を行なった。その後、電圧印加を停止し該
光電変換体を水洗した。次に、前記光電変換体を電解電
析装置に浸漬する際、第2の電解液305として、Mn
SO4 ・4H2 Oが1.5mol/lの濃度で、かつ、
NH4 SO4 が1.5mol/lの濃度で溶解された水
溶液を用いた。アノードたる対向電極304は白金板を
用い、前記電解液はpH6.5、液温−5℃に調整し、
電流密度が0.5μA/cm2 に設定されるべくアノー
ドとカソードとの間に240sec間直流電圧を印加
し、電解電析反応を行なった。その後、電圧印加を停止
し、該光電変換体を水洗した。
In this experimental example, when the photoelectric conversion body was immersed in the electrolytic reduction apparatus, the Ag layer 901 was used as the cathode and graphite was used as the counter electrode 204 serving as the anode.
Using an AlCl 3 aqueous solution having a specific conductivity of 0.08 s / cm as the first electrolytic solution 205, a voltage of 3 V is applied between the cathode and the anode, and 50 mA / cm 2 for 1 minute,
An electrolytic reduction reaction was performed. After that, the voltage application was stopped and the photoelectric conversion body was washed with water. Next, when the photoelectric conversion body is immersed in an electrolytic electrodeposition apparatus, Mn is used as the second electrolytic solution 305.
SO 4 .4H 2 O at a concentration of 1.5 mol / l, and
An aqueous solution in which NH 4 SO 4 was dissolved at a concentration of 1.5 mol / l was used. A platinum plate is used as the counter electrode 304 serving as an anode, and the electrolytic solution is adjusted to pH 6.5 and a liquid temperature of −5 ° C.
A direct current voltage was applied between the anode and the cathode for 240 seconds so that the current density was set to 0.5 μA / cm 2 , and the electrolytic electrodeposition reaction was performed. Thereafter, the voltage application was stopped and the photoelectric conversion body was washed with water.

【0055】次に、前記電解酸化装置に前記光電変換体
を浸漬した際、第3の電解液としてNa2 SiO3 ・5
2 Oの10%水溶液を用いた。そして、液温が+25
℃、電流密度が0.5μA/cm2 で30sec間電解
酸化反応を行なった。次に、電圧印加を停止し、光電変
換体を水洗し、アルコール洗浄の後に100℃雰囲気で
乾燥した。
Next, when the photoelectric conversion body was immersed in the electrolytic oxidation apparatus, Na 2 SiO 3 .5 was used as a third electrolytic solution.
A 10% aqueous solution of H 2 O was used. And the liquid temperature is +25
The electrolytic oxidation reaction was carried out at 30 ° C. for 30 seconds at a current density of 0.5 μA / cm 2 . Next, the voltage application was stopped, the photoelectric conversion body was washed with water, washed with alcohol, and then dried in an atmosphere at 100 ° C.

【0056】本実験例に係る光電変換体についても、上
記第1実験例の場合と同様に光照射時のI−V特性を測
定した。短絡箇所除去処理前後のI−V特性はそれぞれ
図15及び図16に示す通り、処理後においてはシャン
ト抵抗と光電変換効率とが増加していることがわかる。
With respect to the photoelectric converter according to the present experimental example, the IV characteristic at the time of light irradiation was measured as in the case of the first experimental example. As shown in FIGS. 15 and 16, the IV characteristics before and after the short-circuited portion removal processing show that the shunt resistance and the photoelectric conversion efficiency are increased after the processing.

【0057】[0057]

【発明の効果】本発明によれば、短絡箇所を逐一探す必
要がなく、短時間の処理で光電変換体の性能回復を容易
かつ確実に行なうことができる。その結果、多数の短絡
箇所を含むような大面積の光電変換体における性能回復
には特に有効である。また、処理のための工程及び設備
が簡単なもので済むので製品の歩留まり向上の実現、生
産コストの大幅な削減を実現できる。
According to the present invention, it is not necessary to search for short-circuited points one by one, and it is possible to easily and surely recover the performance of the photoelectric conversion body in a short time. As a result, it is particularly effective for performance recovery in a large-area photoelectric conversion body including a large number of short-circuited points. Moreover, since the process and equipment for the treatment are simple, it is possible to realize the improvement of the product yield and the substantial reduction of the production cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するのに用いられる電解還
元装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an electrolytic reduction apparatus used to carry out the method of the present invention.

