JPH06188145A - Monolithic ceramic capacitor - Google Patents

Monolithic ceramic capacitor

Info

Publication number
JPH06188145A
JPH06188145A JP33741592A JP33741592A JPH06188145A JP H06188145 A JPH06188145 A JP H06188145A JP 33741592 A JP33741592 A JP 33741592A JP 33741592 A JP33741592 A JP 33741592A JP H06188145 A JPH06188145 A JP H06188145A
Authority
JP
Japan
Prior art keywords
glass
capacitor
glass frit
external electrode
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33741592A
Other languages
Japanese (ja)
Inventor
Yoshio Yokoe
宣雄 横江
Ryoji Yamashita
良次 山下
Takahito Hoshino
敬人 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33741592A priority Critical patent/JPH06188145A/en
Publication of JPH06188145A publication Critical patent/JPH06188145A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce stress and improve strength in flexibility, by using an outer electrode made of Pb-based borosilicate glass frit, and limiting the softening temperature or the coefficient of thermal expansion of the glass in a given range. CONSTITUTION:A monolithic ceramic capacitor comprises a capacitor base element 3 made up of dielectric layers 1 laminated with inner electrodes 2 alternately, and a pair of an outer electrode 4 provided on the side face of the capacitor base element 3 so as to be connected electrically to the inner electrode 2. The outer electrode 4 is made of glass frit and metallic conductive material, such as Ag or Ag-based alloy. The grass frit is made of boro-silicate lead glass contains at least B2O3 and SiO2, and Pb of 62wt.% in a scale factor of oxide materials. The lead boro-silicate glass has a coefficient of thermal expansion not less than 7.5X10<-6>/ deg.C or the softening temperature of 560 deg.C or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層型磁器コンデンサ
に関するもので、詳細には、外部電極の改善により熱衝
撃性および機械的強度を向上させ、大容量化、高積層化
に対応し得る磁器コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated porcelain capacitor. More specifically, it is possible to improve thermal shock resistance and mechanical strength by improving external electrodes, and to cope with large capacity and high lamination. It concerns a porcelain capacitor.

【0002】[0002]

【従来技術】図1に、積層型磁器コンデンサの典型的な
構造を示した。図1によれば、複数の誘電体層1は、そ
れぞれ内部電極2を介して積層されており、そのコンデ
ンサ素体3の側面には、内部電極2と電気的に接続され
た一対の外部電極4が形成されている。さらに、外部電
極4の表面にはNiおよびSnなどのメッキ膜5が施さ
れている。
2. Description of the Related Art FIG. 1 shows a typical structure of a laminated ceramic capacitor. According to FIG. 1, a plurality of dielectric layers 1 are laminated via an internal electrode 2, and a pair of external electrodes electrically connected to the internal electrode 2 is provided on a side surface of the capacitor body 3. 4 are formed. Further, the surface of the external electrode 4 is coated with a plating film 5 of Ni, Sn, or the like.

【0003】従来より外部電極4は、一般にAg,Pd
などの金属導体をガラスフリットによりコンデンサ素体
磁器に結合させて機械的強度を具備させた、いわゆるガ
ラスボンドタイプが用いられている。この外部電極に含
まれるガラスフリット成分には、(1)磁器素体と、外
部電極主成分の金属(主としてAg)を機械的に結合さ
せる、(2)焼結した金属導体の空孔に充填され、外部
電極膜の組織を緻密化させる、の2つの役割を有する。
また、最近ではコンデンサの大容量化に伴い高積層化が
進み、耐熱衝撃性が要求されつつあり、そのためにはメ
ッキ工程など湿式加工工程において液体が電極中に浸入
しないほどの緻密な外部電極であることも必要とされて
いる。このような外部電極はAg79〜97重量%と、
ガラスフリット3〜21重量%からなる無機質に樹脂と
有機溶剤をを添加し、混練してペースト状にし、コンデ
ンサ素体の両端面に塗布し、乾燥して溶剤を蒸発した
後、大気中で最高温度800℃で焼成して形成してい
る。
Conventionally, the external electrode 4 is generally made of Ag or Pd.
A so-called glass bond type in which a metal conductor such as the above is bonded to a capacitor body porcelain by a glass frit to have mechanical strength is used. The glass frit component contained in the external electrode is (1) mechanically bonded to the porcelain body and the metal (mainly Ag) as the main component of the external electrode, and (2) filled in the pores of the sintered metal conductor. And has a dual role of densifying the structure of the external electrode film.
In addition, recently, as the capacity of capacitors has become higher and the number of layers has increased, thermal shock resistance is being demanded.To this end, it is necessary to use external electrodes that are dense enough to prevent liquid from entering the electrodes during wet processing such as plating. There is also a need to be. Such an external electrode has Ag of 79 to 97% by weight,
Resin and organic solvent are added to the inorganic material consisting of 3 to 21% by weight of glass frit, kneaded to form a paste, applied to both end faces of the capacitor element body, dried and evaporated to the maximum in the atmosphere. It is formed by firing at a temperature of 800 ° C.

