JPH06186602A - Nonlinear optical element - Google Patents

Nonlinear optical element

Info

Publication number
JPH06186602A
JPH06186602A JP34186392A JP34186392A JPH06186602A JP H06186602 A JPH06186602 A JP H06186602A JP 34186392 A JP34186392 A JP 34186392A JP 34186392 A JP34186392 A JP 34186392A JP H06186602 A JPH06186602 A JP H06186602A
Authority
JP
Japan
Prior art keywords
optical element
optical waveguide
area
optical
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34186392A
Other languages
Japanese (ja)
Other versions
JP2541089B2 (en
Inventor
Kazuto Tajima
一人 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4341863A priority Critical patent/JP2541089B2/en
Publication of JPH06186602A publication Critical patent/JPH06186602A/en
Application granted granted Critical
Publication of JP2541089B2 publication Critical patent/JP2541089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the fluctuation in an impressed static electric field and to eliminate the factor for hindering a high-speed operation by maintaining a large element capacity of the nonlinear optical element which executes light- to-light control of a high speed utilizing a band filling effect by absorption of control light and carrier sweep by impression of the static electric field. CONSTITUTION:The non-doped GaAs core layer 5, upper clad layers 6, 7 and lower clad layers 3, 4 of the nonlinear waveguide element utilizing the hand filling effect constitute a PIN structure in order to shorten the effective life of carriers and to improve the operating speed. An upper electrode 9 is formed larger than a stripe (waveguide) part to increase the capacitance of the PIN structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非線形光学素子に関
し、特に光ファイバ通信や光情報処理等の分野で光制御
素子として用いられる非線形光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonlinear optical element, and more particularly to a nonlinear optical element used as an optical control element in the fields of optical fiber communication and optical information processing.

【0002】[0002]

【従来の技術】光ファイバ通信システムや光情報処理シ
ステムの高速化には、光制御を行う素子の動作の高速化
が必要不可欠である。従来、光制御素子においては、電
気信号により光制御を行う方法(電気−光制御)がとら
れてきたが、近年、より高速の動作が期待される方法と
して、光により光制御を行う方法(光−光制御)が注目
されている。光−光制御方式を用いた場合の利点とし
て、電気回路のCR時定数により動作速度が制限されな
いこと、電気パルスよりも超短パルス発生の容易な光パ
ルスが利用可能であることなどが挙げられる。
2. Description of the Related Art In order to increase the speed of an optical fiber communication system or an optical information processing system, it is necessary to increase the speed of the operation of an element that performs optical control. Conventionally, in a light control element, a method of performing light control by an electric signal (electric-light control) has been taken, but in recent years, as a method expected to operate at a higher speed, a method of performing light control by light ( Light-light control) is drawing attention. The advantages of using the light-light control method are that the operating speed is not limited by the CR time constant of the electric circuit, and that an optical pulse that can generate an ultrashort pulse is easier than an electric pulse can be used. .

【0003】例えば、特開平4−3125号公報には、
光吸収により非線形屈折率変化を示す光導波部に静電界
を印加する手段を有する非線形光学素子が記載されてい
る。この素子の光導波部では、制御光が吸収され、励起
されたキャリアによるバンドフィリング効果によって非
線形屈折率変化が引き起こされる。この非線形屈折率変
化により、光導波部を伝搬する信号光が位相変調され
る。ここで、光吸収による非線形屈折率変化の発現は非
常に高速であるが、その消失は光励起さたキャリアの寿
命(〜数nS)により決まるため、高速動作は不可能で
ある。そこで特開平4−3125号公報に記載の非線形
光学素子では、この素子の光導波部に静電界が印加され
ることにより、励起されたキャリアを光導波部外に掃引
することを提案している。バンドフィリング効果が前記
掃引時間で消失し、非線形屈折率変化が回復する。すな
わち、この素子では、動作速度がバンド間緩和時間で制
限されず、高速の光制御が可能になる。
For example, Japanese Patent Application Laid-Open No. 4-3125 discloses that
A non-linear optical element having means for applying an electrostatic field to an optical waveguide section that exhibits a non-linear refractive index change by light absorption is described. In the optical waveguide portion of this element, the control light is absorbed, and the nonlinear refractive index change is caused by the band-filling effect of the excited carriers. Due to this change in the nonlinear refractive index, the signal light propagating through the optical waveguide is phase-modulated. Here, although the nonlinear refractive index change due to light absorption is very fast, the disappearance thereof is determined by the life of the photoexcited carrier (up to several nS), and thus high-speed operation is impossible. Therefore, in the nonlinear optical element described in Japanese Patent Laid-Open No. 4-3125, it is proposed that an excited electric field is applied to the optical waveguide section of this element to sweep the excited carriers to the outside of the optical waveguide section. . The band-filling effect disappears in the sweep time, and the nonlinear refractive index change is recovered. That is, in this element, the operation speed is not limited by the interband relaxation time, and high-speed optical control is possible.