【図2】本発明の方法を実施するために用いられる電解
電析装置の概略構成図である。
FIG. 2 is a schematic configuration diagram of an electrolytic electrodeposition apparatus used for carrying out the method of the present invention.

【図3】短絡箇所を有する光電変換体の模式的断面図で
ある。
FIG. 3 is a schematic sectional view of a photoelectric conversion body having a short-circuited portion.

【図4】電解還元反応後における光電変換体の模式的断
面図である。
FIG. 4 is a schematic cross-sectional view of a photoelectric conversion body after an electrolytic reduction reaction.

【図5】電解電析反応後における光電変換体の模式的断
面図である。
FIG. 5 is a schematic cross-sectional view of a photoelectric conversion body after an electrolytic electrodeposition reaction.

【図6】電解酸化反応後における光電変換体の模式的断
面図である。
FIG. 6 is a schematic cross-sectional view of a photoelectric conversion body after an electrolytic oxidation reaction.

【図7】本発明の方法を実施するために用いられる電解
酸化装置の概略構成図である。
FIG. 7 is a schematic configuration diagram of an electrolytic oxidation device used to carry out the method of the present invention.

【図8】第1実験例に係る光電変換体の模式的断面図で
ある。
FIG. 8 is a schematic cross-sectional view of a photoelectric conversion body according to a first experimental example.

【図9】図8に示す光電変換体にグリッド電極を設けた
構成の模式的断面図である。
9 is a schematic cross-sectional view of a configuration in which a grid electrode is provided on the photoelectric conversion body shown in FIG.

【図10】第2実験例に係る光電変換体の模式的断面図
である。
FIG. 10 is a schematic cross-sectional view of a photoelectric conversion body according to a second experimental example.

【図11】図10に示す光電変換体にグリッド電極を設
けた構成の模式的断面図である。
11 is a schematic cross-sectional view of a configuration in which a grid electrode is provided on the photoelectric conversion body shown in FIG.

【図12】本発明の方法に係る光電変換体の電流−電圧
特性を測定する測定系の回路図である。
FIG. 12 is a circuit diagram of a measurement system for measuring current-voltage characteristics of the photoelectric conversion body according to the method of the present invention.

【図13】 第1実験例に係る光電変換体の処理前おけ
る電流−電圧特性を示すグラフである。
FIG. 13 is a graph showing current-voltage characteristics before the treatment of the photoelectric conversion body according to the first experimental example.

【図14】 第1実験例に係る光電変換体の処理後おけ
る電流−電圧特性を示すグラフである。
FIG. 14 is a graph showing current-voltage characteristics after the treatment of the photoelectric conversion body according to the first experimental example.

【図15】 第2実験例に係る光電変換体の処理前おけ
る電流−電圧特性を示すグラフである。
FIG. 15 is a graph showing current-voltage characteristics before the treatment of the photoelectric conversion body according to the second experimental example.

【図16】 第2実験例に係る光電変換体の処理後おけ
る電流−電圧特性を示すグラフである。
FIG. 16 is a graph showing current-voltage characteristics after the treatment of the photoelectric conversion body according to the second experimental example.

【符号の説明】[Explanation of symbols]