【0004】そこで、外部電極として前記要求を満足す
るために、従来より各種の改良が提案されている。例え
ば、特公昭62−1662号によれば、外部電極を構成
するガラスフリットを、酸化亜鉛を主成分とする硼珪酸
亜鉛ガラスにアルカリ金属酸化物およびアルカリ土類酸
化物を添加したガラス組成物により構成することにより
耐還元性、耐酸性を改善することが開示されている。
Therefore, in order to satisfy the above requirements as the external electrode, various improvements have been conventionally proposed. For example, according to Japanese Examined Patent Publication No. 62-1662, a glass frit forming an external electrode is formed by a glass composition in which an alkali metal oxide and an alkaline earth oxide are added to zinc borosilicate glass containing zinc oxide as a main component. It is disclosed that the composition improves the reduction resistance and the acid resistance.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、上記
特公昭62−1662号にて提案された硼珪酸亜鉛系ガ
ラスは、その軟化点より150〜200℃程度高い温度
以上では非常に化学的に活性であるために、外部電極を
焼成する過程でチタン酸バリウムを主成分とするコンデ
ンサ素体と激しく反応し、磁器と外部電極界面で反応層
を形成し、この反応層の機械的強度(曲げ強度)が誘電
体磁器固有のそれよりも低く、そのためにコンデンサ素
子を例えばガラスエポキシ基板のように可撓性を有する
回路基板にハンダ実装した場合、回路基板のたわみによ
って生じる応力に耐えられず、素子が破壊するという問
題があった。
However, the zinc borosilicate glass proposed in the above Japanese Patent Publication No. 62-1662 is very chemically active above 150 ° C. to 200 ° C. above its softening point. Therefore, in the process of firing the external electrode, it reacts violently with the capacitor element body containing barium titanate as a main component to form a reaction layer at the interface between the porcelain and the external electrode, and the mechanical strength (bending strength) of this reaction layer ) Is lower than that peculiar to the dielectric porcelain, and therefore, when the capacitor element is solder-mounted on a flexible circuit board such as a glass epoxy board, it cannot withstand the stress caused by the flexure of the circuit board, and There was a problem of being destroyed.

【0006】[0006]

【問題点を解決するための手段】そこで、本発明者等
は、外部電極とコンデンサ素体間の応力の発生を小さく
する方法について検討を重ねた結果、外部電極を構成す
るガラスフリットとしてPbを主成分とする硼珪酸鉛ガ
ラスを用いるとともにガラスの軟化点または熱膨張係数
を特定の範囲に制御することにより、応力の発生を抑制
し、たわみ強度を向上できることを知見し、本発明に至
った。
Therefore, the inventors of the present invention have repeatedly studied a method for reducing the stress between the external electrode and the capacitor body, and as a result, Pb has been used as the glass frit forming the external electrode. By using lead borosilicate glass as the main component and controlling the softening point or thermal expansion coefficient of the glass within a specific range, it was found that the occurrence of stress can be suppressed and the flexural strength can be improved, leading to the present invention. .

