JPH06196162A - Non-sintered type nickel positive electrode and manufacture thereof - Google Patents

Non-sintered type nickel positive electrode and manufacture thereof

Info

Publication number
JPH06196162A
JPH06196162A JP4342469A JP34246992A JPH06196162A JP H06196162 A JPH06196162 A JP H06196162A JP 4342469 A JP4342469 A JP 4342469A JP 34246992 A JP34246992 A JP 34246992A JP H06196162 A JPH06196162 A JP H06196162A
Authority
JP
Japan
Prior art keywords
cobalt hydroxide
positive electrode
stabilizer
active material
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4342469A
Other languages
Japanese (ja)
Other versions
JP3188000B2 (en
Inventor
Chieko Aoyama
知枝子 青山
Masayuki Terasaka
雅行 寺坂
Kenji Arisawa
謙二 有澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34246992A priority Critical patent/JP3188000B2/en
Publication of JPH06196162A publication Critical patent/JPH06196162A/en
Application granted granted Critical
Publication of JP3188000B2 publication Critical patent/JP3188000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a plate utilization factor in a non-sintered type nickel positive electrode to which cobalt hydroxide powder is added. CONSTITUTION:When formic acid is used as a stabilizing agent of cobalt hydroxide powder added to an non-sintered type nickel positive electrode, oxidation in preserving the cobalt hydroxide powder can be restrained effectively, and a utilization factor can be improved effectively by adding cobalt hydroxide. When heat treatment is carried out at 160-180 deg.C after active material slurry or active material paste containing nickel hydroxide powder and the cobalt hydroxide powder formed by using the formic acid as the stabilizing agent is held by an active material holding body, since the formic acid as impurity can be decomposed and removed at heat treatment time, bad influence caused by such a reason that the formic acid remains in a positive electrode can be also removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
蓄電池、ニッケル−水素蓄電池等のアルカリ蓄電池の正
極に用いられる非焼結式ニッケル正極に関し、特に、水
酸化コバルト粉末を添加したニッケル正極及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered nickel positive electrode used for a positive electrode of an alkaline storage battery such as a nickel-cadmium storage battery and a nickel-hydrogen storage battery, and more particularly to a nickel positive electrode containing cobalt hydroxide powder and the same. The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】ニッケル−カドミウム電池などのアルカ
リ蓄電池に用いられる正極としては、従来焼結式ニッケ
ル正極が広く用いられていた。この焼結式ニッケル正極
は、パンチングメタル等の導電性芯体の表面にニッケル
粉末を主体とするスラリーを塗着し、焼結して多孔性焼
結基板を得、この基板内に、硝酸ニッケルなどのニッケ
ル塩溶液を含浸し、アルカリ処理することにより、活物
質である水酸化ニッケルを生成させて製造される。しか
しながら、多孔性焼結基板は、多孔度を大きくすると強
度が弱くなるため、多孔度を90%以上にすることは困
難であり、極板のエネルギー密度を十分に向上させるこ
とができず、また、活物質を基板内に保持させるために
は、含浸、アルカリ処理などの煩雑な工程を要するとい
う問題がある。
2. Description of the Related Art Conventionally, a sintered nickel positive electrode has been widely used as a positive electrode used in an alkaline storage battery such as a nickel-cadmium battery. In this sintered nickel positive electrode, a slurry composed mainly of nickel powder is applied to the surface of a conductive core body such as a punching metal and sintered to obtain a porous sintered substrate. Impregnated with a nickel salt solution such as the above, and treated with an alkali to produce nickel hydroxide, which is an active material. However, since the strength of the porous sintered substrate becomes weaker as the porosity increases, it is difficult to increase the porosity to 90% or more, and the energy density of the electrode plate cannot be sufficiently improved. However, there is a problem that in order to hold the active material in the substrate, complicated steps such as impregnation and alkali treatment are required.

