JPH06188379A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06188379A
JPH06188379A JP34003692A JP34003692A JPH06188379A JP H06188379 A JPH06188379 A JP H06188379A JP 34003692 A JP34003692 A JP 34003692A JP 34003692 A JP34003692 A JP 34003692A JP H06188379 A JPH06188379 A JP H06188379A
Authority
JP
Japan
Prior art keywords
forming
gate electrode
type region
metal film
refractory metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34003692A
Other languages
Japanese (ja)
Other versions
JP2996034B2 (en
Inventor
Katsunori Nishii
勝則 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4340036A priority Critical patent/JP2996034B2/en
Publication of JPH06188379A publication Critical patent/JPH06188379A/en
Application granted granted Critical
Publication of JP2996034B2 publication Critical patent/JP2996034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To remarkably reduce the manufacturing process of GaAs IC which uses a self-alignment process, and improve yield, by a method wherein, after an n-type region is formed, a high melting point metal film is formed on the whole surface, and a gate electrode and a resistive element are formed by working out the metal film on the n-type region. CONSTITUTION:After an n-type region 2 is formed in a semiconductor substrate 1 by ion implantation, a high melting point metal film is formed, and a gate electrode 3 and a resistive element 4 are formed by working out the high melting point metal film on the n-type region 2. A source.drain high concentration region 5 is formed on both sides of the gate electrode 3, and annealing for activating implanted ions is performed. For example, after the active layer of a FET is formed in a semiinsulative GaAs substrate 1 and the n-type region 2 is formed by ion implantation, the high melting point metal thin film of WSi is formed on the whole surface, and worked into the gate electrode 3 and the resistive element 4. The n-type high concentration layer 5 is formed on both sides of the gate electrode 3 by ion implantation, and annealing for activation is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関するもので、特にGaAsなどの化合物半導体IC
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a compound semiconductor IC such as GaAs.
The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】近年、半導体の進歩はめざましくあらゆ
る分野で使用されている。特にSi半導体の高集積化は
システムの小型化や高性能化に大きく寄与している。ま
た、化合物半導体ICも集積度は低いものの実用化され
始めている。なかでも、GaAsICはSiICに比べ
て高速動作が可能や、低消費電力化が可能といった特徴
があり携帯電話をはじめとする移動体通信機器で実用化
が本格的に始まっている。
2. Description of the Related Art In recent years, semiconductors have been remarkably used in various fields. In particular, high integration of Si semiconductors has greatly contributed to downsizing and high performance of the system. In addition, compound semiconductor ICs are beginning to be put to practical use although they have a low degree of integration. Among them, GaAsIC has characteristics that it can operate at higher speed and lower power consumption than SiIC, and has been put into practical use in mobile communication devices such as mobile phones.

【0003】GaAsICでは、能動素子としてMES
FET(金属半導体接合型電界効果トランジスタ)が広
く用いられ、プロセスにおいては特性の高性能化、均一
化のために自己整合プロセスが一般的に用いられてい
る。この自己整合プロセスはイオン注入法を用いてソー
ス・ドレイン抵抗を下げるために、高融点金属からなる
ゲート金属を形成して、そのゲート金属をマスクとして
ゲート金属の両側に自己整合でキャリア濃度が高いソー
スドレイン領域を形成する方法である。一方、受動素子
としては抵抗素子および容量素子が主に用いられてい
る。
In GaAs IC, MES is used as an active element.
FETs (metal-semiconductor junction type field effect transistors) are widely used, and in the process, a self-alignment process is generally used in order to achieve high performance and uniform characteristics. This self-alignment process uses an ion implantation method to reduce the source / drain resistance, so that a gate metal made of a refractory metal is formed, and the gate metal is used as a mask to self-align on both sides of the gate metal so that the carrier concentration is high. This is a method of forming a source / drain region. On the other hand, resistive elements and capacitive elements are mainly used as passive elements.

