JPH06185957A - Rotational angle measuring instrument - Google Patents

Rotational angle measuring instrument

Info

Publication number
JPH06185957A
JPH06185957A JP15533792A JP15533792A JPH06185957A JP H06185957 A JPH06185957 A JP H06185957A JP 15533792 A JP15533792 A JP 15533792A JP 15533792 A JP15533792 A JP 15533792A JP H06185957 A JPH06185957 A JP H06185957A
Authority
JP
Japan
Prior art keywords
code
light
rotating body
measured
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15533792A
Other languages
Japanese (ja)
Inventor
Toyomi Miyagawa
川 豊 美 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15533792A priority Critical patent/JPH06185957A/en
Publication of JPH06185957A publication Critical patent/JPH06185957A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To make the mass and moment of inertia of a part to be provided on a rotating body to be measured sufficiently small by irradiating the side face of the rotating body with light rays from a light source after the light rays are reflected by a rotary reflecting surface and detecting the intensity of the light rays reflected by the side face. CONSTITUTION:When a shaft 1 is rotated around the center axis P of the shaft 1, light rays effects radial scanning. Therefore, the locus of the beam spot 5 of a light beam S becomes circular. When the code surface of a code cylinder 5 is set at the position of the spot 15, codes 22 and 23 can be detected. Then, since the beam S moves on the code surface as the shaft 1 rotates, signals synchronous to the codes 22 and 23 alternately appear in the output signal of a photoreceptor element 13. By only detecting the code 23 of the signals and measuring the detecting time of the code 23, the angular velocity of the shaft 1 is detected. In addition, when a reference signal is set against one rotation of the shaft 1 and the signal of the code 23 is counted based on the reference signal, the rotational angle of the shaft 1 can be detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転体の回転位置や角
速度の測定に用いられる回転角測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation angle measuring device used for measuring the rotational position and angular velocity of a rotating body.

【0002】[0002]

【従来の技術】回転体の回転位置や角速度を測定する装
置には種々のものがあり、この中で最も普及しているも
のは、光学式・磁気式等のロータリーエンコーダであ
る。
2. Description of the Related Art There are various devices for measuring the rotational position and angular velocity of a rotating body, and the most popular one among them is an optical or magnetic rotary encoder.

【0003】光学式ロータリーエンコーダでは、外周部
にスリットを一定間隔に設けた円板を被測定回転体に取
り付けるとともに、円板をはさむ形に光源と光検出器を
配置し、光源から出た光がスリットを通して光検出器に
入射する度に光検出器から信号を取り出すようにしてい
る。すなわち、このロータリーエンコーダでは、円周を
スリット数で割った角度を単位として測定できるように
している。
In an optical rotary encoder, a disk having slits provided at regular intervals on the outer periphery is attached to a rotating body to be measured, and a light source and a photodetector are arranged so as to sandwich the disk, and light emitted from the light source is emitted. A signal is taken out from the photodetector each time the light enters the photodetector through the slit. That is, in this rotary encoder, measurement is made in units of an angle obtained by dividing the circumference by the number of slits.

【0004】一方、磁気式ロータリーエンコーダは、円
板の外周に一定間隔で着磁領域を設けておき、この着磁
領域を磁気センサ(MR素子)で検出するようにしてい
る。この磁気式ロータリエンコーダにおいても円周を着
磁数で割った角度を単位として測定できるようにしてい
る。
On the other hand, in the magnetic rotary encoder, magnetized areas are provided at regular intervals on the outer circumference of the disk, and the magnetized areas are detected by a magnetic sensor (MR element). Also in this magnetic rotary encoder, it is possible to measure in a unit of an angle obtained by dividing the circumference by the magnetizing number.

【0005】これらロータリーエンコーダでは、通常、
スリット(または着磁)に対応したインクレメントパル
ス信号と、1回転の基準となるホームポジションパルス
信号とを取出している。この2つの信号を演算・処理し
て回転体の回転角や角速度を測定するようにしている。
In these rotary encoders, normally,
An increment pulse signal corresponding to the slit (or magnetization) and a home position pulse signal serving as a reference for one rotation are taken out. The two signals are calculated and processed to measure the rotation angle and angular velocity of the rotating body.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
のロータリーエンコーダにあっては次のような問題点が
あった。
However, these rotary encoders have the following problems.

【0007】すなわち、測定の分解能を上げるにはスリ
ット(または着磁)数を増す必要があり、そのためには
円板の直径を大きくする必要がある。しかし、被測定回
転体によっては、回転体そのものが小さいために、直径
の大きい円板を取付けることができないものもある。ま
た、円板の直径を大きくすると、円板の質量、慣性モー
メントとが増加する。被測定回転体の質量、慣性モーメ
ントが円板のそれに比べて大きい場合には影響が少ない
が、同等かそれ以下の場合には影響が大きく現れ、被測
定回転体の回転特性が変化してしまうので、精度の高い
測定が困難となる。さらに、ロータリーエンコーダの場
合、被測定回転体に円板を取付ける必要があるため、既
設の回転体に取付けようとしても制約を受けやすく、設
置できない場合が多い。
That is, it is necessary to increase the number of slits (or magnetized) in order to increase the measurement resolution, and for that purpose, it is necessary to increase the diameter of the disk. However, depending on the rotating body to be measured, the rotating body itself is small, so that a disk having a large diameter cannot be attached. Moreover, when the diameter of the disc is increased, the mass of the disc and the moment of inertia increase. If the mass and moment of inertia of the rotating body to be measured are larger than those of the disk, the effect is small, but if it is equal to or less than that, the effect will be significant and the rotational characteristics of the rotating body to be measured will change. Therefore, accurate measurement becomes difficult. Further, in the case of a rotary encoder, since it is necessary to attach a disk to the rotating body to be measured, it is often difficult to install it on an existing rotating body, and it is often impossible to install it.

【0008】上記のように、ロータリエンコーダは、測
定の分解能を上げようとすると、被測定体に取付ける部
分の質量、慣性モーメントの影響を除くことが困難とな
り、適応可能な被測定回転体の範囲が狭い欠点があっ
た。また、既設の回転体に取付けることも困難であっ
た。
As described above, in the rotary encoder, when it is attempted to increase the measurement resolution, it becomes difficult to remove the influence of the mass and the moment of inertia of the portion to be attached to the object to be measured, so that the range of the object to be measured that can be applied is applicable. There was a narrow drawback. It was also difficult to attach it to an existing rotating body.