【0003】これらの問題を解決するために、上述のよ
うに、水酸化ニッケルを基板内で生成させるのではな
く、粉末状態で活物質保持体に塗着または充填などによ
り直接保持させる非焼結式ニッケル正極が用いられるよ
うになってきた。そして、この非焼結式ニッケル正極の
活物質保持体としては、一般に、極板内の導電性、及び
活物質の充填量の向上に有効であることから、90%以
上の多孔度が得られるスポンジ状ニッケル多孔体がよく
用いられる。
In order to solve these problems, as described above, nickel hydroxide is not generated in the substrate, but is directly held in the powder state on the active material holder by coating or filling. Formula nickel positive electrodes have come into use. The active material holder for the non-sintered nickel positive electrode is generally effective in improving the conductivity in the electrode plate and the filling amount of the active material, so that a porosity of 90% or more is obtained. A sponge-like nickel porous body is often used.

【0004】ところで、上記ニッケル正極は、活物質の
利用率を向上させるために、特開昭53−51449号
公報に示されるように、従来から極板に水酸化コバルト
を添加することが広く知られている。非焼結式ニッケル
正極では、この水酸化コバルトが、活物質である水酸化
ニッケルと同様に、粉末状態で活物質保持体に直接塗着
または充填されるため、当然、極板作製時までに、水酸
化コバルトを粉末状態にしておく必要がある
By the way, it has been widely known that cobalt hydroxide is conventionally added to the electrode plate of the nickel positive electrode in order to improve the utilization rate of the active material, as disclosed in JP-A-53-51449. Has been. In a non-sintered nickel positive electrode, this cobalt hydroxide is directly applied to or filled in the active material holder in a powder state like nickel hydroxide as the active material, so naturally, before the electrode plate is manufactured. , It is necessary to keep cobalt hydroxide in powder form

【0005】[0005]

【発明が解決しようとする課題】ところが、水酸化コバ
ルトは、製造中、あるいは保存中に酸化を受け易いた
め、この酸化を防止しなければならない。このため、酸
化を防止することを目的として、水酸化コバルトに安定
化剤が使用され、この安定化剤としてブドウ糖のような
多糖類が用いられる。しかしながら、安定化剤に多糖類
を用いた水酸化コバルト粉末は、空気中での耐酸化性が
充分ではなく、前記多糖類が安定化剤としての効果が小
さい。また、安定化剤を用いた水酸化コバルト粉末を利
用すると、安定化剤が極板中に持ち込まれて残存するこ
とになり、水酸化コバルトの電気化学的酸化が行われ難
くなり、水酸化コバルトをニッケル正極に添加すること
による利用率向上の効果を充分に得ることができないと
いう問題があった。
However, since cobalt hydroxide is susceptible to oxidation during production or storage, this oxidation must be prevented. Therefore, for the purpose of preventing oxidation, a stabilizer is used for cobalt hydroxide, and a polysaccharide such as glucose is used as this stabilizer. However, the cobalt hydroxide powder using a polysaccharide as a stabilizer does not have sufficient oxidation resistance in air, and the polysaccharide has a small effect as a stabilizer. When cobalt hydroxide powder containing a stabilizer is used, the stabilizer is brought into the electrode plate and remains there, making it difficult for electrochemical oxidation of cobalt hydroxide to occur. However, there is a problem in that the effect of improving the utilization rate cannot be sufficiently obtained by adding nickel to the nickel positive electrode.

【0006】[0006]

【課題を解決するための手段】本発明の非焼結式ニッケ
ル正極は、水酸化ニッケル粉末と、ギ酸を添加した水酸
化コバルト粉末と、これら粉末を保持した活物質保持体
とを備えたことを特徴とするものである。
The non-sintered nickel positive electrode of the present invention comprises nickel hydroxide powder, formic acid-added cobalt hydroxide powder, and an active material holder holding these powders. It is characterized by.