【0004】従来のGaAsICの製造方法を図5
(a)−(d)に示す。図5において21は半絶縁性G
aAs基板、22は活性層、23はゲート電極、24は
n型高濃度層、25はオーミック電極、26は絶縁膜、
27は抵抗素子、28は金属配線、29は保護膜であ
る。半絶縁性GaAs基板21にイオン注入で活性層2
2を形成し、高融点金属薄膜例えばWSiを全面に形成
し所望のゲート電極23に形成する(a)。次にオーミ
ックコンタクト形成のためにn型高濃度層24をイオン
注入で形成し、注入層の活性化のためにアニールを行う
(b)。その後、オーミック電極25を形成し、全面に
絶縁膜26例えばシリコン窒化膜を堆積後、薄膜例えば
WSiNで抵抗素子27を形成する(c)。次に、ゲー
ト電極およびオーミック電極のコンタクトを開口し金属
配線28を引き回し、最後に保護膜29を形成してGa
AsICを完成する(d)。
A conventional GaAs IC manufacturing method is shown in FIG.
It shows in (a)-(d). In FIG. 5, 21 is semi-insulating G
aAs substrate, 22 active layer, 23 gate electrode, 24 n-type high concentration layer, 25 ohmic electrode, 26 insulating film,
Reference numeral 27 is a resistance element, 28 is a metal wiring, and 29 is a protective film. The active layer 2 is formed by ion implantation into the semi-insulating GaAs substrate 21.
2, a refractory metal thin film such as WSi is formed on the entire surface to form a desired gate electrode 23 (a). Next, the n-type high concentration layer 24 is formed by ion implantation for ohmic contact formation, and annealing is performed for activation of the implantation layer (b). After that, an ohmic electrode 25 is formed, an insulating film 26 such as a silicon nitride film is deposited on the entire surface, and then a resistance element 27 is formed of a thin film such as WSiN (c). Next, the contacts of the gate electrode and the ohmic electrode are opened, the metal wiring 28 is laid out, and finally the protective film 29 is formed to form Ga.
Complete the AsIC (d).

【0005】[0005]

【発明が解決しようとする課題】しかしながら前述のよ
うな従来のGaAsICの製造方法ではFET、抵抗素
子および配線の製造がそれぞれ別々の工程からなり、総
工程数はかなりの数となりリードタイムの増加や製造コ
ストの増大、ましては歩留低下の大きな原因となるとい
う問題があった。
However, in the conventional GaAs IC manufacturing method as described above, the manufacturing of the FET, the resistance element and the wiring comprises separate steps, and the total number of steps increases considerably, leading to an increase in lead time. There has been a problem that this is a major cause of an increase in manufacturing cost and a decrease in yield.

【0006】本発明は、このような課題を解決して自己
整合プロセスにおけるGaAsICの製造工程で、ひと
つの素子の製造工程で他の素子も製造することにより工
程の大幅な短縮を実現し、しいては歩留の向上を図れる
半導体装置の製造方法を提供することである。
The present invention solves such a problem and realizes a drastic reduction in the process by manufacturing one device in the GaAs IC manufacturing process in the self-alignment process and the other device. Another object of the present invention is to provide a method for manufacturing a semiconductor device that can improve the yield.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、半導体基板にイオン注入によりn型領域を
形成する工程と、全面に高融点金属膜を形成する工程
と、前記n型領域上の前記高融点金属膜を加工しゲート
電極および抵抗素子を形成する工程と、前記ゲート電極
の両側にソース・ドレイン高濃度領域を形成する工程
と、注入イオンの活性化を行なうためのアニールを行う
工程からなる。
In order to solve the above problems, the present invention provides a step of forming an n-type region in a semiconductor substrate by ion implantation, a step of forming a refractory metal film on the entire surface, and the n-type region. A step of processing the refractory metal film on the region to form a gate electrode and a resistance element; a step of forming source / drain high-concentration regions on both sides of the gate electrode; and an anneal for activating implanted ions. Is performed.