【0009】そこで本発明の目的は、被測定対回転体に
設けなければならない部分の質量、慣性モーメントを十
分小さくできるとともに、測定分解能を容易に高くする
ことができ、しかも、既設の回転体にも容易に対応でき
る回転角測定装置を提供することである。
Therefore, an object of the present invention is to make it possible to sufficiently reduce the mass and the moment of inertia of the portion that must be provided on the rotating body to be measured, to easily increase the measurement resolution, and to use the existing rotating body. Another object is to provide a rotation angle measuring device that can easily cope with this.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、被測定回転体に装着された回転反射面
と、被測定回転体の回転軸と同軸に配設され、所定幅の
反射部と非反射部とが交互に繰り返して形成された側面
を有し被測定回転体と協動しない円筒状の符号体と、光
線を出射する光源と、前記光源からの光線が前記回転反
射面で反射されたのち前記側面へ照射され、前記側面で
反射された光線の強度を検出する符号検出手段とを備え
ることを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a rotary reflecting surface mounted on a rotating body to be measured and a rotary reflecting surface coaxially with the rotating shaft of the rotating body to be measured. A cylindrical code body having side surfaces formed by alternately repeating a reflection portion and a non-reflection portion having a width, which does not cooperate with the rotating body to be measured, a light source for emitting a light ray, and a light ray from the light source is A code detecting means for detecting the intensity of the light beam reflected by the rotary reflecting surface and then radiated to the side surface and reflected by the side surface is provided.

【0011】また、被測定回転体に装着された回転反射
面と、被測定回転体の回転軸と同軸に配設され、所定幅
の反射部と非反射部とが交互に繰り返して形成された円
盤面に有し被測定回転体と協動しない円盤状の符号体
と、光線を出射する光源と、前記光源からの光線が前記
回転反射面で反射されたのち前記符号面へ照射するため
の反射鏡と、前記円盤面で反射された光線の強度を検出
する符号検出手段とを備えることを特徴とする。
Further, a rotary reflecting surface mounted on the rotating body to be measured and a reflecting portion and a non-reflecting portion, which are arranged coaxially with the rotation axis of the rotating body to be measured and have a predetermined width, are alternately and repeatedly formed. A disk-shaped code member having a disk surface that does not cooperate with the rotating body to be measured, a light source that emits a light beam, and a light beam from the light source for irradiating the code surface after being reflected by the rotary reflecting surface. It is characterized by comprising a reflecting mirror and a code detecting means for detecting the intensity of the light beam reflected by the disc surface.

【0012】[0012]

【作用】被測定回転体に回転反射面を装着し、光源から
の光線を回転反射面へ照射しその反射光が符号体の側面
または円盤面へ照射されるようにする。側面または円盤
面から反射された光線の強度を符号検出手段によって検
出する。回転反射面は被測定回転体と共に動くので、符
号体の側面または円盤面へ照射される反射光は被測定回
転体の回転に伴い符号体の側面または円盤面上を走査す
る。側面または円盤面には所定幅の反射部と非反射部と
が交互に繰り返して形成されているので、被測定回転体
の回転角に応じて明暗を繰り返す信号が符号検出手段に
よって検出される。符号検出手段からの単位時間におけ
る明暗の繰り返し数を検出することにより被測定回転体
の角速度を測定することができ、また被測定回転体の一
回転の基準信号を設定することにより回転角を測定する
ことができる。
The rotating body to be measured is equipped with the rotary reflecting surface, and the light from the light source is applied to the rotary reflecting surface so that the reflected light is applied to the side surface or the disk surface of the code body. The code detecting means detects the intensity of the light beam reflected from the side surface or the disk surface. Since the rotary reflecting surface moves together with the rotating body to be measured, the reflected light emitted to the side surface or the disk surface of the code body scans the side surface or the disk surface of the code body as the rotating body to be measured rotates. Since the reflecting portions and the non-reflecting portions having a predetermined width are alternately and repeatedly formed on the side surface or the disc surface, the code detecting means detects a signal in which light and dark are repeated according to the rotation angle of the rotating body to be measured. The angular velocity of the rotating body to be measured can be measured by detecting the number of light and dark repetitions per unit time from the code detecting means, and the rotation angle can be measured by setting a reference signal for one rotation of the rotating body to be measured. can do.

【0013】被測定回転体の回転軸と同軸に配設された
円筒状の符号体は被測定回転体とは協動しないので、す
なわち、被測定回転体に設けなければならないものは平
面状の反射面を備えた回転反射面だけであるので、測定
分解能を高くするために符号体を大きくしても、質量ま
たは慣性モーメント等について被測定回転体の負荷には
ならない。このような形状の回転反射面は一般に十分小
型、かつ軽量に形成することが可能である。したがっ
て、回転反射面の存在が被測定回転体の回転特性に与え
る影響を少なくできる。また、被測定回転体には例えば
その端部に回転反射面だけを設ければよいので、既設の
回転体にも容易に設けることができ、結局、既設の回転
体に対しても対応できる。
Since the cylindrical code body arranged coaxially with the rotation axis of the rotating body to be measured does not cooperate with the rotating body to be measured, that is, what must be provided on the rotating body to be measured has a planar shape. Since it is only a rotary reflecting surface provided with a reflecting surface, even if the code body is made large in order to increase the measurement resolution, it does not impose a load on the rotating body to be measured in terms of mass or moment of inertia. The rotary reflecting surface having such a shape can be generally formed to be sufficiently small and lightweight. Therefore, it is possible to reduce the influence of the existence of the rotary reflecting surface on the rotation characteristics of the rotating body to be measured. Further, since it is sufficient to provide only the rotary reflecting surface at the end of the rotating body to be measured, it can be easily provided on the existing rotating body, and in the end, it can be applied to the existing rotating body.

【0014】さらに、被測定回転体側には無関係に上述
した基準符号の数を大きくすることができ、測定分解能
を高くすることができる。
Furthermore, the number of the above-mentioned reference codes can be increased regardless of the side of the rotating body to be measured, and the measurement resolution can be increased.