【0007】また、前記水酸化ニッケル粉末と、ギ酸を
安定化剤とて用いた水酸化コバルト粉末を含む活物質ス
ラリーまたは活物質ペーストを、活物質保持体に保持さ
せた後、160〜180℃で熱処理して前記ニッケル正
極を製造することで、より一層の効果を奏することがで
きる。
Further, after the active material slurry or active material paste containing the nickel hydroxide powder and the cobalt hydroxide powder using formic acid as a stabilizer is held on the active material holder, the temperature is 160 to 180 ° C. Further effects can be obtained by heat-treating in order to manufacture the nickel positive electrode.

【0008】[0008]

【作用】非焼結式ニッケル正極に水酸化コバルト粉末を
添加するすることによる活物質の利用率の向上の効果
は、以下の反応(1)によって、極板中に添加された水
酸化コバルト[Co(OH)2]がオキシ水酸化コバルト
[CoOOH]に変化する際に、オキシ水酸化コバルト
が活物質である水酸化ニッケルの表面を覆い、活物質−
活物質間、及び活物質−活物質保持体間の導電性を高
め、その結果として、活物質の利用率を向上させること
によって得られる。
The effect of improving the utilization rate of the active material by adding the cobalt hydroxide powder to the non-sintered nickel positive electrode is that the cobalt hydroxide [] added to the electrode plate is obtained by the following reaction (1). When Co (OH) 2 ] is changed to cobalt oxyhydroxide [CoOOH], cobalt oxyhydroxide covers the surface of nickel hydroxide as the active material,
It is obtained by increasing the conductivity between the active materials and between the active material and the active material holder, and as a result, improving the utilization rate of the active material.

【0009】[0009]

【化1】 [Chemical 1]

【0010】ところが、水酸化コバルトの安定化剤とし
てブドウ糖などの多糖類を用いると、多糖類の安定性が
空気中で不十分なため、極板に添加するまでに、水酸化
コバルトが酸化され、充電時に反応(1)に示される反
応量が減少して、高利用率の極板を得ることはできな
い。
However, when a polysaccharide such as glucose is used as a stabilizer for cobalt hydroxide, the stability of the polysaccharide is insufficient in the air, so that cobalt hydroxide is oxidized before being added to the electrode plate. However, the amount of reaction shown in the reaction (1) decreases during charging, and it is not possible to obtain a highly-utilized electrode plate.

【0011】本発明では、水酸化コバルトの安定化剤と
してギ酸を用いており、このギ酸は、空気中での安定性
が多糖類に比較して高いため、保存中においても水酸化
コバルト粉末の酸化を効果的に抑制することができ、充
電時に反応(1)が充分に行われて、高い極板利用率を
得ることが可能となる。
In the present invention, formic acid is used as a stabilizing agent for cobalt hydroxide. Since this formic acid has a higher stability in air than that of polysaccharides, the formic acid of cobalt hydroxide powder is preserved even during storage. Oxidation can be effectively suppressed, and the reaction (1) can be sufficiently performed during charging, and a high electrode plate utilization rate can be obtained.

【0012】また、水酸化コバルト粉末に安定化剤を添
加しておくと、極板内に電池反応に不要な不純物として
安定化剤が持ち込まれることになり、ニッケル極板の充
電の際に水酸化コバルトの電気化学的酸化の進行が阻害
される。つまり、極板中には、安定化剤の残留がない方
が望ましい。
If a stabilizer is added to the cobalt hydroxide powder, the stabilizer will be brought into the electrode plate as an unnecessary impurity for the battery reaction, and water will be charged when the nickel electrode plate is charged. The progress of the electrochemical oxidation of cobalt oxide is hindered. That is, it is desirable that the stabilizer does not remain in the electrode plate.

