JPH06191490A - Supersonic flying body - Google Patents

Supersonic flying body

Info

Publication number
JPH06191490A
JPH06191490A JP34387192A JP34387192A JPH06191490A JP H06191490 A JPH06191490 A JP H06191490A JP 34387192 A JP34387192 A JP 34387192A JP 34387192 A JP34387192 A JP 34387192A JP H06191490 A JPH06191490 A JP H06191490A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
airframe
temperature
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34387192A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kimura
好和 木村
Kuniyoshi Tsubouchi
邦良 坪内
Susumu Nakano
晋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34387192A priority Critical patent/JPH06191490A/en
Publication of JPH06191490A publication Critical patent/JPH06191490A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To protect an airframe from aerodynamic heating by installing each projection onto parts to be cooled, and thereby injecting coolant into the flow of circulation caused by each projection out of a coolant tank mounted onto the airframe. CONSTITUTION:A projection 3 is projected out of a region of an airframe wall 1 which is heated by aerodynamic heating, so that the flow of circulation is thereby generated. Meanwhile a coolant tank 4 is mounted onto the airframe, so that coolant is stored, which is higher in pressure than the flow of circulation. The coolant tank 4 is connected to a coolant jet port 6 opened to each region where the flow of circulation is generated, through a duct pipe 5 including a cut-off valve 7. By this constitution, pressure in the region where the flow of circulation is generated by the projection 3 is lower than that in the region where no protection 3 is available. And, when the temperature of a heat resistant projection member 2 is raised beyond the allowable heat resistant temperature, the cut-off valve 7 is opened, so that coolant is injected to the flow of circulation out of the coolant tank 4 so as to allow the member to be cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音速で飛行する超音
速飛翔体に係り、特に、空力加熱から超音速飛翔体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supersonic projectile flying at supersonic speed, and more particularly to aerodynamic heating to supersonic projectile.

【0002】[0002]

【従来の技術】超音速飛翔体は超音速以上の速度で飛行
すると図2に示すように、機体の前方には衝撃波が発生
し、機体は空力加熱によって高温に加熱される。そのた
め、従来の超音速飛翔体では空力加熱から機体を守るた
め、耐熱防御材を開発し、これを機体のまわりに取り付
けることによって機体を防御する方法がとられており、
「HOPEワークショップ講演集:pp.326〜373
(1989)」等において論じられている。
2. Description of the Related Art When a supersonic flying object flies at a speed higher than supersonic speed, a shock wave is generated in front of the airframe as shown in FIG. 2, and the airframe is heated to a high temperature by aerodynamic heating. Therefore, in the conventional supersonic flying body, in order to protect the aircraft from aerodynamic heating, a heat-resistant protective material has been developed, and a method of protecting the aircraft by installing it around the aircraft has been adopted.
"HOPE Workshop Lecture Collection: pp.326-373
(1989) ”and the like.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術で、空力
加熱による機体の加熱温度が高くなると耐熱防御材の開
発が技術的に困難になるとともに、耐熱防御材の開発コ
スト及び生産コストも高くなる等の問題がある。そのた
め、機体の温度を低下させる必要がある。機体の温度を
低下させ空力加熱から防御する方法には機体を冷却する
方法が挙げられる。しかし、超音速飛翔体が空力加熱に
よって高温に加熱される場所は圧力回復現象が発生して
高い圧力となるため、冷媒等を噴出して冷却することは
困難であった。しかし、突起を取り付けた超音速飛翔体
が超音速で飛行すると突起の付け根付近には循環流が発
生し、その圧力は突起が無い場合よりも低くなる。
In the above-mentioned prior art, when the heating temperature of the airframe is increased by aerodynamic heating, it becomes technically difficult to develop the heat-resistant protective material, and the development cost and production cost of the heat-resistant protective material also increase. There is a problem such as. Therefore, it is necessary to lower the temperature of the airframe. As a method of lowering the temperature of the body to protect it from aerodynamic heating, a method of cooling the body can be mentioned. However, since a pressure recovery phenomenon occurs at a place where the supersonic flying object is heated to a high temperature by aerodynamic heating, a high pressure is generated, and thus it is difficult to eject the refrigerant or the like to cool it. However, when a supersonic flight vehicle with a protrusion attached thereto flies at supersonic speed, a circulating flow is generated near the root of the protrusion, and the pressure becomes lower than that without the protrusion.

【0004】本発明の目的は、突起の付け根付近に循環
流を発生させ低圧状態を作り、この循環流に冷媒を噴出
することによって機体を冷却し、空力加熱から機体を防
御することにある。
An object of the present invention is to generate a circulating flow in the vicinity of the root of a protrusion to create a low pressure state, and to inject a refrigerant into this circulating flow to cool the machine body and protect the machine body from aerodynamic heating.