【0008】また、本発明は半導体基板にイオン注入に
よりn型領域を形成する工程と、全面に高融点金属膜を
形成する工程と、前記n型領域上の前記高融点金属膜を
ゲート電極および配線パターンに形成する工程と、前記
ゲート電極の両側にソース・ドレイン高濃度領域を形成
する工程と、注入イオンの活性化を行なうためのアニー
ルを行う工程と、オーッミック金属を前記ソース・ドレ
イン領域上および前記配線パターン上に形成する工程
と、シンターによりオーッミック電極を形成する工程か
らなる。
Further, according to the present invention, a step of forming an n-type region in a semiconductor substrate by ion implantation, a step of forming a refractory metal film on the entire surface, and a step of forming the refractory metal film on the n-type region as a gate electrode and Forming a wiring pattern, forming source / drain high concentration regions on both sides of the gate electrode, annealing for activating implanted ions, and ohmic metal on the source / drain regions. And a step of forming on the wiring pattern and a step of forming an ohmic electrode by sintering.

【0009】[0009]

【作用】本発明は上述したように、高融点金属を用いた
自己整合プロセスによるGaAsICの製造方法で、高
融点金属ゲート形成時に抵抗素子を形成することや、高
融点金属とオーミック金属を用いて配線を形成すること
により従来行っていた工程を大幅に省略することができ
るのでGaAsICプロセスの工程の短縮、しいては歩
留の向上を図ることができる。
As described above, the present invention is a method for manufacturing a GaAs IC by a self-alignment process using a refractory metal, and by forming a resistance element at the time of forming a refractory metal gate, and using a refractory metal and an ohmic metal. By forming the wiring, the steps conventionally performed can be largely omitted, so that the steps of the GaAs IC process can be shortened and the yield can be improved.

【0010】[0010]

【実施例】(実施例1)図1(a)〜(d)に本発明半
導体装置の製造方法の第1の実施例を示す。図1におい
て1は半絶縁性GaAs基板、2はn型領域、3はゲー
ト電極、4は抵抗素子、5はn型高濃度層、6はオーミ
ック電極、7は絶縁膜、8は金属配線、9は保護膜であ
る。半絶縁性GaAs基板1にイオン注入でFETの活
性層および抵抗部にn型領域2を形成し、高融点金属薄
膜例えばWSiを全面に形成した後、前記n型領域2上
の前記高融点金属をゲート電極3および抵抗素子4に加
工する(a)。次に前記ゲート電極3の両側にソース・
ドレイン電極形成のためのn型高濃度層5をイオン注入
で形成し、活性化のためのアニールを行う(b)。その
後、オーミック電極6を形成し、全面に絶縁膜7例えば
シリコン窒化膜を堆積する(c)。次に、ゲート電極
3、オーミック電極6および抵抗素子4のコンタクトを
開口し金属配線8を形成し、最後に保護膜9を形成して
GaAsICを完成する(d)。
(Embodiment 1) FIGS. 1A to 1D show a first embodiment of a method for manufacturing a semiconductor device of the present invention. In FIG. 1, 1 is a semi-insulating GaAs substrate, 2 is an n-type region, 3 is a gate electrode, 4 is a resistance element, 5 is an n-type high concentration layer, 6 is an ohmic electrode, 7 is an insulating film, 8 is a metal wiring, 9 is a protective film. After the n-type region 2 is formed in the active layer and the resistance portion of the FET by ion implantation on the semi-insulating GaAs substrate 1 and a refractory metal thin film, for example, WSi is formed on the entire surface, the refractory metal on the n-type region 2 is formed. Is processed into the gate electrode 3 and the resistance element 4 (a). Next, the source on both sides of the gate electrode 3
An n-type high concentration layer 5 for forming a drain electrode is formed by ion implantation, and annealing for activation is performed (b). After that, the ohmic electrode 6 is formed, and the insulating film 7 such as a silicon nitride film is deposited on the entire surface (c). Next, the contacts of the gate electrode 3, the ohmic electrode 6 and the resistance element 4 are opened to form the metal wiring 8, and finally the protective film 9 is formed to complete the GaAs IC (d).