【0007】即ち、本発明の積層型磁器コンデンサは、
内部電極を介して誘電体層が複数積層されたコンデンサ
素体と、該内部電極と電気的に接続するように該コンデ
ンサ素体の側面に形成された一対の外部電極を具備する
ものであり、前記外部電極がのガラスフリットとAgま
たはAgを含む合金からなる金属導体からなり、該ガラ
スフリットが少なくともB2 3 およびSiO2 を含有
し、該ガラスフリットが少なくともB2 3 およびSi
2 を含有し、さらにPbを酸化物換算で62重量%以
上の割合で含むとともに、熱膨張係数が7.5×10-6
/℃以上であるか、または軟化点が560℃以下である
ことを特徴とするものである。
That is, the laminated ceramic capacitor of the present invention is
A capacitor element body in which a plurality of dielectric layers are laminated via internal electrodes, and a pair of external electrodes formed on a side surface of the capacitor element body so as to be electrically connected to the internal electrodes, The external electrode comprises a glass frit and a metal conductor made of Ag or an alloy containing Ag, the glass frit contains at least B 2 O 3 and SiO 2 , and the glass frit contains at least B 2 O 3 and Si.
It contains O 2 and further contains Pb in an amount of 62% by weight or more in terms of oxide, and has a thermal expansion coefficient of 7.5 × 10 −6.
/ ° C or higher, or the softening point is 560 ° C or lower.

【0008】以下、本発明を詳述する。本発明における
積層型磁器コンデンサは、構造上従来から用いられてい
るものと実質上変わりなく、図1に示すように、複数の
誘電体層1が内部電極2を介して積層してコンデンサ素
体3が形成される。内部電極2は、コンデンサ素体3の
側面に交互に導出され、その側面には一対の外部電極4
が形成され、さらに外部電極4の表面にはメッキ膜5が
形成される。
The present invention will be described in detail below. The multilayer ceramic capacitor according to the present invention has substantially the same structure as that conventionally used, and as shown in FIG. 1, a plurality of dielectric layers 1 are laminated via internal electrodes 2 to form a capacitor body. 3 is formed. The internal electrodes 2 are alternately led out to the side surfaces of the capacitor body 3, and a pair of external electrodes 4 are provided on the side surfaces.
And a plating film 5 is formed on the surface of the external electrode 4.

【0009】上記構成において、外部電極4は、ガラス
フリットと金属導体とから構成されるが、本発明によれ
ば、そのガラスフリットの熱膨張係数が7.5×10-6
/ ℃以上、特に7.9×10-6/ ℃以上であることが重
要である。このガラスフリットの熱膨張係数を上記の範
囲に限定したのは、熱膨張係数が7.5×10-6/ ℃よ
り小さいとコンデンサ素体の端面にて焼結した時にコン
デンサ素体との間に発生する応力が大きくなるためにコ
ンデンサのたわみ強度が低下するためである。
In the above structure, the external electrode 4 is composed of a glass frit and a metal conductor. According to the present invention, the coefficient of thermal expansion of the glass frit is 7.5 × 10 -6.
It is important that the temperature is not less than / ° C, especially not less than 7.9 x 10 -6 / ° C. The coefficient of thermal expansion of this glass frit was limited to the above range because the coefficient of thermal expansion was less than 7.5 × 10 -6 / ℃ between the capacitor element body and the end surface of the capacitor element body when sintered. This is because the flexural strength of the capacitor is reduced due to the increased stress generated in the capacitor.

【0010】また、本発明におけるガラスフリット中に
は、Pbを酸化物換算で62重量%以上、特に70重量
%以上の割合で含むことが重要である。これは、ガラス
フリットの熱膨張係数を上記の範囲に制御するために必
要な量であり、Pb量が上記範囲より少ないと熱膨張係
数を前記範囲に制御することが困難となる。
It is important that the glass frit in the present invention contains Pb in an amount of 62% by weight or more, especially 70% by weight or more in terms of oxide. This is an amount necessary for controlling the thermal expansion coefficient of the glass frit within the above range, and if the Pb amount is less than the above range, it becomes difficult to control the thermal expansion coefficient within the above range.

【0011】さらに、本発明によれば、ガラスフリット
の軟化点を560℃以下に制御することも応力を緩和さ
せるのに有効な方法であり、軟化点が560℃より高い
と、応力の発生が大きくなり、磁器コンデンサのたわみ
強度が低下する。なお、本発明における軟化点は、ガラ
スフリット中のB2 3 およびSiO2 量にて制御する
ことができ、B2 3 は12〜25重量%、SiO2
2〜20重量%の割合で含有され、その他、アルカリ金
属、アルカリ土類金属、TiO2 、Al2 3などを1
0重量%以下の割合で含む場合もある。
Further, according to the present invention, controlling the softening point of the glass frit to 560 ° C. or lower is also an effective method for relaxing the stress, and when the softening point is higher than 560 ° C., the stress is not generated. It becomes large and the flexural strength of the porcelain capacitor decreases. The softening point in the present invention can be controlled by the amounts of B 2 O 3 and SiO 2 in the glass frit. The ratio of B 2 O 3 is 12 to 25% by weight, and SiO 2 is 2 to 20% by weight. In addition, 1 other alkali metal, alkaline earth metal, TiO 2 , Al 2 O 3 etc.
It may be contained in a proportion of 0% by weight or less.

