JPH06191921A - Stabilization of dispersion of slurry for forming ceramics - Google Patents

Stabilization of dispersion of slurry for forming ceramics

Info

Publication number
JPH06191921A
JPH06191921A JP4343786A JP34378692A JPH06191921A JP H06191921 A JPH06191921 A JP H06191921A JP 4343786 A JP4343786 A JP 4343786A JP 34378692 A JP34378692 A JP 34378692A JP H06191921 A JPH06191921 A JP H06191921A
Authority
JP
Japan
Prior art keywords
slurry
ceramic powder
ceramics
dispersion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4343786A
Other languages
Japanese (ja)
Inventor
Tatsuya Kawahara
竜也 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4343786A priority Critical patent/JPH06191921A/en
Publication of JPH06191921A publication Critical patent/JPH06191921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a process for stabilizing the dispersion of a slurry for forming ceramics, effective for suppressing the variation of the viscosity of slurry having excellent standing stability and enabling easy and sure forming of a ceramic article. CONSTITUTION:Ceramic powder having 1-2 water molecules preparatorily adsorbed to the surface based on one Si-OH group is used when a copolymer of a polyoxypropylene alkyl ether and maleic anhydride is used as a dispersing agent. Water molecules are adsorbed to the surface of ceramic powder in advance and the acid anhydride group of the dispersing agent is hydrolyzed on the surface of the ceramic powder to form two carboxyl groups and, at the same time, to effect the adsorption of the groups to the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス成形用ス
ラリの分散安定化法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion stabilizing method for ceramics forming slurry.

【0002】[0002]

【従来の技術】従来、複雑な形状のセラミックス製品を
成形する場合は、セラミック粉末に高分子またはワック
スなどの熱可塑性物質をバインダーとして混合して射出
成形する方法があり、これが実用化されている。また、
セラミック粉末を水に分散させ、ゲル化剤等の固化剤で
固化させる方法も提案されている。
2. Description of the Related Art Conventionally, in the case of molding a ceramic product having a complicated shape, there has been a method in which a ceramic powder is mixed with a thermoplastic substance such as a polymer or a wax as a binder and injection molding is carried out. . Also,
A method has also been proposed in which ceramic powder is dispersed in water and solidified with a solidifying agent such as a gelling agent.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記有機バイ
ンダーを用いる射出成形法では、高粘度の材料を高圧で
金型内に射出注入するために、成形体に関しては流動性
が不十分であることでジェッティングが発生しやすい等
の不具合がある。また、水系固化成形では、水の除去
(乾燥)中に成形体が割れやすい等の不具合がある。
However, in the injection molding method using the above organic binder, since a high-viscosity material is injected and injected into the mold at high pressure, the fluidity of the molded body is insufficient. There is a problem that jetting easily occurs. In addition, in the water-based solidification molding, there is a problem that the molded body is easily broken during removal (drying) of water.

【0004】そこで、本出願人は、先の提案(特願平3
−334402号)において、セラミック粉末、有機溶
剤、分散剤及び固化剤からなるセラミックス成形用スラ
リを低圧で所定の型内に注入し、固化してセラミックス
成形体を得るセラミックス成形方法を提案した。この成
形方法によれば、材料の流動性が高められ、成形して脱
型後に成形体形状を保持でき、かつ成形体からの脱脂が
容易となる。そして、かかる成形方法において、分散剤
としてポリオキシプロピレンアルキルエーテルと無水マ
レイン酸との共重合物を採用したスラリを採用すれば、
スラリが静置安定性に優れ、成形が容易であるという優
れた効果を発揮しうる。
Therefore, the applicant of the present invention has proposed the above proposal (Japanese Patent Application No.
No. 334402), a ceramics molding method was proposed in which a ceramics molding slurry comprising a ceramic powder, an organic solvent, a dispersant and a solidifying agent was injected into a predetermined mold at a low pressure and solidified to obtain a ceramics molded body. According to this molding method, the fluidity of the material is enhanced, the shape of the molded body can be maintained after molding and demolding, and degreasing from the molded body becomes easy. Then, in such a molding method, if a slurry employing a copolymer of polyoxypropylene alkyl ether and maleic anhydride is used as a dispersant,
The slurry has excellent static stability and can be easily molded.