【0011】第1の実施例ではゲート電極3と抵抗素子
4は同一の高融点金属で同一の工程で形成されており、
工程の簡略化が図れる。また、本実施例では抵抗素子4
に接するGaAs基板をn型層に形成しているため、図
2に示すようなショットキ電極を半絶縁性GaAs基板
上に形成したときに近傍のオーミック電極間に発生する
異常リークを防止することができる。そして、このn型
層もFETの活性層と同時に形成するため工程の増加は
ない。
In the first embodiment, the gate electrode 3 and the resistance element 4 are made of the same refractory metal in the same step,
The process can be simplified. Further, in this embodiment, the resistance element 4
Since the GaAs substrate in contact with the n-type layer is formed in the n-type layer, it is possible to prevent abnormal leakage that occurs between the ohmic electrodes in the vicinity when the Schottky electrode as shown in FIG. 2 is formed on the semi-insulating GaAs substrate. it can. Since this n-type layer is also formed at the same time as the active layer of the FET, the number of steps is not increased.

【0012】(実施例2)図3(a)〜(d)に本発明
半導体装置の製造方法の第2の実施例を示す。図3にお
いて11は半絶縁性GaAs基板、12はn型領域、1
3はゲート電極、14は配線パターン、15はn型高濃
度層、16はオーミック電極、17第1の金属配線、1
8は絶縁膜、19は第2の金属配線、20は保護膜であ
る。半絶縁性GaAs基板11にイオン注入でFETの
活性層および配線部にn型領域12を形成し、高融点金
属薄膜例えばWSiを全面に形成した後、前記n型領域
12上の前記高融点金属膜をゲート電極13および配線
パターン14に加工する(a)。次に前記ゲート電極1
3の両側にソース・ドレイン領域形成のためのn型高濃
度層15をイオン注入で形成し、活性化のためのアニー
ルを行う(b)。その後、オーッミク金属を前記ソース
・ドレイン領域および前記配線パターン14上に形成
し、シンターによりオーミック電極16および第1の金
属配線17を形成し、全面に絶縁膜18例えばシリコン
窒化膜を堆積する(c)。次に、ゲート電極13、オー
ミック電極16および第1の金属配線17よりコンタク
トを開口し第2の金属配線19を形成し、最後に保護膜
20を形成してGaAsICを完成する(d)。
(Embodiment 2) FIGS. 3A to 3D show a second embodiment of the method for manufacturing a semiconductor device of the present invention. In FIG. 3, 11 is a semi-insulating GaAs substrate, 12 is an n-type region, 1
3 is a gate electrode, 14 is a wiring pattern, 15 is an n-type high concentration layer, 16 is an ohmic electrode, 17 is a first metal wiring, 1
Reference numeral 8 is an insulating film, 19 is a second metal wiring, and 20 is a protective film. After the n-type region 12 is formed in the active layer and the wiring portion of the FET by ion implantation in the semi-insulating GaAs substrate 11 and a refractory metal thin film, for example, WSi is formed on the entire surface, the refractory metal on the n-type region 12 is formed. The film is processed into the gate electrode 13 and the wiring pattern 14 (a). Next, the gate electrode 1
An n-type high concentration layer 15 for forming source / drain regions is formed on both sides of 3 by ion implantation, and annealing for activation is performed (b). After that, ohmic metal is formed on the source / drain regions and the wiring pattern 14, the ohmic electrode 16 and the first metal wiring 17 are formed by sintering, and an insulating film 18 such as a silicon nitride film is deposited on the entire surface (c). ). Next, a contact is opened from the gate electrode 13, the ohmic electrode 16 and the first metal wiring 17 to form a second metal wiring 19, and finally a protective film 20 is formed to complete the GaAs IC (d).