【0013】本発明において安定化剤として用いたギ酸
は、160℃以上で分解されるため、ギ酸を添加した水
酸化コバルトを活物質保持体に保持させた後、160℃
以上の温度で熱処理してギ酸を分解除去し、安定化剤を
極板内に残存させなくすることによって、水酸化コバル
トの電気化学的酸化反応の進行が阻害されることを防止
できる。尚、前記熱処理の際に、180℃を越える温度
にすると、この熱処理によって水酸化コバルト粉末の酸
化が進行し始めるので、前記熱処理を160℃以上18
0℃以下で行うことで、利用率向上の効果をより一層発
揮することが可能となる。
Formic acid used as a stabilizer in the present invention is decomposed at 160 ° C. or higher. Therefore, after the cobalt hydroxide to which formic acid is added is held on the active material holder, 160 ° C.
It is possible to prevent the progress of the electrochemical oxidation reaction of cobalt hydroxide from being hindered by heat treatment at the above temperature to decompose and remove formic acid so that the stabilizer does not remain in the electrode plate. If the temperature exceeds 180 ° C. during the heat treatment, the oxidation of the cobalt hydroxide powder begins to proceed due to this heat treatment.
By carrying out at 0 ° C or lower, the effect of improving the utilization rate can be further exerted.

【0014】[0014]

【実施例】本発明の一実施例を、以下に示して説明す
る。 [実験1]水酸化コバルト粉末として、安定化剤にブド
ウ糖を用いたもの、ギ酸を用いたもの、及び安定化剤を
用いなかったものを夫々作製し、以下の手順で実験を行
った。
EXAMPLE An example of the present invention will be described below. [Experiment 1] As the cobalt hydroxide powder, one using glucose as a stabilizer, one using formic acid, and one not using a stabilizer were prepared, and an experiment was conducted in the following procedure.

【0015】まず、前記各水酸化コバルト粉末を空気中
において45℃で1週間放置した。次に、放置後の各水
酸化コバルト粉末10重量%と、水酸化ニッケル粉末9
0重量%とを混合し、1重量%のヒドロキシプロピルセ
ルロース水溶液を、前記混合物に対して50重量%加
え、混練してペーストを得る。このペーストをニッケル
スポンジに充填し保持させ、空気中で100℃で加熱す
ることによって乾燥し、更に、圧延成形してニッケル正
極を作製した。
First, each cobalt hydroxide powder was allowed to stand in air at 45 ° C. for one week. Next, 10% by weight of each cobalt hydroxide powder after leaving and nickel hydroxide powder 9
0% by weight is mixed, 1% by weight of hydroxypropylcellulose aqueous solution is added to the mixture by 50% by weight, and the mixture is kneaded to obtain a paste. This paste was filled and held in a nickel sponge, dried by heating in air at 100 ° C., and further roll-molded to prepare a nickel positive electrode.

【0016】このニッケル正極を焼結式カドミウム負
極、及びセパレータと組み合わせて極板群を構成し、こ
の極板群を電解液に浸漬して充放電することにより、前
記ニッケル正極の利用率を測定した。この結果を、コバ
ルト粉末に用いた安定化剤の種類と対比して表1に示
す。
This nickel positive electrode is combined with a sintered cadmium negative electrode and a separator to form an electrode plate group, and the electrode plate group is immersed in an electrolytic solution and charged and discharged to measure the utilization rate of the nickel positive electrode. did. The results are shown in Table 1 in comparison with the type of stabilizer used for the cobalt powder.

【0017】尚、充放電条件は、正極の理論容量に対す
る0.1Cの電流で16時間充電した後、正極の理論容
量に対する1/4Cの電流で放電するものであり、極板
の利用率は、ブドウ糖を安定化剤として用いた正極を1
00として示した。
The charging / discharging conditions are such that the battery is charged with a current of 0.1 C for the theoretical capacity of the positive electrode for 16 hours, and then discharged with a current of 1/4 C for the theoretical capacity of the positive electrode. , 1 positive electrode using glucose as a stabilizer
It is shown as 00.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から、安定化剤にギ酸を用いた水酸化
コバルト粉末を利用したニッケル正極は、極板利用率が
最も高いことがわかる。これは、空気中での放置におけ
る水酸化コバルト粉末の酸化の度合いによるものであ
り、水酸化コバルトの酸化が抑えられたものほど極板利
用率は高くなる。安定化剤を添加していない水酸化コバ
ルト粉末の酸化が最も多く生じており、安定化剤を使用
した場合においても、ギ酸はブドウ糖に比較して、水酸
化コバルトの空気中における酸化抑制作用が優れてお
り、ギ酸を使用した水酸化コバルトを用いた時が最も高
い極板利用率となっている。
From Table 1, it can be seen that the nickel positive electrode using the cobalt hydroxide powder using formic acid as the stabilizer has the highest electrode plate utilization rate. This is due to the degree of oxidation of the cobalt hydroxide powder when left in the air, and the more the oxidation of cobalt hydroxide is suppressed, the higher the electrode plate utilization rate becomes. The oxidation of cobalt hydroxide powder without the addition of stabilizer was most frequently observed, and even when a stabilizer was used, formic acid had the effect of suppressing the oxidation of cobalt hydroxide in air in comparison with glucose. It is excellent and has the highest electrode plate utilization rate when cobalt hydroxide using formic acid is used.