【0005】しかしながら、上記提案の成形方法におい
て、分散剤としてポリオキシプロピレンアルキルエーテ
ルと無水マレイン酸との共重合物を採用したスラリで
は、スラリ粘度にバラツキが生じやすく、成形性を損な
うこともある。本発明は、上記した従来の実情に鑑みて
なされたものであって、静置安定性に優れたスラリの粘
度のバラツキを小さくし、成形を確実に容易に行い得る
セラミックス成形用スラリの分散安定化法を提供するこ
とを目的とする。
However, in the above-mentioned molding method, in the slurry in which the copolymer of polyoxypropylene alkyl ether and maleic anhydride is adopted as the dispersant, the viscosity of the slurry tends to vary, and the moldability may be impaired. . The present invention has been made in view of the above-mentioned conventional circumstances, in which the dispersion of the viscosity of the slurry having excellent static stability is reduced, and the dispersion stability of the ceramics molding slurry that can be reliably and easily formed is stable. The purpose is to provide a chemical method.

【0006】[0006]

【課題を解決するための手段】本発明のセラミックス成
形用スラリの分散安定化法は、セラミック粉末、有機溶
剤、分散剤及び固化剤からなるセラミックス成形用スラ
リを低圧で所定の型内に注入し、固化してセラミックス
成形体を得るセラミックス成形方法におけるセラミック
ス成形用スラリの分散安定化法であって、前記分散剤が
ポリオキシプロピレンアルキルエーテルと無水マレイン
酸との共重合物であるとき、前記セラミック粉末は表面
にシラノール基1個当たり水分子が1〜2個予め吸着さ
れたものであることを特徴とする。
A method for stabilizing dispersion of a ceramics molding slurry of the present invention comprises injecting a ceramics molding slurry comprising a ceramic powder, an organic solvent, a dispersant and a solidifying agent into a predetermined mold at a low pressure. A method for stabilizing dispersion of a ceramics molding slurry in a ceramics molding method for solidifying a ceramics compact, wherein the dispersant is a copolymer of polyoxypropylene alkyl ether and maleic anhydride, the ceramics The powder is characterized in that one or two water molecules per one silanol group are pre-adsorbed on the surface.

【0007】[0007]

【作用】分散剤には、図1(A)に示すブロック重合タ
イプの分散剤と、図1(B)に示すグラフト重合タイプ
の分散剤とがあることが知られている。ブロック重合タ
イプの分散剤及びグラフト重合タイプの分散剤は、いず
れもループRやテールTという側鎖が他のものと反発し
あって分散効果を発揮すると考えられている。
It is known that the dispersant includes a block polymerization type dispersant shown in FIG. 1 (A) and a graft polymerization type dispersant shown in FIG. 1 (B). It is considered that the block polymerization type dispersant and the graft polymerization type dispersant each exhibit a dispersing effect because the side chains of loop R and tail T repel each other.

【0008】ここに、ポリオキシプロピレンアルキルエ
ーテルと無水マレイン酸との共重合物(以下、PM共重
合物という。)は、図2に示す構造式を有し、唯一側鎖
を密にもつグラフト重合タイプの高分子である。なお、
PM共重合物は、図2に示すように、ポリオキシプロピ
レンアルキルエーテルと無水マレイン酸とスチレンとの
共重合物であってもよい。このため、このPM共重合物
は、分散剤として用いられることにより、セラミック粉
末間の安定的な反発をもたらし、凝集を防ぐことから、
図3に示すように、同一粉体濃度において、最も静置安
定性にすぐれ、成形時のメリットが大きいと考えられ
る。
Here, a copolymer of polyoxypropylene alkyl ether and maleic anhydride (hereinafter referred to as PM copolymer) has the structural formula shown in FIG. 2 and is a graft having only one side chain densely. It is a polymer type polymer. In addition,
The PM copolymer may be a copolymer of polyoxypropylene alkyl ether, maleic anhydride and styrene, as shown in FIG. Therefore, this PM copolymer, when used as a dispersant, causes stable repulsion between the ceramic powders and prevents aggregation,
As shown in FIG. 3, it is considered that at the same powder concentration, the static stability is the highest and the merit during molding is great.

