JPH06185828A - Absorption heat pump using low temperature heat source - Google Patents

Absorption heat pump using low temperature heat source

Info

Publication number
JPH06185828A
JPH06185828A JP33829892A JP33829892A JPH06185828A JP H06185828 A JPH06185828 A JP H06185828A JP 33829892 A JP33829892 A JP 33829892A JP 33829892 A JP33829892 A JP 33829892A JP H06185828 A JPH06185828 A JP H06185828A
Authority
JP
Japan
Prior art keywords
generator
absorber
solution
heat
refrigerant vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33829892A
Other languages
Japanese (ja)
Other versions
JP3103225B2 (en
Inventor
Masahiro Oka
雅博 岡
Hiroshi Kojima
弘 小島
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP04338298A priority Critical patent/JP3103225B2/en
Publication of JPH06185828A publication Critical patent/JPH06185828A/en
Application granted granted Critical
Publication of JP3103225B2 publication Critical patent/JP3103225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To operate a heat pump by a double effect cycle by reducing a vapor quantity to be consumed, and simply switching to a cooling cycle. CONSTITUTION:The absorption heat pump using a low temperature heat source comprises first, second bypass lines 14, 17 for so heating to 40-45 deg.C by circulating a line 12 for removing warm water for heating to a first absorber 2, a second absorber 5 and a condenser 8 and bypassing a first generator 3, wherein a double effect cooling cycle is switched by switching a three-way valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は河川水又は下水が保有す
る熱を駆動熱源として利用する低温熱源利用吸収ヒート
ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump utilizing a low temperature heat source, which uses heat contained in river water or sewage as a driving heat source.

【0002】[0002]

【従来の技術】従来の河川水又は下水処理水等を熱源水
として利用するヒートポンプは、直火焚き又は蒸気駆動
の単効用サイクルを組んで暖房用温水(40℃〜45℃)を
得ている。
2. Description of the Related Art A conventional heat pump that uses treated water such as river water or sewage as heat source water obtains hot water for heating (40 ° C to 45 ° C) by forming a single-effect cycle of direct fire or steam drive. .

【0003】[0003]

【発明が解決しようとする課題】しかし、燃料電池排熱
等の2温度レベルの排熱(低温水65℃〜75℃、蒸気)を
ヒートポンプの駆動用熱源として利用した場合、従来の
単効用サイクルでは、低温水排熱を高効率で利用するこ
とが不可能なため、蒸気のみを用いて単効用サイクルで
昇温し、さらに低温水排熱は熱交換器を用いて熱回収し
て暖房用温水を得ており、このために蒸気の消費量が多
くなるという欠点がある。
However, when exhaust heat of two temperature levels such as exhaust heat of a fuel cell (low temperature water 65 ° C. to 75 ° C., steam) is used as a heat source for driving a heat pump, a conventional single-effect cycle is used. Since it is not possible to use the low temperature water exhaust heat with high efficiency, the temperature is raised in a single-effect cycle using only steam, and the low temperature water exhaust heat is recovered by using a heat exchanger for heating. Since hot water is obtained, there is a drawback in that steam consumption becomes large.

【0004】本発明の目的は、低温熱源利用吸収ヒート
ポンプにおいて、暖房用温水を得るために使用される蒸
気の消費量を削減することである。
An object of the present invention is to reduce the consumption of steam used for obtaining hot water for heating in an absorption heat pump utilizing a low temperature heat source.

【0005】[0005]

【課題を解決するための手段】本発明に係る低温熱源利
用吸収ヒートポンプの構成は次のとおりである。
The structure of an absorption heat pump utilizing a low temperature heat source according to the present invention is as follows.