【0020】[実験2]実験1において、前記三種類の
水酸化コバルト粉末を、夫々放置をおこなわず(水酸化
コバルトは酸化されていない)に使用し、活物質ペース
トをニッケルスポンジに保持させた後の空気中での乾燥
温度を、100℃、130℃、160℃、180℃、2
00℃と変化させ、その他は実験1と同様にしてニッケ
ル正極を作製し、極板の利用率を測定した。こうして測
定した極板利用率を表2に示す。表2では、乾燥温度1
00℃における安定化剤なしの極板利用率を100とし
て示した。
[Experiment 2] In Experiment 1, the above-mentioned three kinds of cobalt hydroxide powders were used without being left standing (cobalt hydroxide was not oxidized), and the active material paste was retained on the nickel sponge. The subsequent drying temperature in air is 100 ° C, 130 ° C, 160 ° C, 180 ° C, 2
A nickel positive electrode was prepared in the same manner as in Experiment 1 except that the temperature was changed to 00 ° C., and the utilization rate of the electrode plate was measured. The electrode plate utilization rate thus measured is shown in Table 2. In Table 2, drying temperature 1
The electrode plate utilization rate without a stabilizer at 00 ° C. is shown as 100.

【0021】[0021]

【表2】 [Table 2]

【0022】100℃〜130℃で乾燥した時には、水
酸化コバルトに安定化剤を用いた正極は、安定化剤を用
いていない正極より、極板利用率が低くなっている。ま
た、ギ酸を安定化剤として用いた場合には、乾燥温度を
160℃〜180℃にすると、安定化剤を用いなかった
場合と同等の極板利用率が得られている。これは、極板
内における不純物としての安定化剤の有無によるものと
考えられ、乾燥温度160℃〜180℃では、安定化剤
として添加したギ酸が乾燥時に分解、除去されるため、
安定化剤を用いなかった場合と同等の極板利用率になっ
ている。
When dried at 100 ° C. to 130 ° C., the positive electrode using the stabilizer in cobalt hydroxide has a lower electrode plate utilization rate than the positive electrode not using the stabilizer. Further, when formic acid is used as the stabilizer, when the drying temperature is set to 160 ° C to 180 ° C, the same electrode plate utilization ratio as that obtained when the stabilizer is not used is obtained. This is considered to be due to the presence or absence of a stabilizer as an impurity in the electrode plate. At a drying temperature of 160 ° C to 180 ° C, formic acid added as a stabilizer is decomposed and removed during drying.
The electrode plate utilization rate is the same as when the stabilizer is not used.

【0023】また、乾燥温度を200℃にした場合に
は、何れの正極も乾燥時に水酸化コバルト粉末の酸化が
進行するため、極板中における未酸化の水酸化コバルト
が減少する。このため、極板を充電する際に、水酸化コ
バルトの電気的酸化による反応量が少なくなり、極板利
用率が低下する。
When the drying temperature is set to 200 ° C., the oxidation of the cobalt hydroxide powder proceeds during the drying of any positive electrode, so that the amount of unoxidized cobalt hydroxide in the electrode plate is reduced. Therefore, when the electrode plate is charged, the reaction amount due to the electrical oxidation of cobalt hydroxide is reduced, and the electrode plate utilization rate is reduced.