【0004】[0004]

【発明が解決しようとする課題】上記のような電界によ
る光キャリア掃引を行う素子において重要なことは、常
に光導波部に高い静電界が印加されていることである。
しかし実際には、光励起キャリアにより光電流が生じ、
このため光導波部以外の種々の電気抵抗に電圧降下が生
ずる結果、重要な光導波部における電界強度が低下する
という問題があった。したがって高い変調度を得るべく
高密度の光キャリアを生成すると、上記電界強度の低下
により、高速性が損なわれるという問題があった。
What is important in the above-mentioned device for performing optical carrier sweeping by an electric field is that a high electrostatic field is always applied to the optical waveguide portion.
However, in reality, photoexcited carriers generate photocurrent,
Therefore, as a result of a voltage drop occurring in various electric resistances other than the optical waveguide portion, there is a problem that the electric field strength in the important optical waveguide portion decreases. Therefore, when a high-density optical carrier is generated in order to obtain a high degree of modulation, there is a problem that the high speed is impaired due to the decrease in the electric field strength.

【0005】本発明の目的は、このような問題を解決し
た非線形光学素子を提供することにある。
An object of the present invention is to provide a non-linear optical element that solves such a problem.

【0006】[0006]

【課題を解決するための手段】本発明の非線形光学素子
は、光吸収により非線形屈折率変化を生ずる半導体材料
からなるコア層とこのコア層に接合するクラッド層とで
層に垂直な方向に光導波構造を形成し、層に水平な方向
にも光導波構造を実現する手段を有し、さらにコア層を
ノンドープとするPIN構造を成し、さらにこのPIN
構造の上下に電極を有し、電極の面積が光導波部の面積
より大きいことを特徴とする。
A nonlinear optical element of the present invention comprises a core layer made of a semiconductor material that causes a nonlinear refractive index change due to absorption of light, and a clad layer bonded to the core layer to guide light in a direction perpendicular to the layer. The PIN structure has a means for forming a wave structure and realizing an optical waveguide structure in a direction horizontal to the layer, and further forms a PIN structure in which the core layer is non-doped.
It is characterized in that electrodes are provided above and below the structure, and the area of the electrodes is larger than the area of the optical waveguide portion.

【0007】[0007]

【実施例】図1に本発明の非線形光学素子の一実施例を
示す。本実施例ではSiを1018cm-3ドーピングした
GaAs基板2上に、Siを1018cm-3ドーピングし
た厚さ2μmのAlx Ga1-x As(x=0.07)下
部クラッド層3、ノンドーピングで厚さ0.2μmのA
x Ga1-x As(x=0.07)下部クラッド層4、
ノンドーピングで厚さ0.5μmのGaAsコア層5、
ノンドーピングで厚さ0.2μmのAlx Ga1-x As
(x=0.07)上部クラッド層6、Beを1018cm
-3ドーピングした厚さ0.6μmのAlx Ga1-x As
(x=0.07)上部クラッド層7、Beを1018cm
-3ドーピングした厚さ0.2μmのGaAsキャップ層
8が順に積層されている。さらに、エッチングプロセス
により高さ0.9μm,幅4μmのストライプが形成さ
れている。素子表面にはSiO2 絶縁膜10と電極11
が積層され、電極11はGaAsキャップ層8にオーミ
ック接触している。また、基板2の裏面にもオーミック
電極1が形成されている。
FIG. 1 shows one embodiment of the nonlinear optical element of the present invention. On the GaAs substrate 2 was 10 18 cm -3 Si-doped In this embodiment, a thickness of 2μm was 10 18 cm -3 doping Si Al x Ga 1-x As (x = 0.07) lower cladding layer 3 , Non-doped and 0.2 μm thick A
l x Ga 1-x As (x = 0.07) lower cladding layer 4,
Undoped GaAs core layer 5 having a thickness of 0.5 μm,
Undoped and 0.2 μm thick Al x Ga 1-x As
(X = 0.07) Upper cladding layer 6, Be 10 18 cm
-3 Doped Al x Ga 1-x As with a thickness of 0.6 μm
(X = 0.07) Upper clad layer 7, Be 10 18 cm
A −3 doped GaAs cap layer 8 having a thickness of 0.2 μm is sequentially stacked. Furthermore, stripes having a height of 0.9 μm and a width of 4 μm are formed by the etching process. A SiO 2 insulating film 10 and an electrode 11 are formed on the device surface.
Are stacked, and the electrode 11 is in ohmic contact with the GaAs cap layer 8. The ohmic electrode 1 is also formed on the back surface of the substrate 2.