【0005】[0005]

【課題を解決するための手段】超音速飛翔体の機体を冷
却する場所には突起を取り付ける。さらに、機体を冷却
するための冷媒を貯蔵した冷媒タンクを機体に搭載す
る。この冷媒の圧力は、突起の付け根付近に発生する循
環流の圧力よりも高圧で貯蔵するか、または高圧に加圧
できる加圧機構を装備する。また、冷媒を噴出する冷媒
噴出口は循環流に噴出できる位置に設けるとともに、冷
媒タンクと冷媒噴出口は導管によって連結するように構
成する。このように構成することにより、冷媒を冷媒タ
ンクから循環流に噴出して機体を冷却できるので、空力
加熱から機体を防御することができる。
[Means for Solving the Problems] A projection is attached to a place for cooling the body of a supersonic flying vehicle. Further, a refrigerant tank that stores a refrigerant for cooling the machine body is mounted on the machine body. The pressure of this refrigerant is stored at a pressure higher than the pressure of the circulating flow generated near the base of the protrusion, or a pressure mechanism capable of increasing the pressure is provided. Further, the refrigerant outlet for ejecting the refrigerant is provided at a position where the refrigerant can be ejected to the circulation flow, and the refrigerant tank and the refrigerant outlet are connected by a conduit. With this configuration, the refrigerant can be jetted from the refrigerant tank into the circulation flow to cool the machine body, and thus the machine body can be protected from aerodynamic heating.

【0006】[0006]

【作用】機体の先端に突起を取り付けた超音速飛翔体が
超音速以上(マッハ数)で飛行すると、図1に示すよう
に、突起の先端からは斜め衝撃派が発生し、機体は空力
によって加熱される。また、突起の付け根付近には循環
流が発生し、この循環流の領域は突起を付けない場合よ
りも低圧となる。機体の温度が耐熱防御材の温度よりも
低い場合には冷媒を噴出しない状態で飛行する。機体の
冷却が必要になった場合には、冷媒タンクに貯蔵した冷
媒を突起付け根付近に設けた冷媒噴出口に導いて噴出す
る。これにより、機体が冷却できるので機体を空力加熱
から防御することができる。
[Operation] When a supersonic projectile with a protrusion attached to the tip of the aircraft flies at supersonic velocity (Mach number) or higher, as shown in Fig. 1, an oblique impact fact occurs from the tip of the protrusion, and the aircraft is aerodynamically driven. Be heated. Further, a circulating flow is generated near the root of the protrusion, and the region of this circulating flow has a lower pressure than that in the case where the protrusion is not attached. When the temperature of the machine body is lower than the temperature of the heat-resistant protective material, the aircraft flies without ejecting the refrigerant. When it becomes necessary to cool the machine body, the refrigerant stored in the refrigerant tank is guided to and ejected from the refrigerant ejection port provided near the root of the protrusion. As a result, the airframe can be cooled, so that the airframe can be protected from aerodynamic heating.

【0007】[0007]

【実施例】以下、本発明の第1の実施例を図1により説
明する。本発明の超音速飛翔体の基本構成は、超音速飛
翔体の形状を形成する機体壁1と、機体壁1の外壁面に
取り付け空力加熱から機体を防御する耐熱防御材2と、
機体壁1が空力加熱によって加熱される場所に取り付け
循環流を発生させる突起3と、循環流の圧力よりも高圧
の冷媒を貯蔵し機体に搭載した冷媒タンク4と,冷媒タ
ンク4に貯蔵した冷媒を冷媒噴出口6へ導く導管5と、
冷媒タンク4から導管5を通して導いた冷媒を循環流に
噴出する冷媒噴出口6と、冷媒タンク4と冷媒噴出口6
を遮断し開放することによって冷媒を噴出させる遮断弁
7から成る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. The basic configuration of a supersonic flight vehicle of the present invention is a vehicle body wall 1 forming the shape of a supersonic flight vehicle, a heat-resistant protective material 2 attached to the outer wall surface of the vehicle body wall 1 to protect the vehicle body from aerodynamic heating,
A protrusion 3 attached to a place where the airframe wall 1 is heated by aerodynamic heating to generate a circulation flow, a refrigerant tank 4 for storing a refrigerant having a pressure higher than the pressure of the circulation flow and mounted on the airframe, and a refrigerant stored in the refrigerant tank 4. A conduit 5 for guiding the refrigerant to the refrigerant outlet 6,
Refrigerant ejection port 6 for ejecting the refrigerant introduced from refrigerant tank 4 through conduit 5 into the circulation flow, refrigerant tank 4 and refrigerant ejection port 6
It is composed of a shut-off valve 7 for jetting the refrigerant by shutting off and opening.