【0024】[0024]

【発明の効果】本発明の非焼結式ニッケル正極は、正極
に添加する水酸化コバルト粉末の安定化剤としてギ酸を
用いることにより、水酸化コバルト粉末の保存中におけ
る酸化を効果的に抑制することができ、水酸化コバルト
添加による極板利用率向上の効果を十分に発揮させるこ
とができる。
INDUSTRIAL APPLICABILITY The non-sintered nickel positive electrode of the present invention effectively suppresses the oxidation of the cobalt hydroxide powder during storage by using formic acid as a stabilizer of the cobalt hydroxide powder added to the positive electrode. Therefore, the effect of improving the electrode plate utilization rate by adding cobalt hydroxide can be sufficiently exerted.

【0025】また、水酸化ニッケル粉末と、ギ酸を安定
化剤として用いた水酸化コバルト粉末を含む活物質スラ
リーまたは活物質ペーストを、活物質保持体に保持させ
た後、160〜180℃で熱処理することにより、不純
物としてのギ酸の悪影響をも取り除くことができ、より
一層の効果を得ることができる。
Further, an active material slurry or an active material paste containing nickel hydroxide powder and cobalt hydroxide powder using formic acid as a stabilizer is held on an active material holder and then heat-treated at 160 to 180 ° C. By doing so, the adverse effect of formic acid as an impurity can be removed, and a further effect can be obtained.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月10日[Submission date] May 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】ところで、上記ニッケル正極は、活物質の
利用率を向上させるために、特開昭53−51449号
公報に示されるように、従来から極板に水酸化コバルト
を添加することが広く知られている。
By the way, the nickel positive electrode is made of an active material.
To improve the utilization rate, JP-A-53-51449
As disclosed in the official gazette, cobalt hydroxide is conventionally used for the electrode plate.
It is widely known to add.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【発明が解決しようとする課題】ところが、水酸化コバ
ルトは、製造中、あるいは保存中に酸化を受け易いた
め、この酸化を防止しなければならない。このため、酸
化を防止することを目的として、水酸化コバルトに安定
化剤が使用され、この安定化剤としてブドウ糖のような
多糖類が用いられる。しかしながら、安定化剤に多糖類
を用いた水酸化コバルト粉末は、空気中での耐酸化性が
充分ではなく、前記多糖類の安定化剤としての効果は
さい。また、安定化剤を用いた水酸化コバルト粉末を利
用すると、安定化剤が極板中に持ち込まれて残存するこ
とになり、水酸化コバルトの電気化学的酸化が行われ難
くなり、水酸化コバルトをニッケル正極に添加すること
による利用率向上の効果を充分に得ることができないと
いう問題があった。
However, since cobalt hydroxide is susceptible to oxidation during production or storage, this oxidation must be prevented. Therefore, for the purpose of preventing oxidation, a stabilizer is used for cobalt hydroxide, and a polysaccharide such as glucose is used as this stabilizer. However, the cobalt hydroxide powder using a polysaccharide as a stabilizer does not have sufficient oxidation resistance in air, and the effect of the polysaccharide as a stabilizer is small. When cobalt hydroxide powder containing a stabilizer is used, the stabilizer is brought into the electrode plate and remains there, making it difficult for electrochemical oxidation of cobalt hydroxide to occur. However, there is a problem in that the effect of improving the utilization rate cannot be sufficiently obtained by adding nickel to the nickel positive electrode.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】また、前記水酸化ニッケル粉末と、ギ酸を
安定化剤として用いた水酸化コバルト粉末を含む活物質
スラリ−または活物質ペ−ストを、活物質保持体に保持
させた後、160〜180℃で熱処理して前記ニッケル
正極を製造することで、より一層の効果を奏することが
できる。
Further, the nickel hydroxide powder and formic acid are
An active material slurry or active material paste containing cobalt hydroxide powder used as a stabilizer is held on an active material holder and then heat treated at 160 to 180 ° C. to produce the nickel positive electrode. Further, it is possible to obtain further effects.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】ところが、水酸化コバルトの安定化剤とし
てブドウ糖などの多糖類を用いると、多糖類の安定化剤
としての効果が不十分なため、極板に添加するまでに、
水酸化コバルトが酸化され、充電時に反応(1)に示さ
れる反応量が減少して、高利用率の極板を得ることはで
きない。