【0013】第2の実施例は、集積度が高くなり2層配
線を余儀なくされる昨今のGaAsICにおいて、従来
の1層配線を本発明のゲート高融点金属/オーミック金
属配線に置き換えることにより1層配線プロセスで製造
できることになる。このことは、2層目配線の形成工程
を省略できるだけでなく層間膜の形成工程およびコンタ
クト形成工程といった大幅な工程数の削減になる。ま
た、本発明ではオーミック金属とゲート金属の2層構造
としているが、この構造は通常オーミック電極形成時に
起こるGaAsとオーッミク金属の合金化反応を高融点
金属で防止することができる。図4に本発明の配線金属
のシート抵抗値とオーミック電極のシート抵抗値の45
0℃熱処理による変化を示す。5分の熱処理でオーミッ
ク電極ではシート抵抗値が10倍にも大きくなるが、本
発明の配線金属ではほとんど変化はな句安定しているこ
とがわかる。
In the second embodiment, in a recent GaAs IC in which the degree of integration is increased and two-layer wiring is inevitable, the conventional one-layer wiring is replaced with the gate refractory metal / ohmic metal wiring of the present invention to form one layer. It can be manufactured by the wiring process. This not only eliminates the step of forming the second layer wiring, but also significantly reduces the number of steps such as the step of forming an interlayer film and the step of forming a contact. Further, in the present invention, a two-layer structure of ohmic metal and gate metal is used, but this structure can prevent the alloying reaction of GaAs and ohmic metal that normally occurs at the time of forming an ohmic electrode with a refractory metal. FIG. 4 shows a sheet resistance value of the wiring metal of the present invention and a sheet resistance value of the ohmic electrode of 45.
The change due to 0 ° C. heat treatment is shown. It can be seen that the sheet resistance value of the ohmic electrode is increased ten times by the heat treatment for 5 minutes, but the wiring metal of the present invention is stable with almost no change.

【0014】なお、本発明第1および第2の実施例で高
融点金属膜にWSi用いたが、高融点金属はこれに限ら
ずWSiNなど他の高融点金属膜であっても良い。
Although WSi is used for the refractory metal film in the first and second embodiments of the present invention, the refractory metal is not limited to this and may be another refractory metal film such as WSiN.

【0015】[0015]

【発明の効果】上述したように本発明は、高融点金属を
用いた自己整合プロセスによるGaAsICの製造方法
で、高融点金属ゲート形成時に抵抗素子を形成すること
や、高融点金属とオーミック金属を用いて配線を形成す
ることにより従来行っていた工程を大幅に省略すること
ができるのでGaAsICプロセスの工程の短縮、しい
ては歩留の向上を図ることができる。
As described above, the present invention is a method of manufacturing a GaAs IC by a self-alignment process using a refractory metal, in which a resistive element is formed at the time of forming a refractory metal gate, and a refractory metal and an ohmic metal are formed. By using the wiring to form the wiring, the steps conventionally performed can be largely omitted, so that the steps of the GaAs IC process can be shortened and the yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1の実施例を示す工程断面FIG. 1 is a process cross section showing a first embodiment of the present invention.

【図2】本発明の効果を示す図FIG. 2 is a diagram showing the effect of the present invention.

【図3】本発明第2の実施例を示す工程断面FIG. 3 is a process cross section showing a second embodiment of the present invention.

【図4】本発明の効果を示す図FIG. 4 is a diagram showing the effect of the present invention.