【0006】蒸発器、第1吸収器、第1発生器、第1熱
交換器、第2吸収器、第2発生器、第3発生器、凝縮
器、第2熱交換器、第3熱交換器、蒸発器内に通された
熱源水ライン、第1吸収器から第2吸収器を通り、凝縮
器を循環する温水とり出しライン、第1発生器内を循環
する低温水とり出しライン、第1吸収器から出て第1発
生器に至る第1稀溶液ラインを分岐して第2吸収器から
第2発生器に至る第2稀溶液ラインに結んだ冷房切り換
え用の第1バイパスライン、第3発生器から第2吸収器
に至る第2濃溶液ラインを分岐して第1発生器から第1
吸収器に至る第1濃溶液ラインに結んだ冷房切り換え用
の第2バイパスラインから成ると共に暖房サイクルにお
いては、蒸発器において低温熱源から熱を汲み上げ蒸発
した冷媒蒸気を第1吸収器において吸収溶液に吸収さ
せ、第1吸収器の稀溶液は溶液ポンプにより第1熱交換
器を通し、第1発生器に導いた低温水により加熱して冷
媒蒸気と濃溶液とに分離し、第1発生器において分離し
た濃溶液を、第1熱交換器に通し、第1吸収器に送り、
再び冷媒蒸気を吸収させて第1吸収器と第1発生器の間
を循環させ、第1発生器において発生した冷媒蒸気を第
2吸収器において吸収溶液に吸収し、第2吸収器の稀溶
液を溶液ポンプにより第2熱交換器、第3熱交換器を経
て第2発生器に導き蒸気(高温熱源)により加熱して中
間濃度溶液と冷媒蒸気とに分離し、第2発生器において
分離した中間濃度溶液を第3熱交換器を経て第3発生器
に導き、第2発生器において発生した冷媒蒸気により、
さらに加熱して濃溶液と冷媒蒸気とに分離し、第3発生
器において分離した濃溶液を第2熱交換器を経て第2吸
収器に送り、再び第1発生器より発生した冷媒蒸気を吸
収させて、吸収溶液を第2吸収器、第2発生器、第3発
生器の順で循環させ、第2発生器において発生した冷媒
蒸気を第3発生器に導き、中間溶液を加熱して濃縮し、
凝縮した後、凝縮器8に導き、第3発生器において発生
した冷媒蒸気を凝縮器に導き、冷却水(ここでは暖房用
温水)に潜熱を与えて凝縮し、凝縮器の冷媒は蒸発器に
送り、低温熱源の熱を汲み上げて蒸発し、暖房用温水を
温水とり出しラインを経由して第1吸収器、第2吸収
器、凝縮器の順に流し、第1吸収器、第2吸収器におい
ては吸収熱、凝縮器においては凝縮熱をそれぞれ貰うこ
とにより昇温して放熱器内に循環させ、冷房時のサイク
ルにおいては、蒸発器において冷房用冷水から熱を奪っ
て発生した冷媒蒸気は第1吸収器において吸収溶液に吸
収し、第1吸収器の稀溶液を溶液ポンプにより第1熱交
換器、第3熱交換器を経て第2発生器に導き、蒸気によ
り加熱して中間濃度溶液と冷媒蒸気とに分離し、第2発
生器の中間濃度溶液を第3熱交換器を経て第3発生器に
導き、第2発生器より発生した冷媒蒸気により加熱して
濃溶液と冷媒蒸気とに分離し、第3発生器の濃溶液を第
1熱交換器を経て第1吸収器に導き、再び蒸発器からの
冷媒蒸気を吸収させ、第2発生器において発生した冷媒
蒸気を第3発生器に導き、中間濃度溶液を加熱濃縮して
凝縮し凝縮器に送り、第3発生器において発生した冷媒
蒸気を凝縮器に導き、冷却水に潜熱を与えて凝縮し、凝
縮器の冷媒は蒸発器に送り、冷房用の冷水から熱を奪っ
て蒸発し、冷却水は第1吸収器においては吸収熱、凝縮
器においては凝縮熱を奪い、更に第1及び第2バイパス
ラインを切り換えて第1発生器及び第2吸収器をバイパ
スし、冷房時においては通常の二重効果サイクルを組ん
で冷房を行うことが可能なように構成して成る低温熱源
利用吸収ヒートポンプ。
Evaporator, first absorber, first generator, first heat exchanger, second absorber, second generator, third generator, condenser, second heat exchanger, third heat exchange Source, a heat source water line passed through the evaporator, a hot water withdrawal line that circulates from the first absorber through the second absorber and through the condenser, a low temperature water withdrawal line that circulates within the first generator, A first bypass line for switching cooling, which connects the first dilute solution line from the first absorber to the first generator and connects it to the second dilute solution line from the second absorber to the second generator, The second concentrated solution line from the 3rd generator to the 2nd absorber is branched to the 1st generator to the 1st
It consists of a second bypass line for switching cooling connected to the first concentrated solution line leading to the absorber, and in the heating cycle, the refrigerant vapor that has pumped up heat from the low-temperature heat source in the evaporator to become the absorbing solution in the first absorber. The diluted solution in the first absorber is absorbed by the solution pump, passed through the first heat exchanger, and heated by the low-temperature water introduced into the first generator to be separated into a refrigerant vapor and a concentrated solution. The separated concentrated solution is passed through the first heat exchanger and sent to the first absorber,
The refrigerant vapor is again absorbed and circulated between the first absorber and the first generator, the refrigerant vapor generated in the first generator is absorbed in the absorbing solution in the second absorber, and the diluted solution in the second absorber is absorbed. Is introduced into the second generator via the second heat exchanger and the third heat exchanger by the solution pump and heated by the steam (high temperature heat source) to be separated into the intermediate concentration solution and the refrigerant vapor, which are separated in the second generator. The intermediate concentration solution is led to the third generator via the third heat exchanger, and by the refrigerant vapor generated in the second generator,
It is further heated to separate it into a concentrated solution and a refrigerant vapor, the concentrated solution separated in the third generator is sent to the second absorber via the second heat exchanger, and the refrigerant vapor generated from the first generator is absorbed again. Then, the absorption solution is circulated in the order of the second absorber, the second generator, and the third generator, the refrigerant vapor generated in the second generator is guided to the third generator, and the intermediate solution is heated and concentrated. Then
After being condensed, it is guided to the condenser 8, and the refrigerant vapor generated in the third generator is guided to the condenser to give latent heat to the cooling water (here, hot water for heating) to condense, and the refrigerant in the condenser is transferred to the evaporator. Sending, pumping up the heat of the low-temperature heat source and evaporating it, hot water for heating is made to flow in the order of the first absorber, the second absorber and the condenser through the hot water take-out line, and in the first absorber and the second absorber Is absorbed heat, and the condenser heats the condensation heat to raise the temperature and circulates it in the radiator.In the cooling cycle, the refrigerant vapor generated by removing heat from the cooling water in the evaporator is It is absorbed in the absorption solution in one absorber, and the diluted solution in the first absorber is introduced into the second generator through the first heat exchanger and the third heat exchanger by the solution pump and heated by steam to form an intermediate concentration solution. Separated into refrigerant vapor and intermediate concentration solution of the second generator It is led to the third generator via the third heat exchanger, heated by the refrigerant vapor generated from the second generator and separated into a concentrated solution and a refrigerant vapor, and the concentrated solution of the third generator is the first heat exchanger. Through the first absorber, again to absorb the refrigerant vapor from the evaporator, the refrigerant vapor generated in the second generator is led to the third generator, the intermediate concentration solution is heated and condensed to be condensed in the condenser. Sending, guiding the refrigerant vapor generated in the third generator to the condenser, giving latent heat to the cooling water to condense, and sending the refrigerant in the condenser to the evaporator, taking heat from the cooling water for cooling and evaporating it. Water takes away heat of absorption in the first absorber and heat of condensation in the condenser, and further switches the first and second bypass lines to bypass the first generator and the second absorber, and when cooling, the normal Configured so that cooling can be performed by forming a double-effect cycle Low temperature heat source using absorption heat pump consisting of Te.