【0009】しかしながら、このPM共重合物を用いて
同一組成のスラリを調製しても、スラリ粘度に大きなバ
ラツキを生じてしまう。これは、PM共重合物(図2参
照)におけるセラミック粉末表面への吸着基である無水
酸の部分(O=COC=O基)と、セラミック粉末表面
上の官能基であるシラノール基(Si−OH基)との吸
着力が大気の湿度等により影響を受けやすく不十分にな
りやすいためであると考えられる。
However, even if a slurry having the same composition is prepared using this PM copolymer, a large variation occurs in the viscosity of the slurry. This is because the acid anhydride part (O = COC = O group) which is an adsorption group on the surface of the ceramic powder in the PM copolymer (see FIG. 2) and the silanol group (Si-) which is a functional group on the surface of the ceramic powder. It is considered that this is because the adsorptive power with (OH group) is easily influenced by the humidity of the atmosphere and the like and becomes insufficient.

【0010】そこで、本発明者は、PM共重合物のセラ
ミック粉末への吸着力を向上させるためには、無水酸の
部分を予め加水分解して2個のカルボキシル基(COO
H基)にすることを案出した。しかしながら、このPM
共重合物は、そのほとんどが疎水基であるため、たとえ
PM共重合物自体に予め加湿等の処理を行ってもほとん
ど吸水せず、また無理に化学的に加水分解を行おうした
場合には他の部分が分解してしまうため、セラミック粉
末表面との吸着力を確実に高める効果が期待できない。
このため、図4に示すように、同一粉体濃度において
も、スラリの粘度にバラツキが生じやすく、スラリ粘度
が極端に高くなれば成形性を損なうこともある。
Therefore, in order to improve the adsorptive power of the PM copolymer to the ceramic powder, the present inventor hydrolyzed the acid anhydride portion in advance to obtain two carboxyl groups (COO).
H group). However, this PM
Since most of the copolymers are hydrophobic groups, they hardly absorb water even if the PM copolymer itself is preliminarily subjected to a treatment such as humidification, and when it is forcibly hydrolyzed. Since other parts are decomposed, the effect of surely increasing the adsorption force with the surface of the ceramic powder cannot be expected.
Therefore, as shown in FIG. 4, variations in the viscosity of the slurry are likely to occur even at the same powder concentration, and if the slurry viscosity becomes extremely high, the formability may be impaired.

【0011】そこで、本発明では、図5(A)に示すよ
うに、吸着される側のセラミック粉末の表面に予め表面
のSi−OH基1個当たり1〜2個の水分子(H2 O)
を吸着させておき、図5(B)に示すように、セラミッ
ク粉末の表面でPM共重合物の無水酸の部分を加水分解
して2個のカルボキシル基(COOH基)にすると同時
に吸着させようとするものである。
Therefore, in the present invention, as shown in FIG. 5 (A), one or two water molecules (H 2 O) per Si-OH group on the surface are previously formed on the surface of the ceramic powder on the adsorbed side. )
As shown in FIG. 5B, the acid anhydride part of the PM copolymer is hydrolyzed to two carboxyl groups (COOH groups) on the surface of the ceramic powder, and at the same time, it is adsorbed. It is what

【0012】[0012]

【実施例】以下、本発明を具体化した実施例を比較例と
ともに図面を参照しつつ説明する。 (実施例)セラミック粉末として下記のものを用意し
た。
Embodiments of the present invention will now be described with reference to the drawings along with comparative examples. (Example) The following was prepared as a ceramic powder.