However, when a polysaccharide such as glucose is used as a stabilizer for cobalt hydroxide, a stabilizer for the polysaccharide is obtained.
As the effect as is insufficient, by the time it is added to the electrode plate,
The cobalt hydroxide is oxidized and the reaction amount shown in the reaction (1) during charging is reduced, so that it is not possible to obtain a highly-utilized electrode plate.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】本発明では、水酸化コバルトの安定化剤と
してギ酸を用いており、このギ酸は、安定化剤としての
効果が多糖類に比較して高いため、保存中においても水
酸化コバルト粉末の酸化を効果的に抑制することがで
き、充電時に反応(1)が充分に行われて、高い極板利
用率を得ることが可能となる。
In the present invention, formic acid is used as a stabilizer for cobalt hydroxide, and this formic acid is used as a stabilizer.
Since the effect is higher than that of polysaccharides, it is possible to effectively suppress the oxidation of the cobalt hydroxide powder even during storage, and the reaction (1) is sufficiently performed during charging, resulting in a high electrode plate utilization rate. It becomes possible to obtain.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】また、安定化剤を用いた水酸化コバルトを
利用した場合、極板内に電池反応に不要な不純物として
安定化剤が持ち込まれることになり、ニッケル極板の充
電の際に水酸化コバルトの電気化学的酸化の進行が阻害
される。つまり、極板中には、安定化剤の残留がない方
が望ましい。
Further, cobalt hydroxide using a stabilizer is
When utilized, a stabilizer is brought into the electrode plate as an unnecessary impurity for the battery reaction, which hinders the electrochemical oxidation of cobalt hydroxide during charging of the nickel electrode plate. That is, it is desirable that the stabilizer does not remain in the electrode plate.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】本発明において安定化剤として用いたギ酸
は、160℃以上で分解されるため、ギ酸を添加した水
酸化コバルトを活物質保持体に保持させた後、160℃
以上の温度で熱処理してギ酸を分解除去し、安定化剤を
極板内に残存させないようにすることによって、水酸化
コバルトの電気化学的酸化反応の進行が阻害されること
を防止できる。尚、前記熱処理の際に、180℃を越え
る温度にすると、この熱処理によって水酸化コバルト粉
末の酸化が進行し始めるので、前記熱処理を160℃以
上180℃以下で行うことで、利用率向上の効果をより
一層発揮することが可能となる。
Formic acid used as a stabilizer in the present invention is decomposed at 160 ° C. or higher. Therefore, after the cobalt hydroxide to which formic acid is added is held on the active material holder, 160 ° C.
By heat treating at the above temperature to decompose and remove formic acid so that the stabilizer does not remain in the electrode plate, it is possible to prevent the progress of the electrochemical oxidation reaction of cobalt hydroxide from being hindered. When the temperature exceeds 180 ° C. during the heat treatment, the oxidation of the cobalt hydroxide powder begins to proceed due to this heat treatment. Therefore, the heat treatment is performed at 160 ° C. or higher and 180 ° C. or lower, thereby improving the utilization factor. It is possible to exert even more.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】表1から、安定化剤にギ酸を用いた水酸化
コバルト粉末を利用したニッケル正極は、極板利用率が
最も高いことがわかる。これは、空気中での放置におけ
る水酸化コバルト粉末の酸化の度合いによるものであ
り、水酸化コバルトの酸化が抑えられたものほど極板利
用率は高くなる。安定化剤を添加していない水酸化コバ
ルト粉末の酸化が最も多く生じており、安定化剤を使用
した場合においても、ギ酸はブドウ糖に比較して、水酸
化コバルトの空気中における酸化抑制作用が優れてい
る。
From Table 1, hydroxylation using formic acid as a stabilizer
The nickel positive electrode using cobalt powder has a high electrode plate utilization rate.
You can see that it is the highest. This should be left in the air
It depends on the degree of oxidation of the cobalt hydroxide powder.
The more the cobalt hydroxide is suppressed, the better
Usage rate becomes high. KOH hydroxide without added stabilizer
Oxidation of salt powder occurs the most and stabilizers are used.
Even if it does, formic acid is more
Excellent in inhibiting oxidation of cobalt oxide in air
It