【0007】[0007]

【作用】[Action]

1.暖房時のサイクル 蒸発器において低温熱源から熱を汲み上げ蒸発した冷媒
蒸気は第1吸収器において吸収溶液に吸収される。第1
吸収器の稀溶液は溶液ポンプにより第1熱交換器を通
り、第1発生器に導かれ低温水からの加熱を受けて冷媒
蒸気と濃溶液とに分離される。第1発生器において分
離された濃溶液は、第1熱交換器4を通り、第1吸収器
に送られ、再び冷媒蒸気を吸収することにより第1吸収
器と第1発生器の間を循環する。また、第1発生器にお
いて発生した冷媒蒸気は第2吸収器において吸収溶液に
吸収される。第2吸収器5の稀溶液は溶液ポンプにより
第2熱交換器、第3熱交換器を経て第2発生器に導かれ
蒸気(高温熱源)による加熱を受けて中間濃度溶液と冷
媒蒸気とに分離される。第2発生器において分離された
中間濃度溶液は第3熱交換器を経て第3発生器に導か
れ、第2発生器において発生した冷媒蒸気により、さら
に加熱され濃溶液と冷媒蒸気とに分離される。第3発生
器において分離された濃溶液は、第2熱交換器を経て第
2吸収器に送られ再び第1発生器より発生した冷媒蒸気
を吸収することにより、吸収溶液は第2吸収器、第2発
生器、第3発生器の順で循環する。また、第2発生器に
おいて発生した冷媒蒸気は第3発生器に導かれ中間溶液
を加熱濃縮し、凝縮した後、凝縮器に導かれる。また、
第3発生器において発生した冷媒蒸気も凝縮器8に導か
れ、冷却水(ここでは暖房用温水)に潜熱を与えて凝縮
する。凝縮器の冷媒は蒸発器1に送られ、低温熱源の熱
を汲み上げて蒸発する。上記のようなサイクルを繰り返
す間に、温水とり出しラインの暖房用温水は第1吸収
器、第2吸収器、凝縮器の順に流れ、第1吸収器、第2
吸収器においては吸収熱、凝縮器においては凝縮熱をそ
れぞれ貰うことにより昇温され、放熱器内を循環する。
1. Cycle during heating The refrigerant vapor that has pumped up heat from the low temperature heat source in the evaporator and evaporated is absorbed by the absorbing solution in the first absorber. First
The dilute solution in the absorber passes through the first heat exchanger by the solution pump, is guided to the first generator, is heated by the low-temperature water, and is separated into the refrigerant vapor and the concentrated solution. The concentrated solution separated in the first generator passes through the first heat exchanger 4, is sent to the first absorber, and circulates between the first absorber and the first generator by absorbing the refrigerant vapor again. To do. Further, the refrigerant vapor generated in the first generator is absorbed by the absorbing solution in the second absorber. The dilute solution in the second absorber 5 is guided to the second generator via the second heat exchanger and the third heat exchanger by the solution pump and is heated by the steam (high temperature heat source) to be an intermediate concentration solution and a refrigerant vapor. To be separated. The intermediate-concentration solution separated in the second generator is introduced into the third generator via the third heat exchanger, and further heated by the refrigerant vapor generated in the second generator to be separated into a concentrated solution and a refrigerant vapor. It The concentrated solution separated in the third generator is sent to the second absorber via the second heat exchanger and again absorbs the refrigerant vapor generated from the first generator, so that the absorbing solution becomes the second absorber, The second generator and the third generator circulate in this order. Further, the refrigerant vapor generated in the second generator is introduced into the third generator, the intermediate solution is heated and condensed, condensed, and then introduced into the condenser. Also,
The refrigerant vapor generated in the third generator is also guided to the condenser 8 and imparts latent heat to the cooling water (here, hot water for heating) to condense it. The refrigerant in the condenser is sent to the evaporator 1 and pumps up the heat of the low temperature heat source to evaporate. While the above cycle is repeated, the hot water for heating in the hot water extraction line flows in the order of the first absorber, the second absorber, and the condenser, and the first absorber and the second absorber.
The absorption heat is absorbed by the absorber and the condensation heat is received by the condenser, and the temperature is raised and the heat circulates in the radiator.