【0013】 Si3 4 粉末(粒径0.1〜1μm、平均粒径0.5μm)100重量部 Y2 3 粉末(粒径0.1〜1μm、平均粒径0.8μm) 5重量部 Al2 3 粉末(粒径0.1〜1μm、平均粒径0.3μm) 5重量部 次に、上記セラミック粉末を40℃、70%の恒温恒湿
器内でパレット上に浅く広げ、48時間加湿処理を行っ
た。この時のH2 O吸着量を主原料であるSi 3 4
末に関して測定したところ、Si−OH基1ケ当たり、
1.5ケに相当するものであった(この計算は、加熱減
量法によるH2 O吸着量測定、BET式比表面積測定及
びSi3 4 粉末の表面官能基密度の文献値に基づ
く。)。
Si3NFourPowder (particle size 0.1 to 1 μm, average particle size 0.5 μm) 100 parts by weight Y2O3Powder (particle size 0.1 to 1 μm, average particle size 0.8 μm) 5 parts by weight Al2O3Powder (particle size 0.1 to 1 μm, average particle size 0.3 μm) 5 parts by weight Next, the above ceramic powder is kept at 40 ° C. and 70% constant temperature and constant humidity.
Spread it shallowly on a pallet in the container and perform humidification for 48 hours.
It was H at this time2O adsorption amount is the main raw material Si 3NFourpowder
When the powder was measured, per Si-OH group,
It was equivalent to 1.5 (this calculation
H by quantitative method2O adsorption amount measurement, BET type specific surface area measurement
And Si3NFourBased on the literature value of surface functional group density of powder
Ku. ).

【0014】上記処理粉末に対し、下記の配合で溶媒と
分散剤とを混合し、ボールミルによって湿式混粉を行っ
た。 溶媒:工業ガソリン 50重量部 分散剤:PM共重合物(日本油脂製、マリアリム) 5重量部 処理粉末 45重量部 上記で得られたスラリに下記ゲル化剤を添加し、80℃
で加熱溶解した後、エバポレータによって10000c
pまで濃縮を行った。この時の粉体濃度は51体積(v
ol)%であった。
The treated powder was mixed with a solvent and a dispersant in the following formulation, and wet-mixed with a ball mill. Solvent: Industrial gasoline 50 parts by weight Dispersant: PM copolymer (Made by NOF CORPORATION, Marialim) 5 parts by weight Treated powder 45 parts by weight The following gelling agent was added to the slurry obtained above, and the temperature was 80 ° C.
After heating and melting at 10000c with an evaporator
It concentrated to p. At this time, the powder concentration is 51 volume (v
ol)%.

【0015】 ゲル化剤:12ヒドロキシステアリン酸 7.5重量部 この濃縮スラリを40℃に温調した金型に2kg/cm
2 で注入し、3分後に脱型して、5mm×7mm×45
mmの角柱状のセラミックス成形体を得た。得られたセ
ラミックス成形体を60℃×10時間で乾燥した後、2
0℃/時間で450℃まで昇温後、3時間保持して有機
分を除去し、さらにN2 中1800℃で焼成してセラミ
ックス焼結体を得た。
Gelling agent: 12 hydroxystearic acid 7.5 parts by weight 2 kg / cm 2 of this concentrated slurry was placed in a mold whose temperature was adjusted to 40 ° C.
Injected at 2 and demolded after 3 minutes, 5mm x 7mm x 45
A prismatic ceramic molded body of mm was obtained. After drying the obtained ceramic molded body at 60 ° C. for 10 hours, 2
After the temperature was raised to 450 ° C. at 0 ° C./hour, the organic matter was removed by holding for 3 hours, and further fired in N 2 at 1800 ° C. to obtain a ceramics sintered body.