【0012】本発明によれば、上記構成からなるガラス
フリットは外部電極中に7.3〜12.5重量%(1
2.5〜22.0体積%)、特に8.2〜10.0重量
%(14.4〜17.5体積%)の量で配合され、残部
が金属導体からなる。金属導体としては、金属導体とし
ては、Ag又はAgとPdの合金などが用いられ、内部
電極としてはAg/Pd合金またはPdなどが用いられ
る。
According to the present invention, the glass frit having the above-mentioned structure contains 7.3 to 12.5 wt% (1
2.5 to 22.0% by volume), particularly 8.2 to 10.0% by weight (14.4 to 17.5% by volume), and the balance being a metal conductor. As the metal conductor, Ag or an alloy of Ag and Pd is used as the metal conductor, and Ag / Pd alloy or Pd is used as the internal electrode.

【0013】本発明において、外部電極中のガラスフリ
ットの量を上記の範囲に限定したのは、その量が7.3
重量%より少ないと外部電極と磁器の固着力が十分でな
い上に電極膜組織が疎になり熱衝撃性が低下する。ま
た、ガラスフリットの量が12.5重量%を越えると外
部電極表面に強固なガラス層が形成され、酸処理などの
前処理を行ってもメッキ膜を形成するのが困難となるた
めである。
In the present invention, the amount of glass frit in the external electrode is limited to the above range because the amount is 7.3.
If the amount is less than wt%, the adhesive force between the external electrode and the porcelain will be insufficient, and the electrode film structure will become sparse to reduce the thermal shock resistance. Further, if the amount of glass frit exceeds 12.5% by weight, a strong glass layer is formed on the external electrode surface, and it becomes difficult to form a plated film even if pretreatment such as acid treatment is performed. .

【0014】さらに、コンデンサ素体の誘電体層は、周
知の誘電体からなるもので、例えば、BaTiO3 系、
Pb(Mg1/3 Nb2/3 )O3 系、Pb(Zn1/3 Nb
2/3)O3 系、Pb(FeNdNb)O3 系などから所
望の特性に応じた誘電体を選択することができる。
Further, the dielectric layer of the capacitor element body is made of a known dielectric material, for example, BaTiO 3 system,
Pb (Mg 1/3 Nb 2/3 ) O 3 system, Pb (Zn 1/3 Nb
It is possible to select a dielectric material according to desired characteristics from 2/3 ) O 3 system, Pb (FeNdNb) O 3 system, and the like.

【0015】[0015]

【作用】磁器コンデンサのたわみ強度は、外部電極が与
えるコンデンサ素体の残留応力に加えて、回路基板に実
装後、基板のたわみにより外部電極を経由してコンデン
サ素体に及ぼされる引っ張り方向の応力が作用し、その
作用応力の大きさとコンデンサ素体が有している抗折強
度の関係で決定づけられると考えられる。
[Function] In addition to the residual stress of the capacitor body provided by the external electrodes, the bending strength of the porcelain capacitor is the stress in the tensile direction that is exerted on the capacitor body via the external electrodes by the board deflection after mounting on the circuit board. Is considered to be determined by the relationship between the magnitude of the acting stress and the bending strength of the capacitor body.

【0016】しかるに、焼成工程で外部電極がコンデン
サ素体に与える応力σfは、σf=ε・Δα・Tの関係
で表されると考えられる。ここで、εはコンデンサ素体
のヤング率、Δαはコンデンサ素体と外部電極中のガラ
スの線熱膨張係数の差であり、Tは外部電極を焼成する
際の焼成温度から冷却する過程でガラスがコンデンサ素
体に固着する温度(ガラス軟化点)と室温との差を示し
ている。
However, it is considered that the stress σf applied to the capacitor element body by the external electrodes in the firing step is represented by the relationship of σf = ε · Δα · T. Here, ε is the Young's modulus of the capacitor body, Δα is the difference in the coefficient of linear thermal expansion between the capacitor body and the glass in the external electrode, and T is the glass in the process of cooling from the firing temperature when firing the external electrode. Shows the difference between the temperature (glass softening point) that adheres to the capacitor body and room temperature.