【0008】2.冷房時のサイクル 蒸発器において冷房用冷水から熱を奪って発生した冷媒
蒸気は第1吸収器において吸収溶液に吸収される。第1
吸収器の稀溶液は溶液ポンプにより第1熱交換器、第3
熱交換器を経て第2発生器に導かれ、蒸気による加熱を
うけて中間濃度溶液と冷媒蒸気とに分離される。第2発
生器の中間濃度溶液は第3熱交換器を経て第3発生器に
導かれ、第2発生器より発生した冷媒蒸気により加熱を
うけて、濃溶液と冷媒蒸気とに分離される。第3発生器
の濃溶液は第1熱交換器を経て第1吸収器に導かれ、再
び蒸発器からの冷媒蒸気を吸収する。また、第2発生器
において発生した冷媒蒸気は第3発生器に導かれ、中間
濃度溶液を加熱濃縮して凝縮し凝縮器に送られる。第3
発生器において発生した冷媒蒸気は凝縮器に導かれ冷却
水に潜熱を与えて凝縮する。凝縮器の冷媒は蒸発器に送
られ、冷房用の冷水から熱を奪って蒸発する。また冷却
水は第1吸収器においては吸収熱、凝縮器においては凝
縮熱を奪う。すなわち、第1熱交換器・第1発生器間と
第2熱交換器・第3熱交換器間との間、第3発生器・第
2熱交換器間と第1発生器・第1熱交換器間との間に第
1及び第2バイパスラインを設けてこのバイパス側に切
り替えることによって、第1発生器及び第2吸収器をバ
イパスし、冷房時においては熱源水ラインを介して冷水
をとり出すことにより通常の二重効用サイクルを組んで
冷房を行うことが可能となる。
2. Cycle during cooling The refrigerant vapor generated by taking heat from the cooling cold water in the evaporator is absorbed in the absorbing solution in the first absorber. First
The dilute solution in the absorber is supplied by the solution pump to the first heat exchanger and the third
It is guided to the second generator through the heat exchanger, and is heated by the steam to be separated into the intermediate concentration solution and the refrigerant steam. The intermediate-concentration solution in the second generator is introduced into the third generator via the third heat exchanger, and is heated by the refrigerant vapor generated from the second generator to be separated into a concentrated solution and a refrigerant vapor. The concentrated solution in the third generator is introduced into the first absorber via the first heat exchanger and again absorbs the refrigerant vapor from the evaporator. Further, the refrigerant vapor generated in the second generator is guided to the third generator, the intermediate concentration solution is heated and concentrated, condensed, and sent to the condenser. Third
The refrigerant vapor generated in the generator is guided to the condenser and gives latent heat to the cooling water to be condensed. The refrigerant in the condenser is sent to the evaporator, and takes heat from the cold water for cooling to evaporate. Further, the cooling water removes heat of absorption in the first absorber and heat of condensation in the condenser. That is, between the first heat exchanger and the first generator and between the second heat exchanger and the third heat exchanger, between the third generator and the second heat exchanger, and between the first generator and the first heat. By providing first and second bypass lines between the exchangers and switching to the bypass side, the first generator and the second absorber are bypassed, and cold water is passed through the heat source water line during cooling. By taking it out, it becomes possible to perform cooling by forming a normal double-effect cycle.

【0009】[0009]

【実施例】図1において1は蒸発器、2は第1吸収器、
3は第1発生器、4は第1熱交換器、5は第2吸収器、
6は第2発生器、7は第3発生器、8は凝縮器、9は第
2熱交換器、10は第3熱交換器、11は蒸発器1内に通さ
れた熱源水ライン(冷水ライン)、12は第1吸収器2か
ら第2吸収器5を通り、凝縮器8を循環する温水とり出
しライン(冷却水ライン)、13は第1発生器3内を循環
する低温水ライン、14は第1吸収器2から出て第1発生
器3に至る第1稀溶液ライン20を三方弁15で分岐して第
2吸収器5から第2発生器6に至る第2稀溶液ライン21
に三方弁16で結んだ冷房切り替え用の第1バイパスライ
ン、17は第3発生器7から第2吸収器5に至る第2濃溶
液ライン23を三方弁18で分岐して第1発生器3から第1
吸収器2に至る第1濃溶液ライン22に三方弁19で結んだ
冷房切り替え用の第2バイパスライン、24は第2発生器
6内を加熱するための加熱蒸気ライン、25、26、27、28
は蒸気ラインである。次に、上記実施例の運転例を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, 1 is an evaporator, 2 is a first absorber,
3 is a first generator, 4 is a first heat exchanger, 5 is a second absorber,
6 is a 2nd generator, 7 is a 3rd generator, 8 is a condenser, 9 is a 2nd heat exchanger, 10 is a 3rd heat exchanger, 11 is a heat source water line (cold water) passed through the evaporator 1. Line), 12 passes from the first absorber 2 to the second absorber 5, and circulates in the condenser 8 for taking out hot water (cooling water line), 13 denotes a low-temperature water line circulating in the first generator 3, Reference numeral 14 is a second dilute solution line 21 extending from the second absorber 5 to the second generator 6 by branching a first dilute solution line 20 from the first absorber 2 to the first generator 3 with a three-way valve 15.
A first bypass line for cooling switching connected to the first three-way valve 16 and a second concentrated solution line 23 for branching the second concentrated solution line 23 from the third generator 7 to the second absorber 5 by the three-way valve 18 From first
A second bypass line for switching cooling, which is connected to the first concentrated solution line 22 reaching the absorber 2 with a three-way valve 19, 24 is a heating steam line for heating the inside of the second generator 6, 25, 26, 27, 28
Is a steam line. Next, an operation example of the above embodiment will be described.

【0010】1.暖房運転サイクル 蒸発器1において低温熱源から熱を汲み上げ蒸発した冷
媒蒸気は第1吸収器2において吸収溶液に吸収される。
第1吸収器2の稀溶液は溶液ポンプにより第1熱交換
器4を通り、第1発生器3に導かれ低温水からの加熱を
受けて冷媒蒸気と濃溶液とに分離される。第1発生器
3において分離された濃溶液は、第1熱交換器4を通
り、第1吸収器2に送られ、再び冷媒蒸気を吸収するこ
とにより第1吸収器2と第1発生器3の間を循環する。
また、第1発生器3において発生した冷媒蒸気は第2吸
収器5において吸収溶液に吸収される。第2吸収器5の
稀溶液は溶液ポンプにより第2熱交換器9、第3熱交換
器10を経て第2発生器6に導かれ蒸気(高温熱源)によ
る加熱を受けて中間濃度溶液と冷媒蒸気とに分離され
る。第2発生器6において分離された中間濃度溶液は第
3熱交換器10を経て第3発生器7に導かれ、第2発生器
6において発生した冷媒蒸気により、さらに加熱され濃
溶液と冷媒蒸気とに分離される。第3発生器7において
分離された濃溶液は、第2熱交換器9を経て第2吸収器
5に送られ再び第1発生器3により発生した冷媒蒸気を
吸収することにより、吸収溶液は第2吸収器5、第2発
生器6、第3発生器7の順で循環する。また、第2発生
器6において発生した冷媒蒸気は第3発生器7に導かれ
中間溶液を加熱濃縮し、凝縮した後、凝縮器8に導かれ
る。また、第3発生器7において発生した冷媒蒸気も凝
縮器8に導かれ、冷却水(ここでは暖房用温水)に潜熱
を与えて凝縮する。凝縮器8の冷媒は蒸発器1に送ら
れ、低温熱源の熱を汲み上げて蒸発する。上記のような
サイクルを繰り返す間に、温水とり出しライン12の暖房
用温水は第1吸収器2、第2吸収器5、凝縮器8の順に
流れ、第1吸収器2、第2吸収器5においては吸収熱、
凝縮器8においては凝縮熱をそれぞれ貰うことにより昇
温され、放熱器(図示せず)に至り、暖房を行う。
1. Heating Operation Cycle The refrigerant vapor that has pumped up heat from the low temperature heat source in the evaporator 1 and is evaporated is absorbed in the absorbing solution in the first absorber 2.
The dilute solution in the first absorber 2 passes through the first heat exchanger 4 by the solution pump, is guided to the first generator 3, and is heated by the low-temperature water to be separated into a refrigerant vapor and a concentrated solution. The concentrated solution separated in the first generator 3 passes through the first heat exchanger 4 and is sent to the first absorber 2 to absorb the refrigerant vapor again, thereby absorbing the refrigerant vapor and the first absorber 2 and the first generator 3 again. Circulate between.
Further, the refrigerant vapor generated in the first generator 3 is absorbed in the absorbing solution in the second absorber 5. The dilute solution in the second absorber 5 is guided by the solution pump to the second generator 6 via the second heat exchanger 9 and the third heat exchanger 10 and is heated by the steam (high temperature heat source) to receive an intermediate concentration solution and a refrigerant. Separated into steam. The intermediate-concentration solution separated in the second generator 6 is guided to the third generator 7 via the third heat exchanger 10, and is further heated by the refrigerant vapor generated in the second generator 6 and the concentrated solution and the refrigerant vapor. And separated. The concentrated solution separated in the third generator 7 is sent to the second absorber 5 via the second heat exchanger 9 and again absorbs the refrigerant vapor generated by the first generator 3, so that the absorbing solution becomes The two absorbers 5, the second generator 6, and the third generator 7 are circulated in this order. Further, the refrigerant vapor generated in the second generator 6 is introduced into the third generator 7, the intermediate solution is heated and concentrated, condensed, and then introduced into the condenser 8. Further, the refrigerant vapor generated in the third generator 7 is also guided to the condenser 8 and gives latent heat to the cooling water (here, hot water for heating) to be condensed. The refrigerant in the condenser 8 is sent to the evaporator 1 and pumps up the heat of the low temperature heat source to evaporate. While the cycle as described above is repeated, the hot water for heating in the hot water extraction line 12 flows in the order of the first absorber 2, the second absorber 5, and the condenser 8, and the first absorber 2, the second absorber 5 In the absorbed heat,
Each of the condensers 8 is heated by receiving heat of condensation, and reaches a radiator (not shown) for heating.