100、400、500、600、800、801、9
00、901 導電体層、 101、401、501、601、701、803、8
04、805、806、903、904、905、90
6 半導体層、 102、402、502、602、807、907 透
明導電性酸化物層、 103、403、503、603 電流短絡箇所、 802、902 シャント防止層、 808、908 グリッド電極、 504 金属マンガン層、 604 化合物、 204、304 アノード極、 205、305 電解液、 206、306、706 直流電源、 207、307、707 電解槽、 1000 光、 1003 電流計。
100, 400, 500, 600, 800, 801, 9
00, 901 conductor layer, 101, 401, 501, 601, 701, 803, 8
04, 805, 806, 903, 904, 905, 90
6 semiconductor layer, 102, 402, 502, 602, 807, 907 transparent conductive oxide layer, 103, 403, 503, 603 current short-circuit location, 802, 902 shunt prevention layer, 808, 908 grid electrode, 504 metal manganese layer , 604 compound, 204, 304 anode electrode, 205, 305 electrolyte solution, 206, 306, 706 DC power source, 207, 307, 707 electrolysis cell, 1000 light, 1003 ammeter.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 導電性基板上に、半導体層と透明導電性
酸化物膜層とがその順序で形成された光電変換体を少な
くとも前記透明導電性酸化物に対して不溶性である第1
の電解液中に浸漬し、カソードたる前記導電性基板と前
記第1の電解液中に配設されるアノードたる対向電極と
の間に直流電圧を印加し、前記導電性基板と透明導電性
酸化物膜との間に形成される短絡箇所に対応する該透明
導電性酸化物を電解還元により除去し、次いで、前記光
電変換体を金属のイオンを含む第2の電解液中に浸漬
し、カソードたる前記導電性基板と前記第2の電解液中
に配設されるアノードたる対向電極との間に直流電圧を
印加し、前記金属を前記短絡箇所に析出させ、さらに、
前記光電変換体及び対向電極を少なくとも該対向電極に
対して不溶性の第3の電解液中に浸漬し、前記導電性基
板と前記第3の電解液中に配設される対向電極との間に
直流電圧を印加し、前記析出した金属を不溶性かつ電気
絶縁性の化合物に化学変化させることを特徴とする短絡
箇所を有する光電変換体の性能回復方法。
1. A photoelectric conversion body, in which a semiconductor layer and a transparent conductive oxide film layer are formed in this order on a conductive substrate, is insoluble in at least the transparent conductive oxide.
Of the conductive substrate as a cathode and a counter electrode as an anode arranged in the first electrolytic solution by applying a DC voltage to the conductive substrate and the transparent conductive oxide. The transparent conductive oxide corresponding to the short-circuited portion formed with the material film is removed by electrolytic reduction, and then the photoelectric conversion body is immersed in a second electrolytic solution containing metal ions to form a cathode. A direct current voltage is applied between the conductive substrate and the counter electrode, which is an anode arranged in the second electrolytic solution, to deposit the metal at the short-circuited portion, and
The photoelectric conversion body and the counter electrode are immersed in at least a third electrolytic solution insoluble in the counter electrode, and between the conductive substrate and the counter electrode disposed in the third electrolytic solution. A method for recovering performance of a photoelectric conversion element having a short-circuited portion, characterized in that a direct current voltage is applied to chemically change the deposited metal into an insoluble and electrically insulating compound.
【請求項2】 前記第1の電解液は、正イオンの酸化還
元電位である標準電極電位が0又は負であり、かつ、該
標準電極電位の絶対値が水素過電圧よりも大であること
を特徴とする請求項1に記載の短絡箇所を有する光電変
換体の性能回復方法。
2. The first electrolytic solution has a standard electrode potential, which is a redox potential of positive ions, of 0 or negative, and an absolute value of the standard electrode potential is larger than a hydrogen overvoltage. A method for recovering performance of a photoelectric conversion body having a short-circuited portion according to claim 1.
【請求項3】 前記第2の電解液は、水溶性のマンガン
塩及び水溶性のアンモニウム塩の2つ以上の塩を含有す
ることを特徴とする請求項1又は請求項2に記載の短絡
箇所を有する光電変換体の性能回復方法。
3. The short-circuited portion according to claim 1 or 2, wherein the second electrolytic solution contains two or more salts of a water-soluble manganese salt and a water-soluble ammonium salt. A method for recovering the performance of a photoelectric conversion body having.
【請求項4】 前記第2の電解液は、水溶性のマンガン
塩が0.l〜3.0mol/lの濃度範囲で、水溶性の
アンモニウム塩が0.l〜8.0mol/lの濃度範囲
であって、pHが2.0〜7.5、浴温度が−16〜+
40℃に調整されることを特徴とする請求項3に記載の
短絡箇所を有する光電変換体の性能回復方法。