【0017】従って、外部電極中のガラスの熱膨張係数
がコンデンサ素体のそれに対して差が小さいほど、また
はガラスの軟化点が室温に近いほど、外部電極がコンデ
ンサ素体に与える応力を小さくなり、従って、たわみ強
度を高める上で有効であると考えられる。
Therefore, the smaller the difference in the coefficient of thermal expansion of the glass in the external electrode from that of the capacitor element body or the closer the softening point of the glass to room temperature, the smaller the stress applied to the capacitor element body by the external electrode. Therefore, it is considered to be effective in increasing the flexural strength.

【0018】通常、コンデンサ素体は、BaTiO3
ようにペロブスカイト型構造を有する多結晶体からなる
磁器によって構成され、その場合、コンデンサ素体の熱
膨張係数が10〜11×10-6/ ℃であり、外部電極と
して使用されるガラスフリットの熱膨張係数がおよそ
2.4〜12.5×10-6/ ℃の範囲にあると考えられ
るが、本発明によれば、このガラスフリットとして熱膨
張係数が7.5×10-6/℃以上のものを使用すること
により、磁器コンデンサのたわみ強度を高めることがで
きる。
Usually, the capacitor body is composed of a porcelain composed of a polycrystalline body having a perovskite structure such as BaTiO 3 , and in this case, the coefficient of thermal expansion of the capacitor body is 10 to 11 × 10 -6 / ° C. It is considered that the coefficient of thermal expansion of the glass frit used as the external electrode is in the range of about 2.4 to 12.5 × 10 −6 / ° C. According to the present invention, the thermal expansion coefficient of the glass frit is By using a material having an expansion coefficient of 7.5 × 10 −6 / ° C. or higher, the flexural strength of the ceramic capacitor can be increased.

【0019】一方、一般的に使用されているセラミック
電子部品の端子電極の結合用として用いられているガラ
スフリットの軟化点は、およそ430〜640℃である
が、本発明によれば、その中でも560℃以下の硼珪酸
鉛ガラスを選択的に用いることにより応力を小さくする
ことができる。しかし、ガラスの特性上、軟化点が43
0℃より低くなると、金属の焼結温度との差が大きくな
り過ぎ、ガラスが活性化しセラミックと強く反応しセラ
ミックの機械的性能を劣化させるなどの弊害が生じるた
めに、望ましくは、430〜560℃に設定される。
On the other hand, the softening point of the glass frit used for joining the terminal electrodes of the commonly used ceramic electronic parts is about 430 to 640 ° C., according to the present invention, among them. The stress can be reduced by selectively using lead borosilicate glass having a temperature of 560 ° C. or lower. However, the softening point is 43 due to the characteristics of glass.
If the temperature is lower than 0 ° C., the difference from the sintering temperature of the metal becomes too large, and the glass is activated and reacts strongly with the ceramic, resulting in the deterioration of the mechanical performance of the ceramic. Therefore, it is preferably 430 to 560. Set to ° C.

【0020】[0020]

【実施例】以下、本発明を次の例で説明する。 実施例 BaTiO3 97.7重量%、Nb2 5 1.47重量
%、Sm2 3 0.49重量%、ZnO0.34重量%
からなる混合粉末に有機結合材および可塑剤を加え、泥
漿にしドクターブレード法によりグリーンシートを作製
した。
The present invention will be described below with reference to the following examples. Example BaTiO 3 97.7% by weight, Nb 2 O 5 1.47% by weight, Sm 2 O 3 0.49% by weight, ZnO 0.34% by weight
An organic binder and a plasticizer were added to the mixed powder consisting of, and the mixture was made into a slurry to prepare a green sheet by the doctor blade method.

【0021】このグリーンシートに金属導体としてPd
からなる内部電極用ペーストを塗布し、これらを積層圧
着した後、1300℃の大気中で焼成してコンデンサ素
体を作製した。
Pd is used as a metal conductor on this green sheet.
The internal electrode paste consisting of was applied, laminated and pressure-bonded, and then fired in the atmosphere at 1300 ° C. to prepare a capacitor element body.