【0011】2.冷房運転サイクル 蒸発器1において低温熱源から熱を奪って発生した冷媒
蒸気は第1吸収器2において吸収溶液に吸収される。第
1吸収器2の稀溶液は溶液ポンプにより第1熱交換器
4、第3熱交換器10を経て第2発生器6に導かれ、蒸気
による加熱をうけて中間濃度溶液と冷媒蒸気とに分離さ
れる。第2発生器6の中間濃度溶液は第3熱交換器10を
経て第3発生器7に導かれ、第2発生器6より発生した
冷媒蒸気により加熱をうけて、濃溶液と冷媒蒸気とに分
離される。第3発生器7の濃溶液は第1熱交換器4を経
て第1吸収器2に導かれ、再び蒸発器1からの冷媒蒸気
を吸収する。また、第2発生器6において発生した冷媒
蒸気は第3発生器7に導かれ、中間濃度溶液を加熱濃縮
して凝縮し凝縮器8に送られる。第3発生器7において
発生した冷媒蒸気は凝縮器8に導かれて冷却水ライン12
を通る冷却水に潜熱を与えて凝縮する。凝縮器8の冷媒
は蒸発器1に送られ、冷房用の冷水から熱を奪って蒸発
する。また冷却水は第1吸収器2においては吸収熱、凝
縮器8においては凝縮熱を奪う。すなわち図1に示すよ
うに、第1熱交換器4・第1発生器3間と第2熱交換器
9・第3熱交換器10間との間、第3発生器7・第2熱交
換器9間と第1発生器3・第1熱交換器4間との間に冷
房切り替え用の三方弁、及び冷暖切り替え用バイパスラ
イン14、17を設けることによって、第1発生器4及び第
2吸収器5をバイパスし、冷房時においては通常の二重
効用サイクルを組んで暖房時の熱源水ライン11から冷水
をとり出し、放熱器内に循環させて冷房を行う。
2. Cooling operation cycle Refrigerant vapor generated by removing heat from the low temperature heat source in the evaporator 1 is absorbed in the absorbing solution in the first absorber 2. The dilute solution of the first absorber 2 is guided to the second generator 6 via the first heat exchanger 4 and the third heat exchanger 10 by the solution pump, and is heated by the steam to become the intermediate concentration solution and the refrigerant steam. To be separated. The intermediate concentration solution of the second generator 6 is guided to the third generator 7 via the third heat exchanger 10, and is heated by the refrigerant vapor generated from the second generator 6 to be a concentrated solution and a refrigerant vapor. To be separated. The concentrated solution in the third generator 7 is guided to the first absorber 2 via the first heat exchanger 4 and again absorbs the refrigerant vapor from the evaporator 1. Further, the refrigerant vapor generated in the second generator 6 is guided to the third generator 7, where the intermediate concentration solution is heated and concentrated to be condensed and sent to the condenser 8. The refrigerant vapor generated in the third generator 7 is guided to the condenser 8 and the cooling water line 12
Latent heat is given to the cooling water passing through to condense. The refrigerant in the condenser 8 is sent to the evaporator 1 to remove heat from the cold water for cooling and evaporate. Further, the cooling water removes heat of absorption in the first absorber 2 and heat of condensation in the condenser 8. That is, as shown in FIG. 1, between the first heat exchanger 4 and the first generator 3 and between the second heat exchanger 9 and the third heat exchanger 10, the third generator 7 and the second heat exchanger are exchanged. By providing the three-way valve for switching the cooling and the bypass lines 14 and 17 for switching the heating and cooling between the reactors 9 and between the first generator 3 and the first heat exchanger 4, the first generator 4 and the second generator Bypassing the absorber 5 and forming a normal double-effect cycle during cooling, cold water is taken out from the heat source water line 11 during heating and circulated in the radiator for cooling.

【0012】次に、上記実施例を用いた吸収ヒートポン
プの計算条件例を示す。
Next, an example of calculation conditions of the absorption heat pump using the above embodiment will be shown.