4. The second electrolytic solution contains a water-soluble manganese salt of 0.1. In the concentration range of 1 to 3.0 mol / l, the water-soluble ammonium salt is 0.1. 1 to 8.0 mol / l concentration range, pH 2.0 to 7.5, bath temperature -16 to +
The method for recovering performance of a photoelectric conversion body having a short-circuited portion according to claim 3, wherein the method is adjusted to 40 ° C.
【請求項5】 前記第2の電解液は、カソ―ド電流密度
が0.l〜5.0μA/cm2 の範囲で、電解時間が1
0〜600secの範囲であることを特徴とする請求項
4に記載の短絡箇所を有する光電変換体の性能回復方
法。
5. The second electrolyte has a cathode current density of 0. The electrolysis time is 1 in the range of 1 to 5.0 μA / cm 2.
The method for recovering performance of a photoelectric conversion element having a short-circuited portion according to claim 4, wherein the method is in the range of 0 to 600 seconds.
【請求項6】 前記第3の電解液は、水酸化アンモニウ
ム、ケイ酸ナトリウム、ケイ酸カリウム、又はシュウ酸
の水溶液であることを特徴とする請求項1から請求項5
までのいずれか1項に記載の短絡箇所を有する光電変換
体の性能回復方法。
6. The method according to claim 1, wherein the third electrolytic solution is an aqueous solution of ammonium hydroxide, sodium silicate, potassium silicate, or oxalic acid.
A method for recovering the performance of a photoelectric conversion body having a short-circuited part according to any one of 1 above.
【請求項7】 前記水酸化アンモニウムの水溶液は、そ
の濃度が0.1〜20.0wt%、液温度が−5℃〜+
80℃に調整されることを特徴とする請求項6に記載の
短絡箇所を有する光電変換体の性能回復方法。
7. The aqueous solution of ammonium hydroxide has a concentration of 0.1 to 20.0 wt% and a liquid temperature of −5 ° C. to +.
The method for recovering performance of a photoelectric conversion body having a short-circuited portion according to claim 6, wherein the method is adjusted to 80 ° C.
【請求項8】 前記ケイ酸ナトリウム又はケイ酸カリウ
ムの水溶液は、その濃度が0.5〜30wt%、液温度
が−5℃〜+80℃に調整されることを特徴とする請求
項6に記載の短絡箇所を有する光電変換体の性能回復方
法。
8. The aqueous solution of sodium silicate or potassium silicate is adjusted to have a concentration of 0.5 to 30 wt%, and a liquid temperature of −5 ° C. to + 80 ° C. A method for recovering performance of a photoelectric conversion body having a short-circuited portion.
【請求項9】 前記シュウ酸の水溶液は、その濃度が
0.1〜15.0wt%、液温度が−5℃〜+80℃に
調整されることを特徴とする請求項6に記載の短絡箇所
を有する光電変換体の性能回復方法。
9. The short-circuited portion according to claim 6, wherein the concentration of the aqueous solution of oxalic acid is adjusted to 0.1 to 15.0 wt% and the liquid temperature is adjusted to −5 ° C. to + 80 ° C. A method for recovering the performance of a photoelectric conversion body having.
【請求項10】 前記第3の電解液は、アノード電流密
度が、0.1〜5,0μA/cm2 、電解時間が5〜6
00secに設定されることを特徴とする請求項7から
請求項9までのいずれか1項に記載の短絡箇所を有する
光電変換体の性能回復方法。
10. The third electrolytic solution has an anode current density of 0.1 to 5,0 μA / cm 2 , and an electrolysis time of 5 to 6.
The method for recovering performance of a photoelectric conversion body having a short-circuited portion according to any one of claims 7 to 9, wherein the method is set to 00 sec.
【請求項11】 前記導電性基板は、前記第3の電解液
中に浸漬される際に、アノードとして直流電圧が印加さ
れることを特徴とする請求項lから請求項10までのい
ずれか1項に記載の短絡箇所を有する光電変換体の性能
回復方法。
11. The electroconductive substrate according to claim 1, wherein a direct current voltage is applied as an anode when the electroconductive substrate is immersed in the third electrolytic solution. Item 5. A method for recovering the performance of a photoelectric conversion body having a short-circuit point according to the item.
JP33A 1991-11-25 1991-11-25 Performance recovery method for photoelectric conversion body having short-circuited area Pending JPH06196731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33A JPH06196731A (en) 1991-11-25 1991-11-25 Performance recovery method for photoelectric conversion body having short-circuited area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33A JPH06196731A (en) 1991-11-25 1991-11-25 Performance recovery method for photoelectric conversion body having short-circuited area