【0022】次に、Agからなる金属導体に表1に示す
組成からなるガラスフリットをガラスの全体組成が表1
になるように混合して添加し外部電極用ペーストを作製
した。そして、それぞれのペーストをコンデンサ素体の
端面に塗布後、610〜750℃の大気中で熱処理して
外部電極をコンデンサ素体に焼付け、積層型磁器コンデ
ンサを得た。
Next, a glass frit having the composition shown in Table 1 was added to a metal conductor made of Ag so that the total composition of the glass was
Were mixed and added to prepare an external electrode paste. Then, each paste was applied to the end surface of the capacitor body, and then heat-treated in the atmosphere at 610 to 750 ° C. to burn the external electrodes to the capacitor body to obtain a laminated porcelain capacitor.

【0023】得られた積層型磁器コンデンサに対して、
EIAJ試験法に準拠し、厚さ1.6mmのガラスエポ
キシ基板にそれぞれ20個のコンデンサを実装してたわ
み試験を行い、素子が破壊する限界時のたわみ量を測定
し、平均値と最小値を表1に示した。
With respect to the obtained laminated ceramic capacitor,
In accordance with the EIAJ test method, 20 capacitors are mounted on each glass epoxy substrate with a thickness of 1.6 mm and a flexure test is performed. The flexure amount at the time when the element breaks is measured, and the average value and the minimum value are calculated. The results are shown in Table 1.

【0024】また、各コンデンサにつき、305℃の溶
融ハンダ中に浸漬して磁器中のクラックの存在を検査
し、300個中のクラックが発生したコンデンサの数を
表1に示した。
Further, each capacitor was immersed in molten solder at 305 ° C. and inspected for the presence of cracks in the porcelain, and the number of cracked capacitors out of 300 is shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように、ガラスフリット
の熱膨張係数が7.5×10-6/℃よりも低い、または
軟化点が560℃より高いガラスを用いた場合には、た
わみ量は平均で1.9mmしかないのに対して、本発明
の試料は、いずれもたわみ強度が3.4mmと大きく向
上した。
As is clear from Table 1, when glass having a coefficient of thermal expansion of glass frit lower than 7.5 × 10 -6 / ° C. or a softening point higher than 560 ° C. is used, the amount of deflection is The samples of the present invention had a flexural strength of 3.4 mm, which was significantly improved, while the average of only 1.9 mm.

【0027】[0027]

【発明の効果】以上詳述した通り、本発明によれば、外
部からの機械的応力や熱的衝撃に対して高い耐抗力を付
与することができ、コンデンサのたわみ強度を高めると
ともに基板への実装に際して印加される熱ストレスに耐
えることができるために、製品の信頼性を高めることが
できる。
As described in detail above, according to the present invention, it is possible to impart high resistance to external mechanical stress and thermal shock, enhance the flexural strength of the capacitor, and increase the flexural strength of the capacitor. Since it can withstand the thermal stress applied during mounting, the reliability of the product can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】積層型磁器コンデンサの構造を説明するための
断面図である。
FIG. 1 is a cross-sectional view for explaining the structure of a laminated ceramic capacitor.

【符号の説明】[Explanation of symbols]