【0015】[0015]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1には本発明による回転角測定装置の一実施例の
概略構成が示されている。図1において、符号1は被測
定回転体の軸を示している。軸1の端面2にはミラー取
付体3が固定されている。ミラー取付体3は図2に示す
ように、円筒形状で軽量な樹脂等で形成されている。回
転反射面としての平面状の反射面4はスパッタや蒸着な
どによって形成されている。このように形成されたミラ
ー取付体3は、反射面4と反対側に位置する面を介して
接着剤などによって軸1の端面2に固定されている。し
たがって、ミラー取付体3は軸1の軸心線Pに対して反
射面4を傾斜させた状態に端面2に固定されていること
になる。なお、ミラー取付体3は軸1の端面2そのもの
自身を反射面4と同等な形状に加工して形成されたもの
であってもよい。
Embodiments will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an embodiment of a rotation angle measuring device according to the present invention. In FIG. 1, reference numeral 1 indicates the axis of the rotating body to be measured. A mirror mount 3 is fixed to the end surface 2 of the shaft 1. As shown in FIG. 2, the mirror mounting body 3 is formed of a lightweight resin having a cylindrical shape. The flat reflecting surface 4 as the rotary reflecting surface is formed by sputtering, vapor deposition or the like. The mirror mounting body 3 formed in this manner is fixed to the end surface 2 of the shaft 1 with an adhesive or the like through a surface located on the side opposite to the reflecting surface 4. Therefore, the mirror mounting body 3 is fixed to the end surface 2 with the reflecting surface 4 inclined with respect to the axis P of the shaft 1. The mirror mounting body 3 may be formed by processing the end surface 2 itself of the shaft 1 into a shape equivalent to the reflecting surface 4.

【0016】端面2の近傍には、図3(a)に示すよう
な円筒形状で形成された符号体としての符号円筒5が軸
1と同軸に配置されている。符号円筒5は、円筒素材2
1の側部に複数の短冊状の非反射部としての符号22と
反射部としての符号23とが繰り返して円弧状に配置形
成されたものである。この符号22は光の反射率の低い
材料で構成され、符号23は光の反射率の高い材料で構
成されている。この符号円筒5の軸心線Uは軸1の軸心
線Pに一致している。
In the vicinity of the end face 2, a code cylinder 5 as a code body having a cylindrical shape as shown in FIG. 3A is arranged coaxially with the shaft 1. Reference numeral 5 is a cylindrical material 2
A plurality of strip-shaped non-reflecting portions 22 and reflecting portions 23 are repeatedly arranged and formed in an arc shape on one side portion. Reference numeral 22 is made of a material having a low light reflectance, and reference numeral 23 is made of a material having a high light reflectance. The axis U of the reference cylinder 5 coincides with the axis P of the shaft 1.

【0017】光照射装置8によって出射された光線は、
光を分岐あるいは偏光させる光分離装置16、光を集束
する集束レンズ9を経て反射面4に照射され、反射面4
で反射されて符号円筒5の内側側面へ照射される。符号
円筒5の側面で反射された光線は反射面4へ戻り、反射
面4で反射されてレンズ9を経て、光分離装置16で反
射されて、符号検出手段として光受光装置11によって
光の強度が検出される。
The light beam emitted by the light irradiation device 8 is
The light splitting device 16 that splits or polarizes the light and the focusing lens 9 that focuses the light irradiates the reflecting surface 4, and the reflecting surface 4
Is reflected on the inner side surface of the code cylinder 5. The light beam reflected by the side surface of the code cylinder 5 returns to the reflection surface 4, is reflected by the reflection surface 4, passes through the lens 9, is reflected by the light separation device 16, and is reflected by the light receiving device 11 as code detection means. Is detected.

【0018】光照射装置8は、光源としての発光素子1
0と発光素子10からの光を細い平行ビームQに変換し
て光分離装置16に導くレンズ9とで構成されている。
光分離装置16は、平行ビームQを2つに分岐する光分
岐器7と光に位相差を与える光偏光器14から構成され
ている。光分岐器7は反射面4を介して符号円筒5に照
射する照射光と符号円筒5に設けられた反射部23によ
って反射されてくる反射光とを分離させるものである。
光偏光器14は直接偏光の光を円偏光の光に変換するも
のである。平行ビームQは光分岐器7を通過後、直線偏
光にされた光のみが光偏光器14に導かれる。照射光は
光偏光器14で直接偏光から円偏光に変えられ、収束レ
ンズ6に入る。収束レンズ6は反射面4を介して符号円
筒5の内面5a上で収束して、符号円筒5に照射する。
The light irradiation device 8 includes a light emitting element 1 as a light source.
0 and a lens 9 that converts the light from the light emitting element 10 into a thin parallel beam Q and guides it to the light separation device 16.
The light splitting device 16 includes an optical splitter 7 that splits the parallel beam Q into two and an optical polarizer 14 that gives a phase difference to the light. The optical branching device 7 separates the irradiation light applied to the code cylinder 5 via the reflecting surface 4 and the reflected light reflected by the reflecting portion 23 provided in the code cylinder 5.
The optical deflector 14 is for converting directly polarized light into circularly polarized light. After the parallel beam Q passes through the optical splitter 7, only the linearly polarized light is guided to the optical polarizer 14. The irradiation light is changed from direct polarization to circular polarization by the optical polarizer 14 and enters the converging lens 6. The converging lens 6 converges on the inner surface 5 a of the code cylinder 5 via the reflecting surface 4 and irradiates the code cylinder 5 with the light.

【0019】符号円筒5から反射された光は、再び反射
面4を介して収束レンズ6に入り、光偏光器14を通過
する。この反射光は円偏光であり、光偏光器14を通過
すると直線偏光の光に変換される。この直線偏光に変換
された光は、最初に光偏光器14から出射したときの直
線偏光の偏光方向とは異なった偏光方向を有する直線偏
光に変換されている。このため、光分岐器7において偏
光特性が異なるために発光素子10の方向へは透過せず
に光受光装置11の方向へ反射される。光受光装置11
に入る反射光Rは、レンズ12で集光させて受光素子1
3へ導かれる。光受光装置11に入る反射光Rは、レン
ズ12で集光させて受光素子13に導かれる。
The light reflected from the code cylinder 5 again enters the converging lens 6 via the reflecting surface 4 and passes through the optical polarizer 14. This reflected light is circularly polarized light, and when it passes through the optical polarizer 14, it is converted into linearly polarized light. The light converted into the linearly polarized light is converted into the linearly polarized light having a polarization direction different from the polarization direction of the linearly polarized light when first emitted from the optical polarizer 14. Therefore, since the polarization characteristics of the optical branching device 7 are different, the light is not transmitted toward the light emitting element 10 but reflected toward the light receiving device 11. Light receiving device 11
The reflected light R that enters is condensed by the lens 12 and is received by the light receiving element 1.
Guided to 3. The reflected light R entering the light receiving device 11 is condensed by the lens 12 and guided to the light receiving element 13.