Publications (1)

Publication Number Publication Date
JPH06196731A true JPH06196731A (en) 1994-07-15

Family

ID=18290537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33A Pending JPH06196731A (en) 1991-11-25 1991-11-25 Performance recovery method for photoelectric conversion body having short-circuited area

Country Status (1)

Country Link
JP (1) JPH06196731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114364975A (en) * 2019-09-11 2022-04-15 株式会社神户制钢所 Hydrogen permeation test device
EP3420578B1 (en) * 2016-02-25 2024-01-24 NewSouth Innovations Pty Limited A method for treating a surface of a tco material in a semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3420578B1 (en) * 2016-02-25 2024-01-24 NewSouth Innovations Pty Limited A method for treating a surface of a tco material in a semiconductor device
CN114364975A (en) * 2019-09-11 2022-04-15 株式会社神户制钢所 Hydrogen permeation test device
CN114364975B (en) * 2019-09-11 2024-02-20 株式会社神户制钢所 Hydrogen permeation test device

Similar Documents

Publication Publication Date Title
US6843903B2 (en) Photo-assisted electrolysis
US5320723A (en) Method of removing short-circuit portion in photoelectric conversion device
Yang et al. Visible light illuminated high-performance WO3-TiO2-BiVO4 nanocomposite photoanodes capable of energy self-storage for photo-induced cathodic protection
US9064985B2 (en) Nickel-cobalt alloys as current collectors and conductive interconnects and deposition thereof on transparent conductive oxides
JPS5998480A (en) Multilayer photoelectrode and photocell
JPH04266068A (en) Photoelectric conversion element and its manufacture
Uosaki et al. The photoelectrochemical Behaviour of electrochemically deposited CdTe films
US4501804A (en) Photo-assisted electrolysis cell with p-silicon and n-silicon electrodes
CN104264158A (en) Preparation method of graphene/CdTe-TiO2 composite membrane photo-anode
CN104164693A (en) A preparing method of a graphene sensitized CdSe/TiO2 nanotube composite membrane
US20150122639A1 (en) Chemically Passivated Zinc Oxide Photoelectrode for Photoelectrochemical Water Splitting
US4734168A (en) Method of making n-silicon electrodes
Minoura et al. CdS-electrochemical photocell with S2− ion-containing electrolyte
Gerrard et al. A stable photo-electrochemical solar cell employing a CdSe photoanode
Adzic et al. Adsorption and alloy formation of zinc layers on silver
JPH06196731A (en) Performance recovery method for photoelectric conversion body having short-circuited area
JP7104500B2 (en) Electrodes for chemical reactions and electrochemical cells using them
US20160305035A1 (en) Metal chalcogenide thin film electrode, method for the production thereof and use
Qiao et al. Enhancing electrochemical hydrogen generation by platinum-modification of p-type silicon wires array under visible light
JP6384887B2 (en) Method for producing lead dioxide electrode
Chen et al. Noncorrosive necking treatment of the mesoporous BaSnO3 photoanode for quantum dot-sensitized solar cells
KR101798602B1 (en) Photoelectrode comprising tantalium thin film for water-splitting hydrogen evolution reaction and method for preparing the same
EP0244963A2 (en) Electrodeposited doped II-VI semiconductor films and devices incorporating such films
WO2011044340A1 (en) Electrochemical method and apparatus for removing coating from a substrate
Khan et al. Optimization of p-silicon surface by etching and electrodeposition of Pt and Ni for photosplitting of water