【0016】このセラミックス焼結体をJISで定めら
れた4点曲げ試験法で評価したところ、平均強度115
0MPa(n=20)であった。 (比較例(従来法))上記実施例と同一配合のセラミッ
ク粉末を原料袋開封直後に混粉を行い、加湿処理工程を
除いて実施例と同一の工程でスラリを作製し、1000
0cpまで濃縮を行った。この時の粉体濃度は49vo
l%であった。さらに、実施例と同一条件で成形、脱
脂、焼成を行って得たセラミックス焼結体について、同
様の4点曲げ試験を行ったところ、平均強度980MP
a(n=20)であった。 (評価)したがって、比較例に対し、実施例ではセラミ
ックス焼結体の強度が向上していることがわかる。これ
は、セラミック粉末の加湿処理に伴うPM共重合物の分
散機能向上により、成形時の粉末充填密度が向上したた
めと、セラミック粉末相互の凝集が解消され、主材であ
るSi3 4 粉末と焼結助剤であるY2 3 粉末及びA
2 3 粉末とが相互に均一に分散されたためとによる
結果と考えられる。 (試験1)次に、実施例と同様な手順で作製したA〜E
の複数ロットのスラリを実施例と同一粉体濃度(51v
ol%)まで濃縮し、各濃縮スラリの粘度を測定した。
これにより、各ロットのスラリの粘度のバラツキを評価
した。結果を図6に示す。
When this ceramic sintered body was evaluated by the 4-point bending test method defined by JIS, the average strength was 115.
It was 0 MPa (n = 20). (Comparative Example (Conventional Method)) Ceramic powder having the same composition as the above example was mixed immediately after opening the raw material bag, and a slurry was prepared in the same process as the example except for the humidification treatment step.
Concentration was performed to 0 cp. The powder concentration at this time is 49 vo
It was 1%. Furthermore, when the same four-point bending test was performed on the ceramics sintered body obtained by performing molding, degreasing and firing under the same conditions as in the example, the average strength was 980MP.
It was a (n = 20). (Evaluation) Therefore, it can be seen that the strength of the ceramic sintered body is improved in the example as compared with the comparative example. This is because the dispersion function of the PM copolymer accompanying the humidification treatment of the ceramic powder improved the powder packing density at the time of molding, and the agglomeration of the ceramic powders was eliminated, resulting in the Si 3 N 4 powder being the main material. Sintering aid Y 2 O 3 powder and A
It is considered that this is because the 1 2 O 3 powder and the powder were uniformly dispersed. (Test 1) Next, A to E prepared in the same procedure as in the example
The same powder concentration (51v
The concentration of each concentrated slurry was measured.
Thus, the variation in the viscosity of the slurry of each lot was evaluated. Results are shown in FIG.

【0017】図6より、A〜Eロット毎にほとんどバラ
ツキが見られず、従来と比べて安定的に高分散なスラリ
が得られたことがわかる。この結果、これまでは毎ロッ
ト成形条件のあわせ込みの調整が不可欠であったが、本
発明の分散安定化法を導入することで、この調整が不要
となり、工数低減及び調整のための無駄なスラリの消費
の解消が実現できることもわかる。 (試験2)図7は、セラミック粉末としての前記Si3
4 粉末に恒温恒湿器又はオートクレーブを行いて水を
吸着させ、その後分散剤としての前記PM共重合体を用
いて工業ガソリンに分散させることにより、スラリ化し
た場合の粘度を調査したものである。横軸はセラミック
粉末の比表面積及び表面官能基の面積当たりの数と、水
の吸着量とから算出した表面官能基1ケ当たりの水分子
数である。
From FIG. 6, it can be seen that almost no variation was observed among the lots A to E, and a highly dispersed slurry was stably obtained as compared with the conventional one. As a result, until now it was indispensable to adjust the adjustment of the molding conditions for each lot, but by introducing the dispersion stabilization method of the present invention, this adjustment becomes unnecessary, and the number of man-hours is reduced and unnecessary for adjustment. It can also be seen that the consumption of slurry can be eliminated. (Test 2) FIG. 7 shows Si 3 as the ceramic powder.
The N 4 powder was subjected to a thermo-hygrostat or an autoclave to adsorb water, and then the PM copolymer as a dispersant was used to disperse it in industrial gasoline to investigate the viscosity when slurried. is there. The horizontal axis represents the number of water molecules per surface functional group calculated from the specific surface area of the ceramic powder and the number of surface functional groups per area, and the adsorption amount of water.