【0008】次に、本発明の超音速飛翔体の熱防御シス
テムについて説明する。超音速飛翔体が超音速で飛行す
ると機体は空力によって加熱される。また、図1に示す
ように突起3の先端からは斜め衝撃波が発生し、その付
け根付近には循環流が発生する。この循環流の領域は、
突起3を付けない場合よりも低い圧力となる。空力加熱
による機体の加熱温度が機体壁1に取り付けた耐熱防御
材2の耐熱温度よりも低い場合は、機体を冷却しない状
態で飛行する。しかし、耐熱防御材2の温度が耐熱温度
を保持できない場合は、遮断弁7を開放して冷媒タンク
4に貯蔵した高圧の冷媒を導管5を通して冷媒噴出口6
に導き、循環流に冷媒を噴出することによって機体を冷
却する。これにより、機体を冷却して温度を低下させる
ことができるので機体を空力加熱から防御することがで
きる。
Next, the heat protection system for supersonic flying objects of the present invention will be described. When a supersonic flying body flies at supersonic speed, the airframe is heated by aerodynamic force. Further, as shown in FIG. 1, an oblique shock wave is generated from the tip of the projection 3, and a circulating flow is generated near the root thereof. The area of this circulation is
The pressure is lower than that when the protrusion 3 is not attached. When the heating temperature of the airframe due to aerodynamic heating is lower than the heat resistant temperature of the heat resistant protection material 2 attached to the airframe wall 1, the airframe is not cooled and the aircraft flies. However, when the temperature of the heat-resistant protective material 2 cannot maintain the heat-resistant temperature, the shut-off valve 7 is opened and the high-pressure refrigerant stored in the refrigerant tank 4 is passed through the conduit 5 and the refrigerant outlet 6
And cool the airframe by ejecting the refrigerant into the circulating flow. As a result, the airframe can be cooled to lower the temperature, and thus the airframe can be protected from aerodynamic heating.

【0009】本発明によれば、超音速飛翔体において、
超音速飛翔体が超音速以上の速度で飛行して機体が空力
加熱によって加熱され、その温度が耐熱防御材の耐熱温
度を越えないようにするために冷却が必要な場合、突起
付け根付近に発生した循環流に冷媒を噴出して機体を冷
却することにより、突起を付けない場合よりも低い圧力
で冷媒を噴出して機体を冷却できる。また、冷媒を噴出
して機体を冷却することにより機体の温度を低下させる
ことができるので空力加熱から機体を防御できる。
According to the present invention, in a supersonic flying object,
Occurs near the root of a protrusion when a supersonic flight object flies at a speed higher than supersonic speed, heats the aircraft by aerodynamic heating, and requires cooling to prevent the temperature from exceeding the heat resistant temperature of the heat resistant protection material. By ejecting the refrigerant into the circulating flow to cool the machine body, the refrigerant can be ejected at a lower pressure than in the case where no protrusion is provided to cool the machine body. Further, since the temperature of the machine body can be lowered by ejecting the refrigerant to cool the machine body, the machine body can be protected from aerodynamic heating.