【0008】このように、本実施例の非線形光学素子
は、通常はキャパシタンスを最小限にするためにストラ
イプ上のみに形成される電極11を、その他の部分にも
広げることにより、意図的にキャパシタンスを大きくし
ていることを特徴とする。発明が解決しようとする課題
で述べたように、静電界による光励起キャリアの掃引効
率を上げるためには、常に光導波部に高い静電界が印加
されていることが重要だが、以下の説明で明らかなよう
に、これは大面積電極11がもたらす大きなキャパシタ
ンスにより達成される。
As described above, in the nonlinear optical element of this embodiment, the electrode 11 which is normally formed only on the stripe in order to minimize the capacitance is intentionally expanded to other portions, so that the capacitance is intentionally increased. Is characterized by increasing. As described in the problem to be solved by the invention, it is important that a high electrostatic field is always applied to the optical waveguide in order to increase the sweep efficiency of the photoexcited carriers by the electrostatic field, but it is clear in the following description. As such, this is accomplished by the large capacitance provided by the large area electrode 11.

【0009】図2に図1の実施例の電気的等価回路を示
す。ここで、Cpin は実施例のPIN構造のキャパシタ
ンス、Rは直列内部抵抗(小さいので無視できる)、C
s は浮遊溶量、Zは外部抵抗、v0 /sは光励起による
起電力を表す。ここでv0 =q0 /Cpin ,q0 は光励
起されたキャリアの量である。キルヒホッフの法則によ
ると、
FIG. 2 shows an electrical equivalent circuit of the embodiment shown in FIG. Here, C pin is the capacitance of the PIN structure of the embodiment, R is the series internal resistance (small and can be ignored), C
s is the amount of floating solution, Z is the external resistance, and v 0 / s is the electromotive force due to photoexcitation. Here, v 0 = q 0 / C pin , q 0 is the amount of photoexcited carriers. According to Kirchhoff's law,

【0010】[0010]

【数1】 [Equation 1]

【0011】となる。sはラプラス演算子である。i1
およびi2 は図2に示すループ電流である。ここで
(1),(2)式より、PIN構造に印加されている電
圧を求めると、
[0011] s is a Laplace operator. i 1
And i 2 are the loop currents shown in FIG. Here, when the voltage applied to the PIN structure is obtained from the equations (1) and (2),

【0012】[0012]

【数2】 [Equation 2]

【0013】となる。(3)式は光励起されたキャリア
によるキャパシタンスCpin 上にかかる電圧の変化を示
す。前記の如く、非線形導波路の高速化には、電圧変化
が少ない方が望ましいので、Δv(t)→0の極限を求
めると、(Cpin +Cs )→∞となる。すなわちPIN
構造のキャパシタンスは大きいほどよく、このために
は、電極の面積が大きいほどよい。
[0013] Equation (3) shows the change in the voltage on the capacitance C pin due to photoexcited carriers. As described above, it is desirable that the voltage change is small in order to increase the speed of the nonlinear waveguide. Therefore, when the limit of Δv (t) → 0 is obtained, (C pin + C s ) → ∞. Ie PIN
The larger the capacitance of the structure, the better, and for this, the larger the area of the electrodes.