【0018】図7から、水分子の吸着量が表面官能基1
ケ当たり1〜2分子の範囲で最もスラリ粘度が低下して
おり、水分子吸着による分散剤の吸着向上及びそれに伴
うスラリの高分散化が実現していることがわかる。ここ
で、水分子数が多すぎた場合にもスラリ粘度が増大して
いるのは、過多な水分子がスラリ中でセラミック粉末表
面より解離し、分散剤と共にエマルジョンを形成して有
効分散数を低減させているためと考えられる。理論的に
は表面官能基1ケ当たり0.5ケの水分子で十分である
はずだが、実際に機能させるためには、それよりもある
程度多めに吸着させる必要があるようである。
From FIG. 7, the amount of water molecules adsorbed on the surface functional group 1
It can be seen that the slurry viscosity is the lowest in the range of 1 to 2 molecules per unit weight, and that the adsorption of the dispersant by water molecule adsorption is improved and the slurry is highly dispersed. Here, the slurry viscosity increases even when the number of water molecules is too large because the excess water molecules are dissociated from the ceramic powder surface in the slurry and form an emulsion together with the dispersant to increase the effective dispersion number. It is thought that this is due to the reduction. Theoretically, 0.5 water molecule per surface functional group should be sufficient, but it seems that a larger amount of water molecule needs to be adsorbed in order to actually function.

【0019】ところで、実はセラミック粉末の表面は親
水性であるため、何も処理せずに放置しておいてもある
程度の大気中の水分を吸着するため、吸着水による分散
剤官能基の加水分解はこれまでにも部分的に自然に行わ
れていたと考えられる。しかしながら、これではセラミ
ック粉末の周囲の環境に大きく依存していたことから、
スラリの粘度にバラツキが生じていたと思われる。した
がって、理想的に水吸着を行わせるためには、セラミッ
ク粉末に予め何らかの加湿処理を人為的に行っておく必
要性がある。
By the way, since the surface of the ceramic powder is actually hydrophilic, it absorbs a certain amount of moisture in the atmosphere even if it is left untreated, so that the functional group of the dispersant is hydrolyzed by the adsorbed water. Is considered to have been partly natural until now. However, since this depends largely on the environment around the ceramic powder,
It is considered that the viscosity of the slurry varied. Therefore, in order to ideally adsorb water, it is necessary to artificially perform some humidification treatment on the ceramic powder in advance.

【0020】[0020]

【発明の効果】以上詳述したように、本発明の分散安定
化法では、特許請求の範囲記載の構成を採用しているた
め、静置安定性に優れたスラリの粘度のバラツキを小さ
くすることができる。このため、成形時のセラミック粉
末の充填密度が向上し、セラミック粉末相互の凝集が解
消され、焼結助剤が均一に分散されやすいことから、高
強度のセラミックス焼結体が得られる。
As described above in detail, since the dispersion stabilizing method of the present invention employs the constitution described in the claims, the dispersion of the viscosity of the slurry which is excellent in stationary stability is reduced. be able to. Therefore, the packing density of the ceramic powder at the time of molding is improved, the mutual agglomeration of the ceramic powder is eliminated, and the sintering aid is easily dispersed uniformly, so that a high-strength ceramic sintered body can be obtained.