【0013】 1.初期条件 (1)冷水温度 入口 12 ℃ 出口 9 ℃ (2)加熱用低温温水温度 入口 70 ℃ 出口 65 ℃ (3)加熱用蒸気圧力 5 kg/ cm2 G (4)温水温度 入口 40 ℃ 出口 45 ℃ 2.計算に用いたサイクル条件 初期条件より決定した新しいサイクルのサイクル条件を
以下に示す。
1. Initial conditions (1) Cold water temperature inlet 12 ℃ outlet 9 ℃ (2) Low temperature hot water temperature inlet for heating 70 ℃ outlet 65 ℃ (3) Steam pressure for heating 5 kg / cm 2 G (4) Hot water temperature inlet 40 ℃ outlet 45 ℃ 2. Cycle conditions used for calculation The cycle conditions of the new cycle determined from the initial conditions are shown below.

【0014】 (1)蒸発器 温度 tE 7.5 ℃ 圧力 PE 8 mmHg (2)吸収器 第1 圧力 PE 8 mmHg 第2 圧力 PCE 14 mmHg (3)凝縮器 温度 tC 47 ℃ 圧力 PC 80 mmHg (4)再生器 第1 圧力 PCE 14 mmHg 第2 圧力 PC 80 mmHg 第3 圧力 PC 589 mmHg (5)溶液濃度 低段側 稀溶液 ξL1 60.0 % 濃溶液 ξL2 63.0 % 高段側 稀溶液 ξH1 55.2 % 中間溶液 ξH2 57.0 % 濃溶液 ξH2 58.2 % 3.比較に用いた従来のシステム 単効用吸収ヒートポンプ+低温排熱回収温水熱交換器 4.比較結果 <計算結果例> 100 kcal/hの暖房用温水を得る場合 新しいサイクル 低温水排熱利用量 40.4 kcal/h 蒸気消費量 30.0 kcal/h 従来のシステム 低温水排熱利用量 40.4 kcal/h 蒸気消費量 35.1 kcal/h 蒸気消費量削減率 (35.1−30.0)/35.1×100 =1
4.5% 以上より、同じ低温水排熱がある場合、従来のシステム
と比較すると蒸気の消費量が15%程度削減可能となっ
た。
(1) Evaporator temperature t E 7.5 ℃ Pressure P E 8 mmHg (2) Absorber 1st pressure P E 8 mmHg 2nd pressure P CE 14 mmHg (3) Condenser temperature t C 47 ℃ Pressure P C 80 mmHg (4) Regenerator 1st pressure P CE 14 mmHg 2nd pressure P C 80 mmHg 3rd pressure P C 589 mmHg (5) Solution concentration Low-stage side diluted solution ξ L1 60.0% Concentrated solution ξ L2 63.0% High stage Side diluted solution ξ H1 55.2% Intermediate solution ξ H2 57.0% Concentrated solution ξ H2 58.2% 3. Conventional system used for comparison Single-effect absorption heat pump + low-temperature waste heat recovery hot water heat exchanger 4. Comparative results <Example of calculation results> When obtaining hot water for heating at 100 kcal / h New cycle Low-temperature water exhaust heat utilization 40.4 kcal / h Steam consumption 30.0 kcal / h Conventional system Low-temperature water exhaust heat utilization 40.4 kcal / h Steam consumption 35.1 kcal / h Steam consumption reduction rate (35.1-30.0) /35.1 x 100 = 1
From 4.5% or more, it is possible to reduce steam consumption by about 15% compared to the conventional system when the same low temperature water exhaust heat is present.

【0015】図2に上記新サイクル運転時のデューリン
グ線図を示す。
FIG. 2 shows a Duhring diagram during the above new cycle operation.

【0016】[0016]

【発明の効果】本発明は以上の如き構成と作用から成る
ため、暖房運転においては蒸気の消費量を15%程度削減
して効率の良い運転を行うことができると共に三方弁を
切り替えるだけで冷房時には二重効用サイクル運転を行
うことができる。
EFFECTS OF THE INVENTION Since the present invention has the above-described structure and operation, in heating operation, steam consumption can be reduced by about 15% to perform efficient operation, and cooling can be performed only by switching the three-way valve. Sometimes double-effect cycle operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るヒートポンプの実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of a heat pump according to the present invention.