【0010】次に、本発明の第2の実施例を図3を用い
て説明する。第2の実施例は、冷媒に圧力を加える機構
を装備するとともに、この機構によって冷媒を加圧して
突起3付け根付近に発生した循環流の圧力よりも高い圧
力に加圧することにより、冷媒を噴出して機体を冷却す
るようにしたものである。冷媒タンク4の内部には気密
性を保持しながら移動するピストン8が設置してあり、
また、このピストン8を移動させ冷媒を循環流の圧力よ
りも高圧に加圧できるジャッキ9が設置してある。ジャ
ッキのシリンダ9aはピストン8と連結し、ジャッキの
本体9bは機体壁1に固定された固定板10に固定して
ある。ピストン8は、ジャッキのシリンダ9aを動かす
ことにより冷媒タンク4の内部を移動させることができ
る。また、冷媒噴出口6と冷媒タンク4の間には遮断弁
7が設置してある。冷媒を噴出して機体を冷却する場合
は、遮断弁7を開放するとともにジャッキのシリンダ9
aをa方向へ動かしてピストン8をa方向へ動かし、冷
媒タンク4の内部に貯蔵してある冷媒を加圧する。冷媒
の圧力は、突起3の付け根付近に発生した循環流よりも
高い圧力に加圧することにより、冷媒を冷媒噴出口6か
ら噴出させることができる。これにより、機体を冷却で
きるので機体を空力加熱から防御することができる。
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment is equipped with a mechanism for applying pressure to the refrigerant, and pressurizes the refrigerant by this mechanism to pressurize the refrigerant to a pressure higher than the pressure of the circulating flow generated near the root of the protrusion 3 to eject the refrigerant. The airframe is then cooled. A piston 8 that moves while maintaining airtightness is installed inside the refrigerant tank 4,
Further, a jack 9 is provided which can move the piston 8 to pressurize the refrigerant to a pressure higher than the pressure of the circulating flow. The cylinder 9a of the jack is connected to the piston 8 and the main body 9b of the jack is fixed to a fixing plate 10 fixed to the machine body wall 1. The piston 8 can be moved inside the refrigerant tank 4 by moving the cylinder 9a of the jack. A shutoff valve 7 is installed between the refrigerant jet port 6 and the refrigerant tank 4. When the refrigerant is jetted to cool the machine body, the shutoff valve 7 is opened and the jack cylinder 9 is opened.
The piston 8 is moved in the a direction by moving a in the a direction, and the refrigerant stored in the refrigerant tank 4 is pressurized. The pressure of the refrigerant can be jetted from the refrigerant jet port 6 by pressurizing the refrigerant to a pressure higher than the circulating flow generated near the base of the protrusion 3. As a result, since the airframe can be cooled, the airframe can be protected from aerodynamic heating.

【0011】本発明によれば、冷媒を循環流の圧力より
も低圧の状態で冷媒タンクに貯蔵した場合でも、加圧機
構によって冷媒を循環流の圧力よりも高圧に加圧するこ
とにより冷媒を循環流に噴出して機体を冷却できるの
で、機体を空力加熱から防御できる。
According to the present invention, even when the refrigerant is stored in the refrigerant tank at a pressure lower than the pressure of the circulating flow, the refrigerant is circulated by pressurizing the refrigerant to a pressure higher than the pressure of the circulating flow by the pressurizing mechanism. Since it can be jetted into a stream to cool the aircraft, it can be protected from aerodynamic heating.

【0012】次に、本発明による第3の実施例を図4を
用いて説明する。第3の実施例は突起3の付け根付近に
発生する循環流の圧力が、圧力回復する突起3の先端の
圧力に比して低い圧力となるこの圧力差を利用すること
により、冷媒タンクに貯蔵した冷媒を加圧して噴出し機
体を冷却するようにしたものである。冷媒タンク4の内
部には気密性を保持しながら移動するピストン8が設置
してある。また、突起3には先端から後端まで貫通した
連通孔11を設け、この連通孔11の後端は圧力導管1
2によって冷媒タンク4の一端と連結してある。また、
ピストン8で隔てた冷媒タンク4の他端は導管5によっ
て冷媒噴出口6と連結してある。なお、冷媒タンク4と
突起3の連通孔11の間は遮断弁13で、また冷媒タン
ク4と冷媒噴出口6の間は遮断弁7で遮断してある。冷
媒を噴出して機体を冷却する場合は、遮断弁13を開放
することによって冷媒タンク4に圧力を導いてピストン
8に圧力を加えることにより、冷媒タンク4の内部に貯
蔵した冷媒に圧力を加える。次に、遮断弁7を開放する
と突起3の先端の圧力は循環流の圧力よりも高いので、
ピストン8はa方向へ動き冷媒タンク4の内部に貯蔵し
てある冷媒は冷媒噴出口6から噴出される。これによ
り、機体を冷却できるので機体を空力加熱から防御する
ことができる。
Next, a third embodiment of the present invention will be described with reference to FIG. In the third embodiment, the pressure of the circulating flow generated near the base of the protrusion 3 is lower than the pressure at the tip of the protrusion 3 for pressure recovery, and this pressure difference is used to store the refrigerant in the refrigerant tank. The refrigerant is pressurized to cool the jet machine body. Inside the refrigerant tank 4, a piston 8 that moves while maintaining airtightness is installed. Further, the projection 3 is provided with a communication hole 11 penetrating from the front end to the rear end, and the rear end of the communication hole 11 is at the pressure conduit
2 is connected to one end of the refrigerant tank 4. Also,
The other end of the refrigerant tank 4 separated by a piston 8 is connected to a refrigerant outlet 6 by a conduit 5. A cutoff valve 13 is provided between the refrigerant tank 4 and the communication hole 11 of the projection 3, and a cutoff valve 7 is provided between the refrigerant tank 4 and the refrigerant ejection port 6. When jetting the refrigerant to cool the machine body, the shutoff valve 13 is opened to guide the pressure to the refrigerant tank 4 and apply the pressure to the piston 8, thereby applying the pressure to the refrigerant stored in the refrigerant tank 4. . Next, when the shutoff valve 7 is opened, the pressure at the tip of the protrusion 3 is higher than the pressure of the circulating flow,
The piston 8 moves in the direction a and the refrigerant stored in the refrigerant tank 4 is ejected from the refrigerant ejection port 6. As a result, since the airframe can be cooled, the airframe can be protected from aerodynamic heating.