【0021】また、これまで必要であったロット毎に成
形条件のあわせ込みの調整が不要となり、工数低減及び
調整のための無駄なスラリの消費を解消することができ
る。したがって、この分散安定化法により分散を安定化
させたスラリを用いて、セラミックス成形体を成形すれ
ば、成形を確実に容易に行なうことが可能となる。ま
た、この分散安定化法により分散を安定化させたスラリ
を用いて、セラミックス成形体を成形すれば、好適なス
ラリの流動性の下、成形体形状を脱型後に保持可能であ
り、かつ成形体からの脱脂も容易となる。
Further, it is not necessary to adjust the molding conditions for each lot, which has been necessary up to now, and it is possible to reduce man-hours and eliminate wasteful slurry consumption for adjustment. Therefore, if the ceramic molded body is molded by using the slurry whose dispersion is stabilized by this dispersion stabilization method, the molding can be surely and easily performed. Further, if a ceramics compact is molded using a slurry whose dispersion is stabilized by this dispersion stabilization method, it is possible to maintain the compact shape after demolding under suitable fluidity of the slurry, and It also facilitates degreasing from the body.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はブロック重合タイプの分散剤を示す模
式図である。(B)はグラフト重合タイプの分散剤を示
す模式図である。
FIG. 1A is a schematic view showing a block polymerization type dispersant. (B) is a schematic diagram showing a graft polymerization type dispersant.

【図2】ポリオキシプロピレンアルキルエーテルと無水
マレイン酸との共重合物(PM共重合物)の構造式であ
る。
FIG. 2 is a structural formula of a copolymer (PM copolymer) of polyoxypropylene alkyl ether and maleic anhydride.

【図3】ブロック重合タイプの分散剤とPM共重合物と
による静置時間とスラリ粘度との関係を示すグラフであ
る。
FIG. 3 is a graph showing a relationship between a standing time and a slurry viscosity of a block polymerization type dispersant and a PM copolymer.

【図4】従来法において、複数ロットとスラリ粘度との
関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a plurality of lots and slurry viscosity in the conventional method.

【図5】(A)はPM共重合物の無水酸の部分と、水分
子を吸着したセラミック粉末表面上のシラノール基とを
示す構造式である。(B)はPM共重合物の無水酸の部
分が水分子によって加水分解して2個のカルボキシル基
になり、同時にセラミック粉末表面上のシラノール基に
吸着する状態を示す構造式である。
FIG. 5A is a structural formula showing an acid anhydride part of a PM copolymer and silanol groups on a surface of a ceramic powder on which water molecules are adsorbed. (B) is a structural formula showing a state in which the acid anhydride portion of the PM copolymer is hydrolyzed into two carboxyl groups by water molecules and simultaneously adsorbed to silanol groups on the surface of the ceramic powder.

【図6】試験1において、複数ロットとスラリ粘度との
関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a plurality of lots and slurry viscosity in Test 1.

【図7】シラノール基1ケ当たりの水分子数とスラリ粘
度との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the number of water molecules per silanol group and the slurry viscosity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミック粉末、有機溶剤、分散剤及び固
化剤からなるセラミックス成形用スラリを低圧で所定の
型内に注入し、固化してセラミックス成形体を得るセラ
ミックス成形方法におけるセラミックス成形用スラリの
分散安定化法であって、 前記分散剤がポリオキシプロピレンアルキルエーテルと
無水マレイン酸との共重合物であるとき、前記セラミッ
ク粉末は表面にシラノール基1個当たり水分子が1〜2
個予め吸着されたものであることを特徴とするセラミッ
クス成形用スラリの分散安定化法。
1. A ceramics molding slurry in a ceramics molding method in which a ceramics molding slurry comprising a ceramic powder, an organic solvent, a dispersant and a solidifying agent is injected into a predetermined mold at a low pressure and solidified to obtain a ceramics molded body. A dispersion stabilizing method, wherein when the dispersant is a copolymer of polyoxypropylene alkyl ether and maleic anhydride, the ceramic powder has 1 to 2 water molecules per silanol group on the surface.
A method for stabilizing dispersion of a ceramics forming slurry, characterized in that it is pre-adsorbed.
JP4343786A 1992-12-24 1992-12-24 Stabilization of dispersion of slurry for forming ceramics Pending JPH06191921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343786A JPH06191921A (en) 1992-12-24 1992-12-24 Stabilization of dispersion of slurry for forming ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4343786A JPH06191921A (en) 1992-12-24 1992-12-24 Stabilization of dispersion of slurry for forming ceramics