1 誘電体層 2 内部電極 3 コンデンサ素体 4 外部電極 5 メッキ膜 1 Dielectric layer 2 Internal electrode 3 Capacitor element body 4 External electrode 5 Plating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内部電極を介して誘電体層が複数積層され
たコンデンサ素体と、該内部電極と電気的に接続するよ
うに該コンデンサ素体の側面に形成された一対の外部電
極を具備する積層型磁器コンデンサにおいて、前記外部
電極が、ガラスフリットと、残部がAgまたはAgを含
む合金からなる金属導体からなり、該ガラスフリットが
少なくともB2 3 およびSiO2 を含有し、さらにP
bを酸化物換算で62重量%以上の割合で含むととも
に、熱膨張係数が7.5×10-6/℃以上であることを
特徴とする積層型磁器コンデンサ。
1. A capacitor element body having a plurality of dielectric layers laminated via internal electrodes, and a pair of external electrodes formed on the side surfaces of the capacitor element body so as to be electrically connected to the internal electrodes. In the laminated ceramic capacitor described above, the external electrode is composed of a glass frit and a balance of a metal conductor made of Ag or an alloy containing Ag, the glass frit containing at least B 2 O 3 and SiO 2 , and P
A multilayer ceramic capacitor, which contains b in a proportion of 62% by weight or more in terms of oxide and has a coefficient of thermal expansion of 7.5 × 10 −6 / ° C. or more.
【請求項2】内部電極を介して誘電体層が複数積層され
たコンデンサ素体と、該内部電極と電気的に接続するよ
うに該コンデンサ素体の側面に形成された一対の外部電
極を具備する積層型磁器コンデンサにおいて、前記外部
電極が、ガラスフリットと、残部がAgまたはAgを含
む合金からなる金属導体からなり、該ガラスフリットが
少なくともB2 3 およびSiO2 を含有し、さらにP
bを酸化物換算で62重量%以上の割合で含むととも
に、軟化点が560℃以下であることを特徴とする積層
型磁器コンデンサ。
2. A capacitor element body in which a plurality of dielectric layers are laminated via internal electrodes, and a pair of external electrodes formed on the side surfaces of the capacitor element body so as to be electrically connected to the internal electrodes. In the laminated ceramic capacitor described above, the external electrode is composed of a glass frit and a balance of a metal conductor made of Ag or an alloy containing Ag, the glass frit containing at least B 2 O 3 and SiO 2 , and P
A multilayer ceramic capacitor, which contains b in a proportion of 62% by weight or more in terms of oxide and has a softening point of 560 ° C. or lower.
JP33741592A 1992-10-22 1992-12-17 Monolithic ceramic capacitor Pending JPH06188145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33741592A JPH06188145A (en) 1992-10-22 1992-12-17 Monolithic ceramic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-284321 1992-10-22
JP28432192 1992-10-22
JP33741592A JPH06188145A (en) 1992-10-22 1992-12-17 Monolithic ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH06188145A true JPH06188145A (en) 1994-07-08

Family

ID=26555424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33741592A Pending JPH06188145A (en) 1992-10-22 1992-12-17 Monolithic ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH06188145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720187A1 (en) * 1994-12-28 1996-07-03 E.I. Du Pont De Nemours And Company Conductive paste for MLC termination
US5670089A (en) * 1995-12-07 1997-09-23 E. I. Du Pont De Nemours And Company Conductive paste for MLC termination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720187A1 (en) * 1994-12-28 1996-07-03 E.I. Du Pont De Nemours And Company Conductive paste for MLC termination
US5670089A (en) * 1995-12-07 1997-09-23 E. I. Du Pont De Nemours And Company Conductive paste for MLC termination

Similar Documents

Publication Publication Date Title
KR100272424B1 (en) Monolithic ceramic capacitor and producing method thereof
KR101834747B1 (en) Laminated ceramic electronic component
JPH07161223A (en) Conductive paste and multilayer ceramic capacitor
JPWO2006003755A1 (en) Conductive paste and ceramic electronic component using the same
US6370015B2 (en) Laminated ceramic electronic device
KR100366928B1 (en) Conductive paste and ceramic electronic component
JP6024830B2 (en) Multilayer ceramic electronic components
JP4682426B2 (en) Electronic component and manufacturing method thereof
JP2002208535A (en) Electronic component and its manufacturing method
WO2015045722A1 (en) Multilayer ceramic electronic component
JP2003077336A (en) Conductive paste and laminated ceramic capacitor using the same
JP3152065B2 (en) Conductive paste and multilayer ceramic capacitors
JPH11260147A (en) Conductive paste and ceramic electronic component
JPH06188145A (en) Monolithic ceramic capacitor
JPH0817139B2 (en) Laminated porcelain capacitors
JP5765041B2 (en) Multilayer ceramic electronic components
JPH04293214A (en) Conductive paste for chip type electronic component
JP3253028B2 (en) External electrode forming method of multilayer ceramic capacitor
JP2996016B2 (en) External electrodes for chip-type electronic components
JPH03129810A (en) Laminated type ceramic chip capacitor and manufacture thereof
JP2968316B2 (en) Multilayer ceramic capacitors
JP3366479B2 (en) Metallized composition and method for producing wiring board
JPH06176956A (en) Laminated porcelain capacitor
JPH06151235A (en) Laminated type porcelain capacitor
JPH07211133A (en) Conductive paste for forming terminal electrode of electronic part