【0013】本発明によれば、冷媒を循環流の圧力より
も低圧の状態で冷媒タンクに貯蔵した場合でも、加圧機
構によって冷媒を循環流の圧力よりも高圧に加圧するこ
とにより冷媒を循環流に噴出して機体を冷却できるの
で、機体を空力加熱から防御できる。
According to the present invention, even when the refrigerant is stored in the refrigerant tank at a pressure lower than the pressure of the circulating flow, the refrigerant is circulated by pressurizing the refrigerant to a pressure higher than the pressure of the circulating flow by the pressurizing mechanism. Since it can be jetted into a stream to cool the aircraft, it can be protected from aerodynamic heating.

【0014】次に、本発明による第4の実施例を図5を
用いて説明する。第4の実施例は、第1の実施例におい
て、機体の温度を耐熱防御材2の耐熱温度以下に設定し
た目標温度に保持するように、機体の温度を検知すると
ともに機体の温度によって冷媒の噴出量を変えて冷却す
るようにしたものである。冷媒タンク4と冷媒噴出口6
の間に冷媒の噴出量を変えるための流量制御弁14を設
置するとともに、流量制御弁14の開口率を変える流量
制御装置15が設置してある。また、耐熱防御材2には
機体の温度を検知する温度センサ16を設置するととも
に温度センサ16の出力信号を受信し温度に変換する温
度検知装置17が設置してある。さらに、温度検知装置
17の出力信号を受信し、その温度から機体を目標温度
に保持するために必要な冷媒の噴出量を演算して流量制
御弁14の開口率を決定し、その開口率の信号を流量制
御装置15に送って冷媒の噴出量を制御させる制御装置
18が設置してある。なお、流量制御装置15と温度検
知装置17は信号線19によって制御装置18に接続し
てある。機体の冷却は、温度センサ16で検知した温度
が目標温度の下限を越えた場合、制御装置18から流量
制御装置15に流量制御弁14の開口率を知らせる信号
を送るとともに、その信号を受信した流量制御装置15
は流量制御弁14を所定の開口率に開かせ冷媒を噴出さ
せる。また、機体の温度は、時々刻々と変化するが制御
装置18は温度センサ16から受け取る機体の温度デー
タから冷媒の噴出量を決定し、温度の変化によって流量
制御弁14の開口率を自動的に変え、機体の温度を目標
温度の上限と下限の間になるように冷媒の噴出量を制御
する。図6は機体の温度と冷媒噴出量の変化の一例を示
したものである。機体の温度が上昇し、下限を越えたA
点で冷媒の噴出を開始する。機体の温度が低下しはじめ
たB点では冷媒の噴出量を減らして冷却を抑制し、温度
が再び上昇しはじめるC点からは再び冷媒の噴出量を増
加させて、機体の温度が目標温度の上限と下限の間にな
るように冷媒の噴出量を制御して機体を冷却するように
した。
Next, a fourth embodiment according to the present invention will be described with reference to FIG. In the fourth embodiment, in the first embodiment, the temperature of the machine body is detected so that the temperature of the machine body is maintained at a target temperature set to be equal to or lower than the heat resistant temperature of the heat-resistant protective material 2, and the temperature of the machine body changes the refrigerant It is designed to cool by changing the ejection amount. Refrigerant tank 4 and refrigerant outlet 6
A flow rate control valve 14 for changing the injection amount of the refrigerant is installed between the two, and a flow rate control device 15 for changing the opening ratio of the flow rate control valve 14 is installed. Further, the heat-resistant protective material 2 is provided with a temperature sensor 16 for detecting the temperature of the machine body and a temperature detection device 17 for receiving an output signal of the temperature sensor 16 and converting it into a temperature. Furthermore, the output signal of the temperature detection device 17 is received, and the opening amount of the flow rate control valve 14 is determined by calculating the jetting amount of the refrigerant necessary to maintain the airframe at the target temperature from the temperature, and the opening ratio A control device 18 that sends a signal to the flow rate control device 15 to control the ejection amount of the refrigerant is installed. The flow controller 15 and the temperature detector 17 are connected to the controller 18 by a signal line 19. For cooling the machine body, when the temperature detected by the temperature sensor 16 exceeds the lower limit of the target temperature, the controller 18 sends a signal notifying the opening ratio of the flow control valve 14 to the flow controller 15 and receives the signal. Flow controller 15
Causes the flow control valve 14 to open to a predetermined opening ratio and ejects the refrigerant. Further, the temperature of the machine body changes from moment to moment, but the control device 18 determines the amount of the jetted refrigerant from the temperature data of the machine body received from the temperature sensor 16, and the opening ratio of the flow control valve 14 is automatically determined by the temperature change. In other words, the jet amount of the refrigerant is controlled so that the temperature of the machine body falls between the upper limit and the lower limit of the target temperature. FIG. 6 shows an example of changes in the temperature of the machine body and the amount of ejected refrigerant. Aircraft temperature increased and exceeded the lower limit A
At a point, the ejection of the refrigerant is started. At the point B where the temperature of the airframe starts to decrease, the amount of refrigerant jet is reduced to suppress the cooling, and from the point C where the temperature starts to rise again, the amount of refrigerant jet is increased again so that the temperature of the airframe becomes the target temperature. The jet amount of the refrigerant is controlled so as to fall between the upper limit and the lower limit to cool the machine body.