Publications (1)

Publication Number Publication Date
JPH06191921A true JPH06191921A (en) 1994-07-12

Family

ID=18364230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343786A Pending JPH06191921A (en) 1992-12-24 1992-12-24 Stabilization of dispersion of slurry for forming ceramics

Country Status (1)

Country Link
JP (1) JPH06191921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143247A (en) * 2002-10-23 2004-05-20 Jsr Corp Photocurable liquid composition, three-dimensional form and manufacturing method thereof
WO2004067475A1 (en) * 2003-01-29 2004-08-12 Tdk Corporation Coating composition for green sheet, method for producing same, green sheet, method for producing same, electronic component and method for producing same
JP2007291393A (en) * 2007-04-24 2007-11-08 Jsr Corp Photocurable liquid composition, three-dimensional article, and method for producing them

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143247A (en) * 2002-10-23 2004-05-20 Jsr Corp Photocurable liquid composition, three-dimensional form and manufacturing method thereof
WO2004067475A1 (en) * 2003-01-29 2004-08-12 Tdk Corporation Coating composition for green sheet, method for producing same, green sheet, method for producing same, electronic component and method for producing same
KR100720795B1 (en) * 2003-01-29 2007-05-23 티디케이가부시기가이샤 Coating composition for green sheet, method for producing same, green sheet, method for producing same, electronic component and method for producing same
US7632369B2 (en) 2003-01-29 2009-12-15 Tdk Corporation Green sheet slurry, green sheet, production method of green sheet slurry, production method of green sheet, and production method of electronic device
JP2007291393A (en) * 2007-04-24 2007-11-08 Jsr Corp Photocurable liquid composition, three-dimensional article, and method for producing them
JP4620705B2 (en) * 2007-04-24 2011-01-26 Jsr株式会社 Photocurable liquid composition, three-dimensionally shaped product, and methods for producing them

Similar Documents

Publication Publication Date Title
US4816182A (en) Liquefaction of highly loaded particulate suspensions
JPH04337002A (en) Injection molding method of ceramic powder or metallic powder
US5340532A (en) Method for forming ceramic powders by temperature induced flocculation
US7588633B2 (en) Filler component for investment casting slurries
JPH06191921A (en) Stabilization of dispersion of slurry for forming ceramics
JP4014256B2 (en) Powder molding method
KR100472425B1 (en) Process for forming the alumina powders
EP0753493B1 (en) Process for producing a ceramic sintered body using a granulated molding powder
US5922272A (en) Manufacture of ceramic articles
EP0525653B1 (en) Molding method and apparatus for silicon nitride ceramics
JP4047956B2 (en) Method for forming silicon carbide powder
US6489017B1 (en) Molding method for ceramics and metals in aqueous systems by means of temperature variation
JP2001278673A (en) Aqueous-solvent curable resin for wet molding
JP2003267708A (en) Method of manufacturing aluminum nitride sintered powder
EP0607653A1 (en) Highly dispersible granulated composition of powdered silica and a process for manufacturing thereof
JP2000211979A (en) Production of silica porous body
US20050095416A1 (en) Inorganic porous materials containing dispersed particles
KR100530104B1 (en) Method for manufacturing ceramic porous bodies reutilizing solid-state wastes
JPH0597523A (en) Production of sintered aluminum nitride
JPH01141865A (en) Method for granulating ceramic powder
KR20010060430A (en) A composition for molding silica sleeve and a method of preparing silica sleeve therefrom
KR100426121B1 (en) A composition for molding silica sleeve and a method of preparing silica sleeve therefrom
JP3036830B2 (en) Sialon casting method
JPS6265964A (en) Surface modifier of ceramic material
JPH01119537A (en) Production of molded body of transparent quartz glass