【図5】従来の半導体装置の製造方法を示す工程断面図5A to 5C are process sectional views showing a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 n型領域 3 ゲート電極 4 抵抗素子 5 n型高濃度層 6 オーミック電極 1 semiconductor substrate 2 n-type region 3 gate electrode 4 resistance element 5 n-type high concentration layer 6 ohmic electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板にイオン注入によりn型領域を
形成する工程と、全面に高融点金属膜を形成する工程
と、前記n型領域上の前記高融点金属膜を加工しゲート
電極および抵抗素子を形成する工程と、前記ゲート電極
の両側にソース・ドレイン高濃度領域を形成する工程
と、注入イオンの活性化を行なうためのアニールを行う
工程を有することを特徴とする半導体装置の製造方法。
1. A step of forming an n-type region in a semiconductor substrate by ion implantation, a step of forming a refractory metal film on the entire surface, and a step of processing the refractory metal film on the n-type region to form a gate electrode and a resistor. A method of manufacturing a semiconductor device, comprising: a step of forming an element; a step of forming high-concentration source / drain regions on both sides of the gate electrode; and a step of annealing to activate implanted ions. .
【請求項2】半導体基板にイオン注入によりn型領域を
形成する工程と、全面に高融点金属膜を形成する工程
と、前記n型領域上の前記高融点金属膜をゲート電極お
よび配線パターンに形成する工程と、前記ゲート電極の
両側にソース・ドレイン高濃度領域を形成する工程と、
注入イオンの活性化を行なうためのアニールを行う工程
と、オーッミック金属を前記ソース・ドレイン領域上お
よび前記配線パターン上に形成する工程と、シンターに
よりオーッミック電極を形成する工程を有することを特
徴とする半導体装置の製造方法。
2. A step of forming an n-type region in a semiconductor substrate by ion implantation, a step of forming a refractory metal film on the entire surface, and a step of forming the refractory metal film on the n-type region into a gate electrode and a wiring pattern. Forming a source / drain high-concentration region on both sides of the gate electrode;
The method has a step of performing annealing for activating the implanted ions, a step of forming ohmic metal on the source / drain regions and the wiring pattern, and a step of forming an ohmic electrode by sintering. Manufacturing method of semiconductor device.
【請求項3】高融点金属膜がタングステンを含むシリサ
イドからなることを特徴とする請求項1または請求項2
記載の半導体装置の製造方法。
3. The refractory metal film is made of a silicide containing tungsten.
A method for manufacturing a semiconductor device as described above.
【請求項4】高融点金属膜を加工した抵抗素子が全面前
記n型領域上にあることを特徴とする請求項1記載の半
導体装置の製造方法。
4. A method of manufacturing a semiconductor device according to claim 1, wherein a resistance element formed by processing a refractory metal film is entirely on the n-type region.
【請求項5】高融点金属膜を加工した配線パターンが全
面前記n型領域上にあることを特徴とする請求項2記載
の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 2, wherein a wiring pattern formed by processing a refractory metal film is entirely on the n-type region.
JP4340036A 1992-12-21 1992-12-21 Method for manufacturing semiconductor device Expired - Fee Related JP2996034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4340036A JP2996034B2 (en) 1992-12-21 1992-12-21 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4340036A JP2996034B2 (en) 1992-12-21 1992-12-21 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH06188379A true JPH06188379A (en) 1994-07-08
JP2996034B2 JP2996034B2 (en) 1999-12-27

Family

ID=18333128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4340036A Expired - Fee Related JP2996034B2 (en) 1992-12-21 1992-12-21 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2996034B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255679B1 (en) 1998-06-29 2001-07-03 Nec Corporation Field effect transistor which can operate stably in millimeter wave band

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255679B1 (en) 1998-06-29 2001-07-03 Nec Corporation Field effect transistor which can operate stably in millimeter wave band

Also Published As

Publication number Publication date
JP2996034B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US4636822A (en) GaAs short channel lightly doped drain MESFET structure and fabrication
US4855246A (en) Fabrication of a gaas short channel lightly doped drain mesfet
US4396930A (en) Compact MOSFET device with reduced plurality of wire contacts
JPS634683A (en) Field-effect transistor
US4729969A (en) Method for forming silicide electrode in semiconductor device
JPH0393271A (en) Mos-type semiconductor device
US4712291A (en) Process of fabricating TiW/Si self-aligned gate for GaAs MESFETs
JP2996034B2 (en) Method for manufacturing semiconductor device
JPH03141645A (en) Local mutual connection method by polyside and semiconductor element manufactured by said method
US20050104132A1 (en) Semiconductor device and manufacturing method thereof
JPH0737905A (en) Manufacture of semiconductor device
JPH0737906A (en) Semiconductor device and manufacture thereof
JPS61267365A (en) Semiconductor device
EP1347511A1 (en) Method for manufacturing a MOS transistor and MOS transistor.
JPS61194764A (en) Manufacture of semiconductor device
JPS6370553A (en) Semiconductor integrated circuit device and manufacture thereof
JPH03101231A (en) Semiconductor device and its formation
JP2003163225A (en) Semiconductor device and manufacturing method therefor
JP4004677B2 (en) Manufacturing method of semiconductor device
JPH01243452A (en) Semiconductor integrated circuit device
JPH0439773B2 (en)
JPH03201558A (en) Bi-cmos semiconductor device
JPH0319212A (en) Manufacture of semiconductor device
JPS6050966A (en) Manufacture of field effect transistor
JPH02211622A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees