JPH06187683A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH06187683A
JPH06187683A JP43A JP35578792A JPH06187683A JP H06187683 A JPH06187683 A JP H06187683A JP 43 A JP43 A JP 43A JP 35578792 A JP35578792 A JP 35578792A JP H06187683 A JPH06187683 A JP H06187683A
Authority
JP
Japan
Prior art keywords
layer
magneto
recording medium
optical recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Toshiaki Tokita
才明 鴇田
Motoharu Tanaka
元治 田中
Atsuyuki Watada
篤行 和多田
Koji Deguchi
浩司 出口
Yoshiko Kurosawa
美子 黒沢
Masayoshi Takahashi
正悦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP43A priority Critical patent/JPH06187683A/en
Publication of JPH06187683A publication Critical patent/JPH06187683A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magneto-optical recording medium undergoing easy control of the compsn. and capable of using a low-cost material by forming the middle magnetic layer of a three-layered film with a transition metal or an alloy thereof in a magneto-optical recording medium capable of overwriting by an optical modulation system. CONSTITUTION:A recording layer and a protective layer are laminated on a transparent substrate of glass, plastic, etc., with an underlayer and/or an auxiliary layer in-between and the protective layer is coated with a reflecting layer of Al, etc. The underlayer is formed with SiO2, SiO, etc., and the recording layer is formed with an amorphous film of a rare earth metal-transition metal such as Tb-Fe or Gd-Fe or a polycrystalline film of Co-Pi, etc. The auxiliary layer is made similar in compsn. to the recording layer and the protective layer is made similar in compsn. to the underlayer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光変調方式によるオーバ
ーライト(重ね書き)を可能とした光磁気記録媒体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium capable of overwriting by an optical modulation method.

【0002】[0002]

【従来の技術】近年、書き換え可能な光記録媒体とし
て、磁気光学効果を利用した光磁気記録媒体が精力的に
研究開発され、既に実用化されるに至っている。この光
磁気記録媒体は大容量高密度記録、非接触記録再生、ア
クセスの容易さ等の利点に加え、書き換えが可能という
点で文書情報ファイル、ビデオ・静止画ファイル、コン
ピュータ用メモリ等への利用が期待されている。光磁気
記録媒体を磁気ディスクと同等もしくはそれ以上の性能
を持った記録媒体とするためには、いくつかの技術的課
題があり、その中の主要なものの1つにオーバーライト
技術がある。現在提案されているオーバーライト技術
は、記録の方法により磁界変調方式と光変調方式(マル
チビーム方式、2層膜方式等)に大別される。
2. Description of the Related Art In recent years, as a rewritable optical recording medium, a magneto-optical recording medium utilizing a magneto-optical effect has been vigorously researched and developed and has already been put into practical use. This magneto-optical recording medium has the advantages of large-capacity and high-density recording, non-contact recording / playback, ease of access, and rewriting, and can be used for document information files, video / still image files, computer memory, etc. Is expected. In order to make a magneto-optical recording medium a recording medium having a performance equal to or higher than that of a magnetic disk, there are some technical problems, and one of the main ones is the overwrite technique. The overwrite technology currently proposed is roughly classified into a magnetic field modulation method and an optical modulation method (multi-beam method, two-layer film method, etc.) depending on the recording method.

【0003】磁界変調方式は記録情報に応じて印加磁界
の極性を反転させて記録を行なう方式である。この方式
では、磁界の反転を高速で行なわなくてはならないた
め、浮上タイプの磁気ヘッドを用いる等の処置を施す必
要があり、光磁気記録媒体を構成する最表面層(保護
層)に十分な強度と潤滑性をもたせるように特に配慮
し、設計しなければならない。また、構造上、媒体の両
面に記録層を配置することができず、両面記録可能な光
変調記録媒体に比べて記憶容量が半減する。
The magnetic field modulation method is a method of recording by reversing the polarity of an applied magnetic field according to recording information. In this method, since the reversal of the magnetic field must be performed at high speed, it is necessary to take measures such as using a flying type magnetic head, and it is sufficient for the outermost surface layer (protective layer) constituting the magneto-optical recording medium. Special consideration must be given to strength and lubricity. Further, due to the structure, recording layers cannot be arranged on both sides of the medium, and the storage capacity is halved as compared with an optical modulation recording medium capable of double-sided recording.

【0004】一方、光変調方式は記録情報に応じて照射
レーザビームをオン・オフあるいは強度変調させて記録
を行なう方式である。また、2層膜方式は光磁気記録媒
体の記録層を2層膜とし、オーバーライトを達成しよう
とするもので、例えば特開昭62−175948号公報
等に開示されている。この公報に記載されている方式
は、例えばTbFeからなるメモリ層とTbFeCoか
らなる補助層との2層膜の記録層を備えた光磁気記録媒
体を用い、初期化を行なった後、外部磁界の印加とパワ
ーの異なるレーザビームの照射によりオーバーライトを
実現しようとするものである。すなわち、この方式で
は、記録に先立ち予め初期化用磁界により補助層の磁化
を一方向に揃え、高出力レーザビーム(P1)を照射し
て光磁気記録媒体の温度TをT>Tc2(Tc2は補助層
のキュリー温度)なる温度まで昇温させ、記録用磁界
(初期化用磁界と反対方向)を印加して補助層の磁化を
反転させ、光磁気記録媒体が冷却される際にその磁化を
メモリ層に転写させることにより記録を行ない、また、
低出力レーザビーム(P2)を照射して光磁気記録媒体
の温度をTc1<T<Tc2(Tc1はメモリ層のキュリ
ー温度)なる温度まで昇温させ、補助層の磁化方向をメ
モリ層に転写させることにより消去を行なうというもの
である。そのため、この方式では、初期化用磁石が必要
になる、Tc1、Tc2付近の温度を記録、消去に用いる
ので記録感度が悪くなるなどの問題があった。
On the other hand, the optical modulation system is a system for recording by irradiating the irradiation laser beam on / off or by modulating the intensity according to the recording information. Further, the two-layer film system is one in which the recording layer of the magneto-optical recording medium is a two-layer film to achieve overwrite, and is disclosed in, for example, Japanese Patent Laid-Open No. 62-175948. The system disclosed in this publication uses a magneto-optical recording medium having a two-layer recording layer including a memory layer made of TbFe and an auxiliary layer made of TbFeCo, for example. It is intended to realize overwriting by irradiating laser beams having different powers and applied powers. That is, in this method, prior to recording, the magnetization of the auxiliary layer is aligned in one direction with an initializing magnetic field in advance, and a high-power laser beam (P 1 ) is irradiated to change the temperature T of the magneto-optical recording medium to T> Tc 2 ( Tc 2 is raised to a temperature which is the Curie temperature of the auxiliary layer, a recording magnetic field (direction opposite to the initialization magnetic field) is applied to reverse the magnetization of the auxiliary layer, and when the magneto-optical recording medium is cooled. Recording is performed by transferring the magnetization to the memory layer, and
The temperature of the magneto-optical recording medium is raised to a temperature of Tc 1 <T <Tc 2 (Tc 1 is the Curie temperature of the memory layer) by irradiating a low-power laser beam (P 2 ) and the magnetization direction of the auxiliary layer is stored in the memory. Erasure is carried out by transferring to a layer. Therefore, this system has problems that an initialization magnet is required and that recording sensitivity is deteriorated because temperatures near Tc 1 and Tc 2 are used for recording and erasing.

【0005】また、反磁界を利用してオーバーライトを
行う方式も提案されている(Han-Ping D. Sheih and Ma
rk H. Kryder;Appl. Phys. Lett. 49(1986)473, Han-Pi
ng D. Shieh and Mark H. Kryder;IEEE Trans. Magh. V
ol.MAG-23(1987)171, M. D.Schultz, H-P D. Shieh, an
d M. H. Kryder;J. Appl. Phys. 63(1988)3844)。とこ
ろが、この方式では、以前に記録されていたビットと同
じ場所にレーザパルスを照射する必要があるためレーザ
パルス照射位置の制御が困難であり、またビットポジシ
ョン記録しかできない等の問題がある。
A method of overwriting using a demagnetizing field has also been proposed (Han-Ping D. Sheih and Ma.
rk H. Kryder; Appl. Phys. Lett. 49 (1986) 473, Han-Pi
ng D. Shieh and Mark H. Kryder; IEEE Trans. Magh. V
ol.MAG-23 (1987) 171, MDSchultz, HP D. Shieh, an
d MH Kryder; J. Appl. Phys. 63 (1988) 3844). However, this method has a problem that it is difficult to control the laser pulse irradiation position because it is necessary to irradiate a laser pulse at the same place as the previously recorded bit, and only bit position recording is possible.

【0006】最近では、こうした諸々の問題を配慮した
うえで、これらの方式及び積層された磁性層の優れた点
に着目して、光変調オーバーライトに適した光磁気記録
媒体に記録層(メモリ層)、中間層、補助層の3層の磁
性層を積層して構成した、いわゆる交換結合3層膜が提
案され、現在ではそれが主流をなしている。そして、こ
の交換結合層膜における各層はそれぞれ希土類(RE)
−遷移金属(TM)系のアモルファス膜が用いられるこ
とが多く、各層ごとにキュリー温度、保磁力、飽和磁
化、界面磁壁エネルギーが適当な値を持つように構成元
素、組成、膜厚等が決定されるのが普通である。
In consideration of these various problems, recently, focusing on the advantages of these methods and the laminated magnetic layer, a recording layer (memory) suitable for a magneto-optical recording medium is proposed. Layer), an intermediate layer, and an auxiliary layer, a so-called exchange-coupling three-layer film constituted by laminating three magnetic layers is proposed, and at present, it is predominant. Each layer in the exchange coupling layer film is a rare earth (RE) layer.
-Transition metal (TM) -based amorphous films are often used, and the constituent elements, compositions, film thicknesses, etc. are determined so that the Curie temperature, coercive force, saturation magnetization, and interfacial domain wall energy have appropriate values for each layer. It is usually done.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記の
交換結合3層膜又は光磁気記録媒体を実際に製膜又は作
製するうえにおいては、交換結合3層膜の各層の構成元
素はより少ない方が組成制御の点から好ましく、またで
きるだけ安価な材料を選ぶべきであるが、現状では上記
の通り構成元素の数も多く、さらに高価な希土類金属を
多用している。更にまた後述するように、磁気特性の温
度変化の点からも改善が求められている。
However, in actually forming or producing the above-mentioned exchange-coupling three-layer film or the magneto-optical recording medium, it is preferable that the constituent elements of each layer of the exchange-coupling three-layer film are smaller. Although it is preferable to select a material that is preferable from the viewpoint of composition control and is as inexpensive as possible, at present, as described above, the number of constituent elements is large, and more expensive rare earth metals are often used. Further, as will be described later, there is a demand for improvement in terms of temperature change of magnetic characteristics.

【0008】本発明の目的は、かかる不都合な点を解消
し、交換結合3層膜の構成元素(特に真中に位置する層
の構成元素)の組成制御が容易な光磁気記録媒体を提供
するものである。
An object of the present invention is to solve the above disadvantages and provide a magneto-optical recording medium in which the composition of constituent elements of an exchange-coupling three-layer film (particularly constituent elements of a layer located in the middle) can be easily controlled. Is.

【0009】[0009]

【課題を解決するための手段】本発明の光磁気記録媒体
は、前記交換結合3層膜の真中に位置する層(以降「中
間層」と称する)を1種類の遷移金属により、遷移
金属どうしの合金により、特にFeにより、又はF
eCo合金(Fe含有量40atm%以上)により構成
することを特徴としている。ここで、前記又はにお
いては遷移金属が中間層以外の2つの磁性層のいずれか
或いはそれら2つの磁性層に含まれる元素であってもか
まわない。
In the magneto-optical recording medium of the present invention, the layer located in the middle of the exchange-coupling three-layer film (hereinafter referred to as "intermediate layer") is made of one kind of transition metal so that the transition metals are not mixed with each other. Alloys, especially Fe, or F
It is characterized by being composed of an eCo alloy (Fe content of 40 atm% or more). Here, in the above or in the above, the transition metal may be either one of the two magnetic layers other than the intermediate layer or an element contained in the two magnetic layers.

【0010】以下に本発明をさらに詳細に説明するが、
それに先だってまずはじめに中間層の役割について簡単
に述べる。中間層は記録層と補助層の間に働く界面磁性
エネルギーの大きさを制御するために設けられたもので
あって、室温時には初期化磁界により補助層が容易に初
期化されるように、また、Lプロセス(初期化磁界によ
り揃えられた補助層の磁化の方向に記録層の磁化を揃え
るプロセス)が行われる温度では記録層の磁化が補助層
の磁化方向に確実に揃うように設定される。
The present invention will be described in more detail below.
Prior to that, the role of the middle class is briefly described first. The intermediate layer is provided to control the magnitude of the interfacial magnetic energy that acts between the recording layer and the auxiliary layer, so that the auxiliary layer is easily initialized by the initializing magnetic field at room temperature. , L process (the process of aligning the magnetization of the recording layer in the direction of the magnetization of the auxiliary layer aligned by the initialization magnetic field) is set so that the magnetization of the recording layer is reliably aligned in the magnetization direction of the auxiliary layer. .

【0011】そのために、中間層に必要な条件として
は、室温においては界面磁壁エネルギー(σw)をでき
るだけ小さく抑え高温時には逆にある程度大きな値とな
る磁気特性の温度依存性を持つことであるが、界面磁壁
エネルギー自体は温度に対し単調に減少するので、結局
はその減少の度合いを記録層の保磁力の温度変化と比較
してなるべく小さく抑え、室温時と高温時とで界面磁壁
エネルギーの差があまりないようにするのが有効なもの
となる。
Therefore, the condition required for the intermediate layer is to keep the interface domain wall energy (σw) as small as possible at room temperature and to have a temperature dependence of the magnetic property which is rather large at high temperature. The interface domain wall energy itself decreases monotonically with temperature, so in the end, the degree of the decrease is kept as small as possible in comparison with the temperature change of the coercive force of the recording layer, and the difference in interface domain wall energy between room temperature and high temperature is reduced. It is effective to do not do so much.

【0012】本発明の光磁気記録媒体は透明基板上に記
録層、中間層、補助層を順次形成させた磁性膜から構成
されたものでもよいが、望ましくは、透明基板と記録層
との間に下地層及び/又は補助層上にそれぞれ保護層を
形成させる。更に、保護層上にAlなどの反射層を設け
てもよい。
The magneto-optical recording medium of the present invention may be composed of a magnetic film in which a recording layer, an intermediate layer and an auxiliary layer are sequentially formed on a transparent substrate, but it is preferable that the space between the transparent substrate and the recording layer is provided. Then, a protective layer is formed on each of the underlayer and / or the auxiliary layer. Further, a reflective layer such as Al may be provided on the protective layer.

【0013】本発明の光磁気記録媒体の透明基板にはガ
ラス、プラスチック、セラミックなどが用いられる。下
地層(膜厚100〜5000Å)にはSiO2、Si
O、Si34などが用いられる。記録層(膜厚100〜
5000Å)にはTb−Fe,Gd−Fe,Gd−Tb
−Fe,Tb−Dy−Fe,Gd−Dy−Fe,Tb−
Fe−Co,Gd−Fe−Co,Dy−Fe−Co,T
b−Dy−Fe−Co,Gd−Tb−Fe−Co,Gd
−Dy−Fe−Coなどの希土類−遷移金属系アモルフ
ァス膜、Co−Pt,Co−Crなどの多結晶膜などが
用いられる。
Glass, plastic, ceramics, etc. are used for the transparent substrate of the magneto-optical recording medium of the present invention. The base layer (film thickness 100 to 5000 Å) has SiO 2 , Si
O, Si 3 N 4 or the like is used. Recording layer (film thickness 100-
5000 Å) Tb-Fe, Gd-Fe, Gd-Tb
-Fe, Tb-Dy-Fe, Gd-Dy-Fe, Tb-
Fe-Co, Gd-Fe-Co, Dy-Fe-Co, T
b-Dy-Fe-Co, Gd-Tb-Fe-Co, Gd
A rare earth-transition metal-based amorphous film such as -Dy-Fe-Co, a polycrystalline film such as Co-Pt, Co-Cr, or the like is used.

【0014】中間層については先に触れよたように、そ
の構成はRE−TM系アモルファス膜が多かったのであ
るが、これらの膜は構成元素の数が多く高価な希土類金
属を用いているという欠点があり、さらに磁気特性の点
からいえばキュリー温度(Tc)が記録層、補助層と比
較してもそれほど大きな値に設定できないので、界面磁
壁エネルギーの温度変化と記録層の保磁力の温度変化に
歴然とした差をつけるのが難しく、誤動作の原因の1つ
になっている。そこで、本発明ではこれらの不都合を解
消するために、中間層として希土類を含まない遷移金属
の単体(特にFeが好ましい)あるいは合金が用いられ
る。中間層の厚さは1〜15nm好ましくは5〜10n
mである。
As described above, the intermediate layer has many RE-TM type amorphous films, but these films use expensive rare earth metals because of the large number of constituent elements. In terms of magnetic properties, the Curie temperature (Tc) cannot be set to such a large value as compared with the recording layer and the auxiliary layer from the viewpoint of magnetic properties. Therefore, the temperature change of the interfacial domain wall energy and the temperature of the coercive force of the recording layer are low. It is difficult to make a clear difference between changes, which is one of the causes of malfunction. Therefore, in the present invention, in order to eliminate these inconveniences, a simple substance (in particular, Fe is preferable) or an alloy of a transition metal containing no rare earth is used as the intermediate layer. The thickness of the intermediate layer is 1 to 15 nm, preferably 5 to 10 n
m.

【0015】補助層(膜厚100〜5000Å)にはT
b−Fe,Gd−Fe,Dy−Fe,Gd−Tb−F
e,Tb−Dy−Fe,Gd−Dy−Fe,Tb−Fe
−Co,Gd−Fe−Co,Dy−Fe−Co,Tb−
Dy−Fe−Co,Gd−Tb−Fe−Co,Gd−D
y−Fe−Coなどの希土類−遷移金属系アモルファス
膜、Co−Pt,Co−Crなどの多結晶膜などが用い
られる。保護層(膜厚100〜5000Å)にはSiO
2,SiO,Si24などが用いられる。
The auxiliary layer (film thickness 100 to 5000Å) has T
b-Fe, Gd-Fe, Dy-Fe, Gd-Tb-F
e, Tb-Dy-Fe, Gd-Dy-Fe, Tb-Fe
-Co, Gd-Fe-Co, Dy-Fe-Co, Tb-
Dy-Fe-Co, Gd-Tb-Fe-Co, Gd-D
A rare earth-transition metal-based amorphous film such as y-Fe-Co, a polycrystalline film such as Co-Pt, Co-Cr, or the like is used. SiO for the protective layer (film thickness 100-5000Å)
2 , SiO, Si 2 N 4 or the like is used.

【0016】これら各層はスパッタ法、蒸着法、イオン
プレーティング法などによって形成することができる。
Each of these layers can be formed by a sputtering method, a vapor deposition method, an ion plating method, or the like.

【0017】[0017]

【実施例】次に実施例を示すが、本発明はこれらに限定
されるものではない。
EXAMPLES Examples will be shown below, but the present invention is not limited thereto.

【0018】実施例1 遷移金属のうちでFeを中間層として用いた場合、Fe
のTcが769℃であることから、界面磁壁エネルギー
の温度変化は記録層の保磁力の温度変化に比べてはるか
に減少の度合いが少なく高温時においても大きな界面磁
壁エネルギーを保持している。図1は飽和磁化の温度変
化をTbFeCoの場合とFeの場合とについて示した
ものである。また室温時においては構成元素にREを含
まないために交換力が弱く界面磁壁エネルギーの値が小
さく抑えられる。
Example 1 Among the transition metals, when Fe was used as the intermediate layer, Fe
Since the Tc is 769 ° C., the temperature change of the interfacial domain wall energy is much smaller than the temperature change of the coercive force of the recording layer and retains the large interfacial domain wall energy even at high temperature. FIG. 1 shows the temperature change of the saturation magnetization in the case of TbFeCo and the case of Fe. Further, at room temperature, since the constituent elements do not contain RE, the exchange force is weak and the value of the domain wall energy can be suppressed to a small value.

【0019】実施例2 スライドガラス基板およびガラスディスク上に下地層、
記録層、中間層、補助層、保護層をこの順番にスパッタ
リング装置により形成し交換結合3層膜を有した光磁気
記録媒体を作製した。ガラスディスクは直径90mmで
トラックピッチ約1.6μmのものを用いた。下地層及
び保護層にはSiN(約50nm厚)、記録層にはTb
FeCo膜(約50nm厚)、補助層にはGdTbFe
Co膜(約150nm厚)でそれぞれ形成し、中間層は
Feで表1に示した膜厚に設定した。OW(光変調オー
バーライト)実験は、ディスク回転数1800rp
m.、初期化磁界3.5kOe、記録時外部磁界500
Oe、P1は12.5mW、P2は7mW、OW前信号周
波数3.3MHz、OW時信号周波数3.7MHzにて
行ない、C/N45dB以上で消去比30dB以上をO
W可の条件とした。
Example 2 An underlayer on a slide glass substrate and a glass disk,
A recording layer, an intermediate layer, an auxiliary layer, and a protective layer were formed in this order by a sputtering apparatus to prepare a magneto-optical recording medium having an exchange coupling three-layer film. The glass disk used had a diameter of 90 mm and a track pitch of about 1.6 μm. SiN (about 50 nm thick) for the underlayer and protective layer, Tb for the recording layer
FeCo film (about 50 nm thick), GdTbFe for the auxiliary layer
A Co film (about 150 nm thick) was formed, and the intermediate layer was made of Fe to the thickness shown in Table 1. For OW (optical modulation overwrite) experiment, disk rotation speed is 1800 rp
m. , Initialization magnetic field 3.5 kOe, recording external magnetic field 500
Oe, P 1 is 12.5 mW, P 2 is 7 mW, signal frequency before OW is 3.3 MHz, signal frequency during OW is 3.7 MHz, and erasing ratio is 30 dB or more when C / N is 45 dB or more.
The condition of W was acceptable.

【0020】[0020]

【表1】 注1)σw(界面磁壁エネルギー)のその測定方法は、
各試料毎に振動試料型磁力計(VSM)にてヒステリシ
スループ(メジャーループ、マイナーループ)を測定し
て、マイナーループから補助層の保磁力を得、これとメ
ジャーループから界面磁壁エネルギー/(膜厚・飽和磁
化)の値を得て、この試料にさかのぼり作製した補助層
単層のデータより得られる補助層の膜厚、飽和磁化の値
から算出した。 注2)〇は可、×は不可、である。
[Table 1] Note 1) The measurement method of σw (interfacial domain wall energy) is
Hysteresis loops (major loops, minor loops) were measured with a vibrating sample magnetometer (VSM) for each sample, and the coercive force of the auxiliary layer was obtained from the minor loops. (Thickness / saturation magnetization) was obtained, and calculation was performed from the thickness of the auxiliary layer and the value of saturation magnetization obtained from the data of the auxiliary layer single layer produced by going back to this sample. Note 2) ○ means yes, × means no.

【0021】表1から分かるとおり、中間層の膜厚が1
5nm以上になると界面磁壁エネルギー値は極めて小さ
くなってしまう。また、1nmの場合にOWができない
のは、界面磁壁エネルギーが大きすぎて初期化後すぐに
記録層が補助層の磁化方向に磁化を揃えてしまうためで
あると思われる。
As can be seen from Table 1, the thickness of the intermediate layer is 1
If the thickness is 5 nm or more, the interface wall energy value becomes extremely small. The reason why OW is not possible in the case of 1 nm seems to be because the interfacial domain wall energy is too large and the recording layer aligns the magnetization in the magnetization direction of the auxiliary layer immediately after initialization.

【0022】実施例3 Feの代りに図2に示す特性をもつFeCo合金を用い
て中間層(厚さは約5nmとした)を形成した以外は実
施例2と同様にしてOW実験を行った。その結果、Fe
が40atm%以下では良好なOW特性が得られず、F
eの含有量は40atm%以上あるのが好ましいことが
わかった。また、Feの代りにFeCoを用いれば図1
に示すような磁気特性の変化をもたせることが可能とな
った。これらのことから中間層は遷移金属単体好ましく
はFe、あるいは遷移金属同士の合金好ましくはFeC
o合金でFeが40atm%以上が適しているといえ
る。また、中間層膜厚は15nm以下に設定するのがよ
いことがわかった。
Example 3 An OW experiment was conducted in the same manner as in Example 2 except that an intermediate layer (having a thickness of about 5 nm) was formed by using a FeCo alloy having the characteristics shown in FIG. 2 instead of Fe. . As a result, Fe
Is 40 atm% or less, good OW characteristics cannot be obtained, and F
It was found that the content of e is preferably 40 atm% or more. If FeCo is used instead of Fe,
It became possible to change the magnetic characteristics as shown in. From these facts, the intermediate layer is preferably a transition metal alone, preferably Fe, or an alloy of transition metals, preferably FeC.
It can be said that Fe of 40 atm% or more is suitable for the o alloy. It was also found that the thickness of the intermediate layer should be set to 15 nm or less.

【0023】[0023]

【発明の効果】請求項1及び4の発明によれば良好な光
磁気記録媒体が得られる。請求項2、5及び6の発明に
よれば、より良好な光磁気記録媒体が得られる。
According to the inventions of claims 1 and 4, a good magneto-optical recording medium can be obtained. According to the inventions of claims 2, 5 and 6, a better magneto-optical recording medium can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Fe及びTbFeCoの、温度に対する飽和
磁化の関係を表わしたグラフである。
FIG. 1 is a graph showing the relationship between the saturation magnetization and the temperature of Fe and TbFeCo.

【図2】 FeCo合金の、Co重量比に対する飽和磁
化の関係を表わしたグラフである。
FIG. 2 is a graph showing the relationship between the saturation magnetization and the Co weight ratio of a FeCo alloy.

フロントページの続き (72)発明者 出口 浩司 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 黒沢 美子 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 高橋 正悦 東京都大田区中馬込1丁目3番6号 株式 会社リコー内Front Page Continuation (72) Inventor Koji Deguchi 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company (72) Inventor Kimiko Kurosawa 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company (72) Inventor Masaetsu Takahashi 1-3-6 Nakamagome, Ota-ku, Tokyo Within Ricoh Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁性層を3層に積層した磁性膜を有する
光磁気記録媒体において、該磁性膜の真中に位置する層
が1種類の遷移金属よりなることを特徴とする光磁気記
録媒体。
1. A magneto-optical recording medium having a magnetic film in which three magnetic layers are laminated, wherein a layer located at the center of the magnetic film is made of one kind of transition metal.
【請求項2】 磁性層を3層に積層した磁性膜を有する
光磁気記録媒体において、該磁性膜の真中に位置する層
が遷移金属同士の合金よりなることを特徴とする光磁気
記録媒体。
2. A magneto-optical recording medium having a magnetic film in which three magnetic layers are laminated, wherein the layer located at the center of the magnetic film is made of an alloy of transition metals.
【請求項3】 請求項1又は2に示す遷移金属が、前記
真中に位置する磁性層以外の2つの磁性層のいずれか或
いはそれら2つの磁性層に含まれる元素である光磁気記
録媒体。
3. A magneto-optical recording medium in which the transition metal according to claim 1 or 2 is an element contained in any one of the two magnetic layers other than the magnetic layer located in the center or in the two magnetic layers.
【請求項4】 磁性層を3層に積層した磁性膜を有する
光磁気記録媒体において、該磁性膜真中に位置する層が
Feよりなることを特徴とする光磁気記録媒体。
4. A magneto-optical recording medium having a magnetic film having three magnetic layers laminated, wherein the layer located in the center of the magnetic film is made of Fe.
【請求項5】 磁性膜を3層に積層した磁性膜を有する
光磁気記録媒体において、該磁性膜の真中に位置する層
がFeCo合金よりなりかつそのFe含有量が40at
m%以上であることを特徴とする光磁気記録媒体。
5. In a magneto-optical recording medium having a magnetic film in which three magnetic films are laminated, the layer located in the center of the magnetic film is made of FeCo alloy and the Fe content is 40 at.
A magneto-optical recording medium characterized by being at least m%.
【請求項6】 請求項1〜5に示す光磁気記録媒体にお
いて、前記真中に位置する磁性層の膜厚が1〜15nm
の範囲である光磁気記録媒体。
6. The magneto-optical recording medium according to claim 1, wherein the thickness of the magnetic layer located in the center is 1 to 15 nm.
The magneto-optical recording medium in the range of.
JP43A 1992-12-18 1992-12-18 Magneto-optical recording medium Pending JPH06187683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06187683A (en) 1992-12-18 1992-12-18 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06187683A (en) 1992-12-18 1992-12-18 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH06187683A true JPH06187683A (en) 1994-07-08

Family

ID=18445754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06187683A (en) 1992-12-18 1992-12-18 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH06187683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752952B2 (en) 1999-02-12 2004-06-22 General Electric Company Embossing methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752952B2 (en) 1999-02-12 2004-06-22 General Electric Company Embossing methods

Similar Documents

Publication Publication Date Title
JPH06162589A (en) Magneto-optical recording medium and magneto-optical recording method
JPH056588A (en) Magneto-optical recording medium and magneto-optical recording method
JPH06187683A (en) Magneto-optical recording medium
JP2000132879A (en) Magneto-optical recording medium
JP3092363B2 (en) Magneto-optical recording medium
JP2555127B2 (en) Magneto-optical recording medium
JP3218735B2 (en) Magneto-optical recording medium
JP3000385B2 (en) Magneto-optical recording method
JP3355759B2 (en) Magneto-optical recording medium and reproducing method thereof
JP2869449B2 (en) Magneto-optical recording method and magneto-optical recording medium
JP2674815B2 (en) Magneto-optical recording method
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3228964B2 (en) Magneto-optical recording medium
JPH05182278A (en) Method for magneto-optical recording
JPH06309710A (en) Magneto-optical recording medium
JPH1125532A (en) Magneto-optical recording medium
JPH1125533A (en) Magneto-optical recording medium
JPH05347038A (en) Medium and method for magneto-optical recording
JPH05342662A (en) Magneto-optical recording medium
JPH05182267A (en) Magneto-optical recording medium and recording method thereof
JPH05198027A (en) Magneto-optical recording medium
JPH05325288A (en) Magneto-optical recording method
JPH09282726A (en) Magneto-optical recording medium
JPH06302030A (en) Magneto-optical recording medium and magnetooptical recording method
JPH08194976A (en) Magnetooptic recording medium and magnetooptic recording method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term