【0020】符号円筒5は、円筒素材21には側部に複
数の短冊状の符号22,23が円弧状に配置形成された
もので、符号22は光の反射率の低い材料で構成され、
符号23は光の反射率の高い材料で構成されている。符
号円筒5の内側が5a、外側が5b、光は5a面に照射
される。図3(b)は符号円筒5の断面を平面的に示し
た図である。本実施例では、円筒素材21は符号23と
同じ材料で構成し、符号22は光が透過するスリットと
した。よって、照射した光は符号23では反射し、符号
22では反射せず透過し、受光素子13に光は入らな
い。受光素子13に光の光量に比例して出力レベルが変
化する素子を用いることにより、素子の出力レベルで符
号22,23の判別ができる。
The code cylinder 5 is formed by arranging a plurality of strip-shaped codes 22 and 23 in an arc shape on the side of the cylinder material 21, and the code 22 is made of a material having a low light reflectance.
Reference numeral 23 is made of a material having a high light reflectance. The inner side of the code cylinder 5 is 5a, the outer side is 5b, and light is applied to the 5a surface. FIG. 3B is a plan view showing a cross section of the code cylinder 5. In this embodiment, the cylindrical material 21 is made of the same material as the reference numeral 23, and the reference numeral 22 is a slit through which light passes. Therefore, the irradiated light is reflected by the reference numeral 23, is transmitted without being reflected by the reference numeral 22, and the light does not enter the light receiving element 13. By using an element whose output level changes in proportion to the amount of light as the light receiving element 13, it is possible to determine the reference numerals 22 and 23 by the output level of the element.

【0021】次に本実施例の作用について説明する。軸
1が軸心線Pを中心に回転させると反射面4と照射光の
入射角が軸1の回転角によって異なり、図に示すように
光は放射状に走査される。よって、光ビームSのビーム
スポツト15の軌跡は図2に示すように円形軌跡にな
る。このビームスポット15の位置に符号円筒5の符号
面を5aを設置することによって、精度良く符号22,
23を検出できる。
Next, the operation of this embodiment will be described. When the shaft 1 is rotated about the axis P, the incident angle of the reflecting surface 4 and the irradiation light differs depending on the rotation angle of the shaft 1, and the light is radially scanned as shown in the figure. Therefore, the locus of the beam spot 15 of the light beam S becomes a circular locus as shown in FIG. By setting the code surface 5a of the code cylinder 5 at the position of the beam spot 15, the code 22 and
23 can be detected.

【0022】軸1の回転に伴って、ビームSは5a面内
を移動するため、受光素子の出力信号には符号22,2
3に同期した信号が交互に現れる。この信号の符号23
のみを検出し、その時間を測定することによって、軸1
の角速度が検出できる。
Since the beam S moves in the plane of 5a with the rotation of the shaft 1, the output signals of the light receiving elements are denoted by reference numerals 22 and 2.
Signals synchronized with 3 appear alternately. Code 23 of this signal
Axis 1 by detecting only and measuring its time
The angular velocity of can be detected.

【0023】また、軸1の回転において一回転の基準信
号を設定することにより、その基準信号を基準として符
号23の信号をカウントすることにより軸1の回転角が
検出できる。この場合、精度良く符号23を検出するに
は、ビームスポット15のスポット径Vは、符号23の
幅Wより小さくなければならない。回転角の分解能は、
[符号23の数]÷[360度]である。この分解能を
上げるためには、符号円筒5の符号22,23を増せば
良くて、被測定体、つまり軸1の回転特性にはなんにも
影響を与えない構造となっている。
Further, by setting a reference signal for one rotation in the rotation of the shaft 1, the rotation angle of the shaft 1 can be detected by counting the signals of reference numeral 23 with reference to the reference signal. In this case, in order to detect the code 23 with high accuracy, the spot diameter V of the beam spot 15 must be smaller than the width W of the code 23. The resolution of the rotation angle is
[Number of symbols 23] ÷ [360 degrees]. In order to increase the resolution, it is sufficient to increase the reference numerals 22 and 23 of the reference cylinder 5, and the structure has no influence on the rotational characteristic of the measured object, that is, the shaft 1.

【0024】本実施例の構成によれば、被測定回転体に
設けなければならないものは平面状の反射面を備えたミ
ラー取付体3だけであり、このような形状のミラー取付
体3は一般に十分小型、かつ軽量に形成することが可能
であるので、ミラー取付体3の存在が被測定回転体の回
転特性に与える影響を少なくすることができる。
According to the configuration of this embodiment, the only thing to be provided on the rotating body to be measured is the mirror mounting body 3 having a flat reflecting surface, and the mirror mounting body 3 having such a shape is generally used. Since it can be formed to be sufficiently small and lightweight, the influence of the presence of the mirror mounting body 3 on the rotation characteristics of the rotating body to be measured can be reduced.

【0025】また、被測定回転体には例えばその端部に
回転反射面だけを設ければよいので、既設の回転体にも
容易に設けることができ、既設の回転体に対しても容易
に対応することができる。
Further, since it is sufficient to provide only the rotary reflecting surface at the end of the rotating body to be measured, the rotating body to be measured can be easily provided to the existing rotating body and easily to the existing rotating body. Can respond.

【0026】さらに、符号円筒5は被測定回転体側の負
荷にならないように設けられているので、被測定回転体
の回転特性に影響を与えることなく符号円筒5における
基準符号の数を大きくることができ、測定分解能を高く
することができる。
Further, since the code cylinder 5 is provided so as not to be a load on the measured rotating body side, the number of reference codes in the code cylinder 5 should be increased without affecting the rotational characteristics of the measured rotating body. Therefore, the measurement resolution can be increased.

【0027】なお、上述した符号円筒5は図3に示す例
に限定されるものではない。すなわち、図4に示す円筒
符号31、32でも良い。符号円筒31は、内側31a
面に低反射率の材料を円筒素材21に蒸着などによって
形成させ、符号22を構成する。この場合は、円筒素材
21は反射面となる符号23と同じ材料であるため、符
号22の材料と反射率が大きく異なる材料が望ましい。
また、図示しないが、前記符号円筒31において、円筒
素材21が低反射率の材料で構成し、符号22を高反射
率の材料で形成し、その部分を反射面としても良い。例
えば、円筒素材21をガラス、符号22にクロムなどの
金属薄膜を蒸着して形成する。
The code cylinder 5 described above is not limited to the example shown in FIG. That is, the cylindrical reference numerals 31 and 32 shown in FIG. 4 may be used. The code cylinder 31 has an inner side 31a.
A reference numeral 22 is formed by forming a material having a low reflectance on the surface of the cylindrical material 21 by vapor deposition or the like. In this case, since the cylindrical material 21 is the same material as the reference numeral 23, which is the reflecting surface, it is desirable to use a material having a reflectance greatly different from that of the material 22.
Further, although not shown, in the code cylinder 31, the cylindrical material 21 may be made of a material having a low reflectance, the code 22 may be made of a material having a high reflectance, and that portion may be a reflecting surface. For example, the cylindrical material 21 is formed by glass, and the reference numeral 22 is formed by vapor-depositing a metal thin film such as chrome.

【0028】符号円筒32は、内側31aに反射面とな
る符号23の材料と低反射率面となる符号22の材料を
円筒素材21に交互に蒸着などによって形成させたもの
である。また、この場合も符号22を反射面となる材料
で構成しても良い。
The code cylinder 32 is formed by alternately depositing, on the inner side 31a, a material 23 as a reflecting surface and a material 22 as a low reflectance surface on a cylindrical material 21 by vapor deposition or the like. Further, also in this case, the reference numeral 22 may be made of a material serving as a reflecting surface.

【0029】また、符号装置の形状も円筒に限定される
ものではない。すなわち、図5に示すように、円すい形
状をした符号装置33でも良い。さらに、符号装置33
に照射されるビームSをレンズ34をもちいて細い平行
ビームに変換しても良い。このようにすると、符号装置
33に照射される光のスポット径が、反射面4からの距
離に関係なく常にビームスポット径の大きさが同じなの
で、符号装置33の設置が容易になる。
The shape of the encoding device is not limited to the cylinder. That is, as shown in FIG. 5, a conical encoder 33 having a conical shape may be used. Furthermore, the encoding device 33
The beam S radiated on the beam may be converted into a thin parallel beam by using the lens 34. By doing so, the spot diameter of the light irradiated on the encoder 33 is always the same regardless of the distance from the reflecting surface 4, so that the encoder 33 can be easily installed.

【0030】次に本発明の図6乃至図9を参照して他の
実施例について説明する。図6において、符号1は被測
定回転体の軸を示している。被測定回転体の軸1の端面
2の近傍には軸1と同軸に円すいミラー53が設置され
ている。ミラー取付体3の反射面4へ照射された光線は
反射面4で軸心線Pを中心に放射状に反射されて円すい
ミラー53へ照射され、円すいミラー53で反射されて
軸心線Pと同軸に配置された円盤状の符号体55へ照射
される。ビーム光Sの反射面4への照射角は軸1が回転
したときに反射面4へ垂直に入射しないような角度範囲
に設定されている。軸1の回転に伴って反射面4への入
射角が変化するが、反射面4で反射された光は変化する
入射角で決まる符号体55の位置へ照射される。すなわ
ち、ビーム光Sの符号体55の位置は軸1の回転角に対
応する。
Next, another embodiment will be described with reference to FIGS. 6 to 9 of the present invention. In FIG. 6, reference numeral 1 indicates the axis of the rotating body to be measured. A cone mirror 53 is installed coaxially with the shaft 1 near the end face 2 of the shaft 1 of the rotating body to be measured. The light rays irradiated to the reflecting surface 4 of the mirror mounting body 3 are radially reflected by the reflecting surface 4 about the axis P and are irradiated to the conical mirror 53, and are reflected by the conical mirror 53 and coaxial with the axis P. The disc-shaped code body 55 arranged at is irradiated. The irradiation angle of the light beam S to the reflecting surface 4 is set to an angle range such that the light beam S is not vertically incident on the reflecting surface 4 when the shaft 1 rotates. The incident angle on the reflecting surface 4 changes with the rotation of the shaft 1, but the light reflected by the reflecting surface 4 is applied to the position of the code body 55 determined by the changing incident angle. That is, the position of the code body 55 of the light beam S corresponds to the rotation angle of the axis 1.

【0031】本実施例では、反射面4で反射された光線
は円すいミラー53を介して符号体55へ垂直に照射さ
れる。符号体55は図7(a)に示すような円盤面を有
する。符号体55には、板素材56に複数の略短冊状の
非反射部としての符号62と反射部としての符号63が
放射状に配置形成されている。この符号63は光の反射
率の高い材料で構成され、符号62は光の反射率の低い
材料で構成されている。そして、この符号体55の軸心
Uは軸1の軸心線Pに一致している。
In this embodiment, the light beam reflected by the reflecting surface 4 is vertically irradiated onto the code body 55 via the conical mirror 53. The code body 55 has a disc surface as shown in FIG. In the code member 55, a plurality of substantially strip-shaped non-reflecting portions 62 and reflecting portions 63 are radially arranged on the plate material 56. The reference numeral 63 is made of a material having a high light reflectance, and the reference numeral 62 is made of a material having a low light reflectance. The axis U of the code body 55 coincides with the axis P of the axis 1.

【0032】光照射装置8は、発光素子10と発光素子
10からの光を平行ビームQに変換して光分離装置16
に導くレンズ9から構成されている。光分離装置16
は、平行ビームQを2つの光分岐する光分岐器7と光に
位相差を与える光偏光器14かに構成されている。光偏
光器14は直線偏光の光を円偏光の光に変換し、反射面
4を介して符号体55に照射する照射光と符号体55に
よって反射されてくる反射光とを分離させる。平行ビー
ムQは光分岐器7を通過後、直線偏光に変換された光線
のみが光偏光器14に導かれる。照射光は光偏光器14
で直線偏光から円偏光に変換され、収束レンズ51,5
2へ入射する。収束レンズ51,52で平行ビームQを
細い平行ビームSにし、反射面4に照射する。細い平行
ビームSは円すいミラー53を介して垂直に符号体55
に導かれる。
The light irradiation device 8 converts the light from the light emitting element 10 and the light from the light emitting element 10 into a parallel beam Q, and a light separating device 16 is provided.
It is composed of a lens 9 for guiding to. Light separation device 16
Is composed of an optical splitter 7 that splits the parallel beam Q into two beams and an optical polarizer 14 that gives a phase difference to the light. The optical polarizer 14 converts linearly polarized light into circularly polarized light, and separates the irradiation light applied to the code body 55 via the reflection surface 4 and the reflected light reflected by the code body 55. After the parallel beam Q passes through the optical splitter 7, only the light rays converted into the linearly polarized light are guided to the optical polarizer 14. The irradiation light is an optical polarizer 14.
Is converted from linearly polarized light to circularly polarized light by the converging lenses 51, 5
It is incident on 2. The converging lenses 51 and 52 convert the parallel beam Q into a thin parallel beam S and irradiate the reflecting surface 4. The thin parallel beam S passes through the conical mirror 53 and is vertically directed to the code body 55.
Be led to.

【0033】符号体55に垂直に入射したビームSの反
射光は垂直に反射される。そして、再び反射面4を介し
て収束レンズ51,52を経て、光偏光器14を通過す
る。この反射光は円偏光であり、光偏光器14を通過す
ると直線偏光に変換される。この直線偏光に変換された
光線は、最初に光偏光器14から出射したときの直線偏
光の偏光方向とは異なった偏光方向を有する直線偏光に
変換されている。このため、光分岐器7において偏光特
性が異なるために発光素子10の方向へは透過せずに光
受光装置11の方向へ反射される。光受光装置11に入
る反射光Rは、レンズ12で集光させて受光素子13へ
導かれる。
The reflected light of the beam S vertically incident on the code body 55 is vertically reflected. Then, it again passes through the reflecting surface 4, the converging lenses 51 and 52, and then passes through the optical polarizer 14. This reflected light is circularly polarized light, and is converted into linearly polarized light when passing through the optical polarizer 14. The light beam converted into the linearly polarized light is converted into the linearly polarized light having a polarization direction different from the polarization direction of the linearly polarized light when first emitted from the optical polarizer 14. Therefore, since the polarization characteristics of the optical branching device 7 are different, the light is not transmitted toward the light emitting element 10 but reflected toward the light receiving device 11. The reflected light R entering the light receiving device 11 is condensed by the lens 12 and guided to the light receiving element 13.

【0034】軸1を軸心線Pを中心に回転させると反射
面4と照射光の入射角が軸1の回転角によって異なり、
光ビームSは放射状に走査され、円すいミラー53で反
射されて光ビームSのビームスポット18の軌跡は円形
軌跡になる。このビームスポット18の位置に符号体5
5の符号面を55aを設置することによって、精度良く
符号62,63を検出できる。
When the shaft 1 is rotated about the axis P, the incident angle of the reflecting surface 4 and the irradiation light varies depending on the rotation angle of the shaft 1,
The light beam S is radially scanned, reflected by the conical mirror 53, and the trajectory of the beam spot 18 of the light beam S becomes a circular trajectory. At the position of this beam spot 18, the code body 5
By installing 55a on the code surface of 5, the codes 62 and 63 can be accurately detected.

【0035】符号体55は、前述したように板素材56
に複数の略短冊状の符号62,63が放射状に配置形成
されたもので、符号62は光の反射率の低い材料で構成
され、符号63は光の反射率の高い材料で構成されてい
る。符号体55へ光が照射される面が55a、されない
面が55bである。図7(b)は符号体55の略断面図
である。本実施例では、板素材56は符号63と同じ材
料で構成し、符号62は光が透過するスリットとした。
また、図7(c)のように符号体71でも良い。反射率
の低い板素材61に高反射率の材料などによって形成さ
せ、符号63を構成したものである。よって、照射した
光は符号63では反射し、符号62では反射せず透過
し、受光素子13に光は入らない。受光素子13に光の
光量に比例して出力レベルが変化する素子を用いること
により、素子の出力レベルで符号62,63の判別がで
きる。軸1の回転に伴って、ビームSは55a面内を移
動するため、受光素子の出力信号には符号62,63に
同期した信号が交互に現れる。この信号の符号63のみ
を検出し、その時間を測定することによって、軸1の角
速度が検出できる。また、軸1の回転において一回転の
基準信号を設定することにより、その基準信号として信
号63の信号をカウントすることにより軸1の回転角が
検出できる。この場合、精度良く符号63を検出するに
は、ビームスポット幅Vは、符号62,63の最小幅W
より小さけなければならない。また、ビームSは符号6
2,63と等しいピッチであれば2本以上あっても良
い。回転角の分解能は、[符号63の数(符号63と6
2の符号の数は等しい)]÷[360度]である。この
分解能を上げるためには、符号体55の符号62,63
を増せば良くて、被測定体、つまり軸1の回転特性には
何も影響を与えない構造となっている。
The code body 55 is made of the plate material 56 as described above.
A plurality of substantially strip-shaped symbols 62 and 63 are radially arranged and formed. The symbol 62 is made of a material having a low light reflectance, and the symbol 63 is made of a material having a high light reflectance. . The surface of the code body 55 which is irradiated with light is 55a, and the surface which is not irradiated is 55b. FIG. 7B is a schematic sectional view of the code body 55. In this embodiment, the plate material 56 is made of the same material as the reference numeral 63, and the reference numeral 62 is a slit through which light passes.
Further, the code body 71 may be used as shown in FIG. The reference numeral 63 is formed by forming a plate material 61 having a low reflectance with a material having a high reflectance. Therefore, the irradiated light is reflected at the reference numeral 63, is not reflected at the reference numeral 62 and is transmitted, and the light does not enter the light receiving element 13. By using an element whose output level changes in proportion to the amount of light as the light receiving element 13, it is possible to discriminate between the reference numerals 62 and 63 by the output level of the element. As the shaft 1 rotates, the beam S moves in the plane of 55a, so that the output signals of the light receiving element alternately show signals synchronized with reference numerals 62 and 63. The angular velocity of the shaft 1 can be detected by detecting only the code 63 of this signal and measuring the time. Further, by setting the reference signal for one rotation in the rotation of the shaft 1, the rotation angle of the shaft 1 can be detected by counting the signal 63 as the reference signal. In this case, in order to accurately detect the code 63, the beam spot width V is the minimum width W of the codes 62 and 63.
I have to be smaller. Further, the beam S has a reference numeral 6.
There may be two or more as long as the pitch is equal to 2,63. The resolution of the rotation angle is [number of reference numerals 63 (reference numerals 63 and 6
The number of codes of 2 is the same)] / [360 degrees]. In order to increase this resolution, the reference numerals 62 and 63 of the encoder 55 are used.
Is increased, and the structure has no influence on the measured object, that is, the rotation characteristic of the shaft 1.

【0036】本実施例の構成によれば、反射面4で反射
された光線は円すいミラー53を介して符号体55へ照
射されるので、符号体55を単純な円盤状の形状に形成
することができる。
According to the configuration of this embodiment, the light beam reflected by the reflecting surface 4 is applied to the code body 55 through the conical mirror 53, so that the code body 55 should be formed in a simple disk shape. You can

【0037】なお、本実施例において上述した符号体5
5は図7に示す例に限定されるものではない。すなわ
ち、図8に示すような形状の符号体72,73でも良
い。符号体72は内部を所定ピッチの角歯型状にくり抜
いたものであり、符号体73は外周を所定ピッチの角歯
型状にくり抜いたものである。符号体72,73はワイ
ヤ放電加工等により1回のワイヤ送り動作で切り取るこ
とが可能であり、加工上容易であるという利点を有す
る。
The code body 5 described above in this embodiment is used.
5 is not limited to the example shown in FIG. That is, the code bodies 72 and 73 having a shape as shown in FIG. 8 may be used. The code body 72 is formed by hollowing out the inside into a square tooth shape with a predetermined pitch, and the code body 73 is formed by hollowing out the outer periphery into a square tooth shape with a predetermined pitch. The code bodies 72 and 73 can be cut by a single wire feeding operation by wire electric discharge machining or the like, and have an advantage that they are easy to machine.

【0038】また、符号体55に照射させる方式も図6
に限定されるものではない。すなわち、図9に示すよう
に、レンズ78で光のスポットを絞っても良い。このよ
うにすると、符号体55にビームSが垂直に入射されな
くても符号を検出できるという利点を有する。
The method of irradiating the code body 55 is also shown in FIG.
It is not limited to. That is, as shown in FIG. 9, the light spot may be narrowed down by the lens 78. This has the advantage that the code can be detected even if the beam S is not vertically incident on the code body 55.

【0039】[0039]

【発明の効果】以上のように、本発明によれば、被測定
回転体の回転軸と同軸に配設された円筒状の符号体は被
測定回転体とは協動しないので、すなわち、被測定回転
体に設けなければならないものは平面状の反射面を備え
た回転反射面だけであるので、測定分解能を高くするた
めに符号体を大きくしても、質量または慣性モーメント
等について被測定回転体の負荷にはならない。この結
果、被測定回転体の回転特性に大きな影響を与えること
なく、被測定回転体の回転角や角速度を測定することが
できる。
As described above, according to the present invention, since the cylindrical code body disposed coaxially with the rotation axis of the rotating body to be measured does not cooperate with the rotating body to be measured, that is, The only thing that needs to be provided on the measurement rotating body is a rotary reflecting surface with a flat reflecting surface, so even if the code body is made large in order to increase the measurement resolution, the measured rotation with respect to the mass or moment of inertia, etc. It does not put a burden on the body. As a result, it is possible to measure the rotation angle and the angular velocity of the measured rotary body without significantly affecting the rotational characteristics of the measured rotary body.

【0040】また、被測定回転体には回転反射面だけを
取り付ければよいので、既設の回転体にも容易に対応す
ることができる。
Further, since it is sufficient to attach only the rotary reflecting surface to the rotating body to be measured, it is possible to easily cope with the existing rotating body.

【0041】また、被測定回転体の負荷能力等に制限さ
れることなく所定幅の反射部と非反射部とが交互に繰り
返す数を多数形成することができるので、回転角や角速
度の測定分解能を高くすることができる。
Further, since it is possible to form a large number of alternately repeating reflective portions and non-reflective portions of a predetermined width without being limited by the load capacity of the rotating body to be measured, the measurement resolution of the rotation angle and the angular velocity can be increased. Can be higher.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による回転角測定装置の一実施例を示す
概略構成図。
FIG. 1 is a schematic configuration diagram showing an embodiment of a rotation angle measuring device according to the present invention.

【図2】本発明の一実施例における被測定回転体に装着
された回転反射面を示す斜視図。
FIG. 2 is a perspective view showing a rotary reflecting surface mounted on a rotating body to be measured according to an embodiment of the present invention.

【図3】本発明の一実施例における符号体を示す斜視図
(a)とその縦断面図(b)。
FIG. 3 is a perspective view (a) showing a code body according to an embodiment of the present invention and a vertical sectional view (b) thereof.

【図4】本発明の一実施例における符号体の変形例を示
す縦断面図。
FIG. 4 is a vertical cross-sectional view showing a modified example of the code body in the embodiment of the present invention.

【図5】本発明による回転角測定装置の一実施例の変形
例を示す概略構成図。
FIG. 5 is a schematic configuration diagram showing a modified example of an embodiment of the rotation angle measuring device according to the present invention.

【図6】本発明による回転角測定装置の他の実施例を示
す概略構成図。
FIG. 6 is a schematic configuration diagram showing another embodiment of the rotation angle measuring device according to the present invention.

【図7】本発明の他の実施例における符号体を示す平面
図(a)とその縦断面図(b,c)。
FIG. 7 is a plan view (a) and a vertical sectional view (b, c) showing a code body according to another embodiment of the present invention.