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル粉末と、ギ酸を安定化剤
として用いた水酸化コバルト粉末と、これら粉末を保持
する活物質保持体とを備えたことを特徴とする非焼結式
ニッケル正極。
1. A non-sintered nickel positive electrode comprising nickel hydroxide powder, cobalt hydroxide powder using formic acid as a stabilizer, and an active material holder for holding these powders.
【請求項2】 水酸化ニッケル粉末と、ギ酸を安定化剤
として用いた水酸化コバルト粉末を含む活物質スラリー
または活物質ペーストを活物質保持体に保持させた後、
160〜180℃で熱処理することを特徴とする非焼結
式ニッケル正極の製造方法。
2. After holding an active material slurry or active material paste containing nickel hydroxide powder and cobalt hydroxide powder using formic acid as a stabilizer on an active material holder,
A method for producing a non-sintered nickel positive electrode, which comprises heat-treating at 160 to 180 ° C.
JP34246992A 1992-12-22 1992-12-22 Non-sintered nickel positive electrode Expired - Lifetime JP3188000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34246992A JP3188000B2 (en) 1992-12-22 1992-12-22 Non-sintered nickel positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34246992A JP3188000B2 (en) 1992-12-22 1992-12-22 Non-sintered nickel positive electrode

Publications (2)

Publication Number Publication Date
JPH06196162A true JPH06196162A (en) 1994-07-15
JP3188000B2 JP3188000B2 (en) 2001-07-16

Family

ID=18353984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34246992A Expired - Lifetime JP3188000B2 (en) 1992-12-22 1992-12-22 Non-sintered nickel positive electrode

Country Status (1)

Country Link
JP (1) JP3188000B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771041A1 (en) 1995-10-24 1997-05-02 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode and alkaline storage battery using the same
US20150372285A1 (en) * 2014-06-24 2015-12-24 Basf Corporation Metal Hydride Battery Electrodes
WO2016204742A1 (en) * 2015-06-17 2016-12-22 Basf Corporation Metal hydride battery electrodes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771041A1 (en) 1995-10-24 1997-05-02 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode and alkaline storage battery using the same
US5707761A (en) * 1995-10-24 1998-01-13 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode and alkaline storage battery using the same
US20150372285A1 (en) * 2014-06-24 2015-12-24 Basf Corporation Metal Hydride Battery Electrodes
WO2016204742A1 (en) * 2015-06-17 2016-12-22 Basf Corporation Metal hydride battery electrodes

Also Published As

Publication number Publication date
JP3188000B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
US3653967A (en) Positive electrode for use in nickel cadmium cells and the method for producing same and products utilizing same
US3288643A (en) Process for making charged cadmium electrodes
JPH06196162A (en) Non-sintered type nickel positive electrode and manufacture thereof
KR830000240B1 (en) Manufacturing method of nickel electrode
US5514497A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
JPH10162820A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JPH0630248B2 (en) Nickel electrode for alkaline batteries
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
JPH06196161A (en) Alkaline storage battery
JP2000311680A (en) Sintered type positive electrode plate for nickel- hydrogen battery, its manufacture and nickel-hydrogen battery
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3691281B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3454614B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3238949B2 (en) Activation method of alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3118357B2 (en) Non-sintered positive electrode plate for alkaline storage batteries
JPS63114061A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JP2505343B2 (en) Tantalum powder and method for producing the same
JP3691257B2 (en) Method for producing sintered cadmium negative electrode for alkaline storage battery
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS5968172A (en) Manufacture of catalyst for oxygen electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12