【0015】本発明によれば、超音速飛翔体において、
機体の温度を所定の目標温度に保持できるように機体の
温度によって自動的に冷媒の噴出量を変えて機体を冷却
することにより、冷媒の噴出する持続時間を長くするこ
とができる。
According to the present invention, in a supersonic flying object,
By cooling the machine body by automatically changing the ejection amount of the refrigerant according to the temperature of the machine body so that the temperature of the machine body can be maintained at a predetermined target temperature, it is possible to prolong the duration of the ejection of the refrigerant.

【0016】また、第2の実施例及び第3の実施例にお
いても耐熱防御材2に温度センサ16を設置して温度を
検知するとともに温度検知装置17によって温度を検知
するようにする。冷媒タンク4と冷媒噴出口6の間には
冷媒の噴出量を変えることができる流量調整弁14を設
置するとともに、流量調整弁14の開口率を流量制御装
置15によって制御して冷媒を噴出するようにする。さ
らに、温度検知装置17の出力信号を受信し、その温度
から機体を目標温度に保持するために必要な冷媒の噴出
量を演算して流量制御弁14の開口率を決定するととも
に、その開口率の信号を流量制御装置15に送って冷媒
の噴出量を制御させる制御装置18を設置することによ
り、機体の温度によって冷媒の噴出量を自動的に変える
ことができるので、第4の実施例と同様の効果を得るこ
とができる。
Also in the second and third embodiments, the temperature sensor 16 is installed in the heat-resistant protective material 2 to detect the temperature and the temperature detecting device 17 to detect the temperature. A flow rate adjusting valve 14 capable of changing the ejection amount of the refrigerant is installed between the refrigerant tank 4 and the refrigerant ejection port 6, and the opening ratio of the flow rate adjusting valve 14 is controlled by a flow rate control device 15 to eject the refrigerant. To do so. Further, the output signal of the temperature detection device 17 is received, and the opening rate of the flow rate control valve 14 is determined by calculating the jetting amount of the refrigerant necessary for maintaining the airframe at the target temperature from the temperature, and the opening rate thereof is determined. By installing the control device 18 that sends the signal of No. 1 to the flow rate control device 15 to control the ejection amount of the refrigerant, the ejection amount of the refrigerant can be automatically changed according to the temperature of the airframe, so that the fourth embodiment is different from the fourth embodiment. The same effect can be obtained.

【0017】[0017]

【発明の効果】以上説明した本発明によれば、飛翔体が
超音速以上の速度で飛行する時に空力加熱によって高温
に加熱される場所に突起を取り付けてあるので、その突
起の付け根付近に循環流を発生させて低圧状態を作るこ
とができ、この循環流に冷媒を噴出することによって機
体を冷却し空力加熱から機体を防ぐことができる。
According to the present invention described above, since the projection is attached to the place where the flying object is heated to a high temperature by aerodynamic heating when flying at a speed higher than supersonic speed, the projection is circulated near the root of the projection. Flow can be generated to create a low pressure condition, and by ejecting a refrigerant into this circulating flow, the airframe can be cooled and prevented from aerodynamic heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1の実施例の縦断面図。FIG. 1 is a vertical sectional view of a first embodiment according to the present invention.

【図2】従来技術の構成図。FIG. 2 is a block diagram of a conventional technique.

【図3】本発明による第2の実施例の縦断面図。FIG. 3 is a vertical sectional view of a second embodiment according to the present invention.

【図4】本発明による第3の実施例の縦断面図。FIG. 4 is a vertical sectional view of a third embodiment according to the present invention.

【図5】本発明による第4の実施例の縦断面図。FIG. 5 is a vertical sectional view of a fourth embodiment according to the present invention.

【図6】本発明による第4の実施例の機体の温度変化と
冷媒噴出量の変化の説明図。
FIG. 6 is an explanatory view of a temperature change and a refrigerant injection amount change of a machine body of a fourth embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1…機体壁、2…耐熱防御材、3…突起、4…冷媒タン
ク、5…導管、6…冷媒噴出口、7…遮断弁。
DESCRIPTION OF SYMBOLS 1 ... Body wall, 2 ... Heat-resistant protective material, 3 ... Protrusion, 4 ... Refrigerant tank, 5 ... Conduit, 6 ... Refrigerant ejection port, 7 ... Shutoff valve.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】超音速飛翔体の機体形状を形成する機体壁
と、前記機体壁の表面に取り付け前記機体を空力加熱か
ら防御する耐熱防御材と、前記機体が空力で高温に加熱
される場所に取り付けその付け根付近に循環流を発生さ
せる突起と、冷媒を貯蔵するとともに前記機体に搭載し
た冷媒タンクと、前記冷媒を前記冷媒タンクから冷媒噴
出口へ導く導管と、前記突起の付け根付近に発生する循
環流に前記冷媒を噴出できる位置に設け前記冷媒を噴出
する冷媒噴出口と、前記導管の途中に設置し前記冷媒タ
ンクと前記冷媒噴出口を遮断する遮断弁を装備した超音
速飛翔体において、前記突起付け根付近に発生する循環
流に前記冷媒を噴出して前記機体を冷却することによ
り、前記機体を空力加熱から防御するようにしたことを
特徴とする超音速飛翔体。
1. A fuselage wall forming a fuselage shape of a supersonic flying vehicle, a heat-resistant protective material attached to the surface of the fuselage wall to protect the fuselage from aerodynamic heating, and a place where the fuselage is aerodynamically heated to a high temperature. Mounted on the projection for generating a circulating flow near the root, a refrigerant tank for storing the refrigerant and mounted on the fuselage, a conduit for guiding the refrigerant from the refrigerant tank to the refrigerant outlet, and generated near the root of the projection In a supersonic projectile equipped with a refrigerant outlet for ejecting the refrigerant in a position where the refrigerant can be ejected in a circulating flow, and a shutoff valve installed in the middle of the conduit for shutting off the refrigerant tank and the refrigerant outlet. , A supersonic flight characterized in that the refrigerant is jetted into a circulating flow generated near the root of the protrusion to cool the airframe, thereby protecting the airframe from aerodynamic heating. Body.
【請求項2】請求項1において、前記冷媒を突起付け根
付近に発生する循環流の圧力よりも高い圧力で前記冷媒
タンクに貯蔵し搭載することによって、前記冷媒を循環
流に噴出して前記機体を冷却し、空力加熱から前記機体
を防御するようにした超音速飛翔体。
2. The body according to claim 1, wherein the coolant is stored and mounted in the coolant tank at a pressure higher than the pressure of the circulation flow generated near the root of the protrusion to eject the coolant into the circulation flow. A supersonic flight vehicle that cools the aircraft and protects the aircraft from aerodynamic heating.
【請求項3】請求項1において、前記冷媒に圧力を加え
る加圧機構を設置するとともに、前記加圧機構で前記冷
媒タンクに貯蔵した前記冷媒を加圧し、前記冷媒を前記
突起の付け根付近に発生する循環流の圧力よりも高い圧
力とすることによって前記冷媒を循環流に噴出して前記
機体を冷却する超音速飛翔体。
3. The pressurizing mechanism for applying a pressure to the refrigerant according to claim 1, wherein the pressurizing mechanism pressurizes the refrigerant stored in the refrigerant tank to bring the refrigerant near the root of the protrusion. A supersonic flying body that cools the airframe by ejecting the refrigerant into the circulation flow by setting the pressure higher than the pressure of the generated circulation flow.
【請求項4】請求項3において、前記冷媒タンクの内部
に気密性を保持しながら移動するピストンと前記ピスト
ンに圧力を加える前記加圧機構を設置して連結するとと
もに、前記加圧機構によって前記冷媒を前記突起付け根
付近に発生する循環流の圧力よりも高圧に加圧し、前記
循環流に冷媒を噴出して前記機体を冷却する超音速飛翔
体。
4. The piston according to claim 3, wherein the piston which moves while maintaining airtightness inside said refrigerant tank and said pressurizing mechanism for applying pressure to said piston are installed and connected, and said pressurizing mechanism allows said A supersonic flying body that pressurizes the refrigerant to a pressure higher than the pressure of the circulating flow generated near the root of the protrusion and ejects the refrigerant into the circulating flow to cool the airframe.
【請求項5】請求項3において、前記冷媒タンクの内部
に気密性を保持しながら移動するピストンを設置し、前
記突起の先端の圧力を前記冷媒タンクに導くことにより
前記ピストンを加圧して、前記冷媒を突起付け根付近に
発生する循環流の圧力よりも高圧に加圧し循環流に冷媒
を噴出して前記機体を冷却する超音速飛翔体。
5. The piston according to claim 3, wherein a piston that moves while maintaining airtightness is installed inside the refrigerant tank, and the piston is pressurized by guiding the pressure at the tip of the protrusion to the refrigerant tank, A supersonic flying body that cools the airframe by pressurizing the refrigerant to a pressure higher than the pressure of the circulating flow generated near the root of the protrusion and ejecting the refrigerant into the circulating flow.
【請求項6】請求項1,2,3,4または5において、
前記機体の温度を検知するとともに前記機体の温度を安
全に保持できるように設定した目標温度になるように、
前記冷媒の噴出量を機体の温度によって変化させて前記
機体を冷却する超音速飛翔体。
6. The method according to claim 1, 2, 3, 4 or 5.
To detect the temperature of the aircraft and to reach the target temperature set so that the temperature of the aircraft can be safely maintained,
A supersonic flying body that cools the airframe by changing the ejection amount of the refrigerant according to the temperature of the airframe.
JP34387192A 1992-12-24 1992-12-24 Supersonic flying body Pending JPH06191490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34387192A JPH06191490A (en) 1992-12-24 1992-12-24 Supersonic flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34387192A JPH06191490A (en) 1992-12-24 1992-12-24 Supersonic flying body