【0014】以上、本発明の非線形光学素子について、
実施例による詳しい説明を行ったが、本発明は本実施例
に限定されるものではない。本実施例ではGaAs系の
材料を用いたが、これは光波長に応じて、他の材料、例
えばInP,InGaAsP等が用いられることは明ら
かである。また素子の構造に関しても、導波損失の低減
のためにコア層とクラッド層間にバッファ層を加える
と、種々の変形が考えられる。
As described above, regarding the nonlinear optical element of the present invention,
Although the detailed description has been given with reference to the embodiments, the present invention is not limited to the embodiments. Although a GaAs-based material is used in this embodiment, it is obvious that other materials such as InP and InGaAsP may be used depending on the light wavelength. Regarding the structure of the element, various modifications can be considered if a buffer layer is added between the core layer and the clad layer in order to reduce the waveguide loss.

【0015】[0015]

【発明の効果】以上説明したように、本発明の非線形光
学素子は、大きな素子容量を持つため、制御光吸収によ
る印加静電界の低下が抑制され、高速動作が可能であ
る。
As described above, since the nonlinear optical element of the present invention has a large element capacitance, the decrease of the applied electrostatic field due to the absorption of the control light is suppressed and the high speed operation is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非線形光学素子の一実施例を示す断面
図である。
FIG. 1 is a sectional view showing an embodiment of a nonlinear optical element of the present invention.

【図2】図1の実施例の等価回路を示す図である。FIG. 2 is a diagram showing an equivalent circuit of the embodiment of FIG.

【符号の説明】[Explanation of symbols]

1 電極 2 SiドープGaAs基板 3 SiドープAlGaAs下部クラッド層 4 ノンドープAlGaAs下部クラッド層 5 ノンドープGaAsコア層 6 ノンドープAlGaAs上部クラッド層 7 BeドープAlGaAs上部クラッド層 8 BeドープGaAsキャップ層 10 SiO2 絶縁膜 11 電極 Cpin 非線形素子のPIN構造のキャパシタンス v0 /s ステップ状に加えられた励起光による起電力 R 非線形素子のPIN構造の抵抗 Cs 浮遊および外部回路のキャパシタンス Z 外部回路の抵抗1 electrode 2 Si-doped GaAs substrate 3 Si-doped AlGaAs lower cladding layer 4 Non-doped AlGaAs lower cladding layer 5 Non-doped GaAs core layer 6 Non-doped AlGaAs upper cladding layer 7 Be-doped AlGaAs upper cladding layer 8 Be-doped GaAs cap layer 10 SiO 2 insulating film 11 Electrode C pin Capacitance of PIN structure of non-linear element v 0 / s Electromotive force due to stepwise applied excitation light R Resistance of PIN structure of non-linear element C s Stray and external circuit capacitance Z External circuit resistance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】バンドフィリングを利用する非線形光学素
子において、 ノンドープのコア層と上部クラッド層と下部クラッド層
とからなるPIN構造を有し、上部電極の面積を光導波
部の面積よりも大きくして、PIN構造のキャパシタン
スを大きくしたことを特徴とする非線形光学素子。
1. A nonlinear optical element utilizing band filling, which has a PIN structure composed of a non-doped core layer, an upper clad layer and a lower clad layer, wherein the area of the upper electrode is larger than the area of the optical waveguide. And a PIN structure having a large capacitance.
【請求項2】光吸収により非線形屈折率変化を生ずる半
導体材料からなるコア層とこのコア層に接合するクラッ
ド層とで層に垂直な方向に光導波構造を形成し、層に水
平な方向にも光導波構造を実現する手段を有し、さらに
前記コア層をノンドープとするPIN構造を成し、さら
にこのPIN構造の上下に電極を有する非線形光学素子
において、前記電極の面積が光導波部の面積より大きい
ことを特徴とする非線形光学素子。
2. An optical waveguide structure is formed in a direction perpendicular to a layer by a core layer made of a semiconductor material that causes a nonlinear refractive index change by light absorption and a clad layer joined to the core layer, and the optical waveguide structure is formed in a direction horizontal to the layer. Also has a means for realizing an optical waveguide structure, further comprises a PIN structure in which the core layer is non-doped, and further, in a non-linear optical element having electrodes above and below the PIN structure, the area of the electrode is the optical waveguide portion. A non-linear optical element having a larger area.
【請求項3】制御光吸収によるバンドフィリング効果と
静電界印加によるキャリア掃引を利用した高速の光−光
制御を行う非線形光学素子において、 大きな素子を保持するために、電極の面積を光導波部の
面積よりも大きくしたことを特徴とする非線形光学素
子。
3. A nonlinear optical element for performing high-speed optical-optical control utilizing a band-filling effect due to absorption of control light and a carrier sweep due to application of an electrostatic field, in order to hold a large element, the area of an electrode is set to an optical waveguide section. A non-linear optical element characterized by being made larger than the area of.
JP4341863A 1992-12-22 1992-12-22 Non-linear optical element Expired - Lifetime JP2541089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4341863A JP2541089B2 (en) 1992-12-22 1992-12-22 Non-linear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4341863A JP2541089B2 (en) 1992-12-22 1992-12-22 Non-linear optical element

Publications (2)

Publication Number Publication Date
JPH06186602A true JPH06186602A (en) 1994-07-08
JP2541089B2 JP2541089B2 (en) 1996-10-09

Family

ID=18349333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4341863A Expired - Lifetime JP2541089B2 (en) 1992-12-22 1992-12-22 Non-linear optical element

Country Status (1)

Country Link
JP (1) JP2541089B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557700A (en) * 1994-06-14 1996-09-17 Nec Corporation Semiconductor optical device utilizing nonlinear optical effect
JP2012208413A (en) * 2011-03-30 2012-10-25 Anritsu Corp Optical gate element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144613A (en) * 1989-10-31 1991-06-20 Oki Electric Ind Co Ltd Waveguide type optical element
JPH04107428A (en) * 1990-08-28 1992-04-08 Fujikura Ltd Substrate type optical switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144613A (en) * 1989-10-31 1991-06-20 Oki Electric Ind Co Ltd Waveguide type optical element
JPH04107428A (en) * 1990-08-28 1992-04-08 Fujikura Ltd Substrate type optical switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557700A (en) * 1994-06-14 1996-09-17 Nec Corporation Semiconductor optical device utilizing nonlinear optical effect
JP2012208413A (en) * 2011-03-30 2012-10-25 Anritsu Corp Optical gate element

Also Published As

Publication number Publication date
JP2541089B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
JP2955986B2 (en) Semiconductor optical modulator and method of manufacturing the same
US8384980B2 (en) Semiconductor optical modulation device, Mach-Zehnder interferometer type semiconductor optical modulator, and method for producing semiconductor optical modulation device
US5519721A (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
EP0296066B1 (en) An integrated laser device with refractive index modulator
JP2541089B2 (en) Non-linear optical element
JPS623220A (en) Optical modulator
JP2817602B2 (en) Semiconductor Mach-Zehnder modulator and method of manufacturing the same
JPH07333660A (en) Nonlinear optical element
JPH0951142A (en) Semiconductor light emitting element
JPH0545003B2 (en)
JP2715864B2 (en) Nonlinear optical element
JPH07199239A (en) Nonlinear optical element
JP2760276B2 (en) Selectively grown waveguide type optical control device
JP3146821B2 (en) Manufacturing method of semiconductor optical integrated device
JPH03291617A (en) Integrated type optical modulator
JPH06222305A (en) Nonlinear optical element
JPH06331944A (en) Nonlinear optical element
JPH05341333A (en) Waveguide type nonlinear optical element
JPH0827446B2 (en) Quantum well type optical modulator and manufacturing method thereof
JPH06102476A (en) Semiconductor optical modulator, semiconductor photodetector and integrated light source and its production
JPH08160234A (en) Optical waveguide type optical element
JPH05142503A (en) Semiconductor optical waveguide
JPH08122719A (en) Semiconductor optical phase modulator
JP2734214B2 (en) Nonlinear optical element
JPH04280490A (en) Semiconductor laser equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20070725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 17