【図8】本発明の他の実施例における符号体を示す平面
図(a)、(b)。
FIG. 8 is a plan view (a), (b) showing a code body according to another embodiment of the present invention.

【図9】本発明の他の実施例の変形例を示す概略構成
図。
FIG. 9 is a schematic configuration diagram showing a modified example of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 軸 2 端面 3 ミラー取付体 4 回転反射面 5 符号体としての符号円筒 7 光分岐器 8 光照射装置 10 発光素子 13 受光素子 14 光偏光器 15 ビームスポット 21 円筒素材 22 非反射部 23 反射部 53 円すいミラー53 55 符号体 56 板素材 62 非反射部 63 反射部 P 軸心線 Q 照射光 R 反射光 S 光ビーム 1 axis 2 end face 3 mirror mounting body 4 rotation reflection surface 5 code cylinder as a code body 7 optical splitter 8 light irradiation device 10 light emitting element 13 light receiving element 14 optical polarizer 15 beam spot 21 cylindrical material 22 non-reflecting portion 23 reflecting portion 53 Conical Mirror 53 55 Code Material 56 Plate Material 62 Non-Reflecting Part 63 Reflecting Part P Axis Center Line Q Irradiated Light R Reflected Light S Light Beam

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被測定回転体に装着された回転反射面と、
被測定回転体の回転軸と同軸に配設され、所定幅の反射
部と非反射部とが交互に繰り返して形成された側面を有
し被測定回転体と協動しない円筒状の符号体と、光線を
出射する光源と、前記光源からの光線が前記回転反射面
で反射されたのち前記側面へ照射され、前記側面で反射
された光線の強度を検出する符号検出手段とを備えるこ
とを特徴とする回転角測定装置。
1. A rotary reflecting surface mounted on a rotating body to be measured,
A cylindrical code body which is disposed coaxially with the rotation axis of the rotating body to be measured and has a side surface formed by alternately repeating a reflecting portion and a non-reflecting portion having a predetermined width and which does not cooperate with the rotating body to be measured. A light source that emits a light ray, and a code detection unit that detects the intensity of the light ray reflected by the side surface after the light ray from the light source is reflected by the rotary reflection surface and then radiated to the side surface. Rotation angle measuring device.
【請求項2】被測定回転体に装着された回転反射面と、
被測定回転体の回転軸と同軸に配設され、所定幅の反射
部と非反射部とが交互に繰り返して形成された円盤面に
有し被測定回転体と協動しない円盤状の符号体と、光線
を出射する光源と、前記光源からの光線が前記回転反射
面で反射されたのち前記符号面へ照射するための反射鏡
と、前記円盤面で反射された光線の強度を検出する符号
検出手段とを備えることを特徴とする回転角測定装置。
2. A rotary reflecting surface mounted on a rotating body to be measured,
A disk-shaped code body which is arranged coaxially with the rotation axis of the rotating body to be measured and has a disc surface formed by alternately repeating reflecting portions and non-reflecting portions of a predetermined width and which does not cooperate with the rotating body to be measured. A light source for emitting a light beam, a reflecting mirror for irradiating the code surface after the light beam from the light source is reflected by the rotary reflecting surface, and a code for detecting the intensity of the light beam reflected by the disk surface. A rotation angle measuring device comprising: a detecting unit.
JP15533792A 1992-06-15 1992-06-15 Rotational angle measuring instrument Withdrawn JPH06185957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15533792A JPH06185957A (en) 1992-06-15 1992-06-15 Rotational angle measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15533792A JPH06185957A (en) 1992-06-15 1992-06-15 Rotational angle measuring instrument

Publications (1)

Publication Number Publication Date
JPH06185957A true JPH06185957A (en) 1994-07-08

Family

ID=15603689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15533792A Withdrawn JPH06185957A (en) 1992-06-15 1992-06-15 Rotational angle measuring instrument

Country Status (1)

Country Link
JP (1) JPH06185957A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030869A1 (en) * 1997-01-08 1998-07-16 Citizen Watch Co., Ltd. Method of measuring information on rotation of rotary body, and instrument for measuring information on rotation
KR100384491B1 (en) * 2000-12-18 2003-05-22 한국항공우주연구원 A Replacement sensing device of inertial measurement sensor using levitation system
JP2020113402A (en) * 2019-01-09 2020-07-27 キヤノン株式会社 Rotary operating device and electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030869A1 (en) * 1997-01-08 1998-07-16 Citizen Watch Co., Ltd. Method of measuring information on rotation of rotary body, and instrument for measuring information on rotation
KR100384491B1 (en) * 2000-12-18 2003-05-22 한국항공우주연구원 A Replacement sensing device of inertial measurement sensor using levitation system
JP2020113402A (en) * 2019-01-09 2020-07-27 キヤノン株式会社 Rotary operating device and electronic equipment

Similar Documents

Publication Publication Date Title
JP2001124537A (en) Rotational angle sensor for rotating member
JPH0293324A (en) Origin detection system of rotary encoder
JP2016517963A (en) Optical angle detector with beam forming element
US5428217A (en) Annular photodiode for use in an optical rotary encoder
US5747797A (en) Rotation information detecting apparatus and scale for use in the same
JPH0914941A (en) Detection device for rotary angle of rotary shaft
EP0096448B1 (en) Apparatus for determing angular displacements of an object
US5171983A (en) Relative position transducer for oscillating and scanning a read head over a coded track region
JPH06185957A (en) Rotational angle measuring instrument
EP0489399B1 (en) Displacement detector
JP2000018971A (en) Encoder
JP2000266567A (en) Rotary encoder
JPS63153425A (en) Rotational quantity detecting device
JPH0498109A (en) Rotation angle measuring device
JPH05203464A (en) Rotary encoder
JPS62178208A (en) Optical chopper device
JPS6336111A (en) Optical encoder
JP2540113B2 (en) Encoder
JP2000241143A (en) Angle sensor
JPH0389113A (en) Optical displacement detecting apparatus
JPH02112723A (en) Optical encoder
SU1339241A2 (en) Apparatus for measuring azimuth angle
JPH09287978A (en) Optical encoder
JPH0331367B2 (en)
JPH01240841A (en) Optical type surface inspector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831