Publications (1)

Publication Number Publication Date
JPH06191490A true JPH06191490A (en) 1994-07-12

Family

ID=18364889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34387192A Pending JPH06191490A (en) 1992-12-24 1992-12-24 Supersonic flying body

Country Status (1)

Country Link
JP (1) JPH06191490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104326079A (en) * 2014-10-14 2015-02-04 中国科学院力学研究所 Adaptive active thermal protection device and aircraft
RU2671064C1 (en) * 2015-02-13 2018-10-29 Нинбо Инститьют Оф Мэтириэлз Текнолоджи Энд Энжиниэринг Чайниз Экэдэми Оф Сайэнсэз System for thermal protection and reduction of flow resistance of the super-high-speed aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104326079A (en) * 2014-10-14 2015-02-04 中国科学院力学研究所 Adaptive active thermal protection device and aircraft
RU2671064C1 (en) * 2015-02-13 2018-10-29 Нинбо Инститьют Оф Мэтириэлз Текнолоджи Энд Энжиниэринг Чайниз Экэдэми Оф Сайэнсэз System for thermal protection and reduction of flow resistance of the super-high-speed aircraft

Similar Documents

Publication Publication Date Title
EP0216911B1 (en) Ink jet printing apparatus having an improved start-up system
US3070957A (en) Liquid separator, vapor-gas injection steering system
CN105371710A (en) Guided-missile high-speed water entering method based on reverse gas injection
JPH05501448A (en) Missile lateral thrust assembly
JPH06191490A (en) Supersonic flying body
US20180009167A1 (en) Print head drop detectors
US4384694A (en) Rocket attitude control apparatus
KR20150045129A (en) Air jet wheel deflector
RU2096273C1 (en) Method of launching flying vehicle by means of ejection launching trolley with booster
KR102004698B1 (en) Fluid Jet Apparatus Having Nozzle Assembly for Controlling Injection Angle
JPH07218383A (en) Method and apparatus for placing model in supersonic wind tunnel
US4480522A (en) Rocket exhaust-gas deflector
JP2009248963A (en) Strake
KR101784349B1 (en) Thrust-vector control apparatus utilizing on/off valve
US3265337A (en) Ejection of airmen from aircraft
JP2008164246A (en) Side thruster device
JP5758161B2 (en) Jet engine and control method of jet engine
CN115199437B (en) Liquid level controllable storage trap structure
JP3050025B2 (en) Projectile launcher
JP2003113740A (en) Missile
JPH07159279A (en) Free piston for impact wind tunnel
JPH07323898A (en) Infrared ray radiation reducing device for airplane
JPH06317220A (en) Thrust controller of solid rocket
JPH05272899A (en) Infrared ray guiding device
CN116238718A (en) Reentry aircraft air suction injection type heat protection device and control method thereof