【図2】実施例の場合のデューリング線図の説明図。FIG. 2 is an explanatory diagram of a Duhring diagram in the case of an embodiment.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 第1吸収器 3 第1発生器 4 第1熱交換器 5 第2吸収器 6 第2発生器 7 第3発生器 8 凝縮器 9 第2熱交換器 10 第3熱交換器 11 熱源水ライン(冷水ライン) 12 温水とり出しライン(冷却水ライン) 13 低温水ライン 14 第1バイパスライン 15、16 三方弁 17 第2バイパスライン 18、19 三方弁 20 第1稀溶液ライン 21 第2稀溶液ライン 22 第1濃溶液ライン 23 第2濃溶液ライン 24 加熱蒸気ライン 1 Evaporator 2 1st absorber 3 1st generator 4 1st heat exchanger 5 2nd absorber 6 2nd generator 7 3rd generator 8 Condenser 9 2nd heat exchanger 10 3rd heat exchanger 11 Heat source water line (cold water line) 12 Hot water extraction line (cooling water line) 13 Low temperature water line 14 First bypass line 15, 16 Three-way valve 17 Second bypass line 18, 19 Three-way valve 20 First diluted solution line 21 Second Dilute solution line 22 1st concentrated solution line 23 2nd concentrated solution line 24 Heating steam line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、第1吸収器、第1発生器、第1
熱交換器、第2吸収器、第2発生器、第3発生器、凝縮
器、第2熱交換器、第3熱交換器、蒸発器内に通された
熱源水ライン、第1吸収器から第2吸収器を通り、凝縮
器を循環する温水とり出しライン、第1発生器内を循環
する低温水ライン、第1吸収器から出て第1発生器に至
る第1稀溶液ラインを分岐して第2吸収器から第2発生
器に至る第2稀溶液ラインに結んだ冷房切り換え用の第
1バイパスライン、第3発生器から第2吸収器に至る第
2濃溶液ラインを分岐して第1発生器から第1吸収器に
至る第1濃溶液ラインに結んだ冷房切り換え用の第2バ
イパスラインから成ると共に暖房サイクルにおいては、
蒸発器において低温熱源から熱を汲み上げ蒸発した冷媒
蒸気を第1吸収器において吸収溶液に吸収させ、第1吸
収器の稀溶液は溶液ポンプにより第1熱交換器を通し、
第1発生器に導いた低温水により加熱して冷媒蒸気と濃
溶液とに分離し、第1発生器において分離した濃溶液
を、第1熱交換器に通し、第1吸収器に送り、再び冷媒
蒸気を吸収させて第1吸収器と第1発生器の間を循環さ
せ、第1発生器において発生した冷媒蒸気を第2吸収器
において吸収溶液に吸収し、第2吸収器の稀溶液を溶液
ポンプにより第2熱交換器、第3熱交換器を経て第2発
生器に導き蒸気(高温熱源)により加熱して中間濃度溶
液と冷媒蒸気とに分離し、第2発生器において分離した
中間濃度溶液を第3熱交換器を経て第3発生器に導き、
第2発生器において発生した冷媒蒸気により、さらに加
熱して濃溶液と冷媒蒸気とに分離し、第3発生器におい
て分離した濃溶液を第2熱交換器を経て第2吸収器に送
り、再び第1発生器より発生した冷媒蒸気を吸収させ
て、吸収溶液を第2吸収器、第2発生器、第3発生器の
順で循環させ、第2発生器において発生した冷媒蒸気を
第3発生器に導き、中間溶液を加熱して濃縮し、凝縮し
た後、凝縮器8に導き、第3発生器において発生した冷
媒蒸気を凝縮器に導き、冷却水(ここでは暖房用温水)
に潜熱を与えて凝縮し、凝縮器の冷媒は蒸発器に送り、
低温熱源の熱を汲み上げて蒸発し、暖房用温水を温水と
り出しラインを経由して第1吸収器、第2吸収器、凝縮
器の順に流し、第1吸収器、第2吸収器においては吸収
熱、凝縮器においては凝縮熱をそれぞれ貰うことにより
昇温して放熱器内に循環させ、 冷房時のサイクルにおいては、蒸発器において熱源水ラ
インから熱を奪って発生した冷媒蒸気は第1吸収器にお
いて吸収溶液に吸収し、第1吸収器の稀溶液を溶液ポン
プにより第1熱交換器、第3熱交換器を経て第2発生器
に導き、蒸気により加熱して中間濃度溶液と冷媒蒸気と
に分離し、第2発生器の中間濃度溶液を第3熱交換器を
経て第3発生器に導き、第2発生器より発生した冷媒蒸
気により加熱して濃溶液と冷媒蒸気とに分離し、第3発
生器の濃溶液を第1熱交換器を経て第1吸収器に導き、
再び蒸発器からの冷媒蒸気を吸収させ、第2発生器にお
いて発生した冷媒蒸気を第3発生器に導き、中間濃度溶
液を加熱濃縮して凝縮し凝縮器に送り、第3発生器にお
いて発生した冷媒蒸気を凝縮器に導き、冷却水に潜熱を
与えて凝縮し、凝縮器の冷媒は蒸発器に送り、冷房用の
冷水から熱を奪って蒸発し、冷却水は第1吸収器におい
ては吸収熱、凝縮器においては凝縮熱を奪い、更に第1
及び第2バイパスラインを切り換えて第1発生器及び第
2吸収器をバイパスし、冷房時においては通常の二重効
果サイクルを組んで冷房を行うことが可能なように構成
して成る低温熱源利用吸収ヒートポンプ。
1. An evaporator, a first absorber, a first generator, a first
From the heat exchanger, the second absorber, the second generator, the third generator, the condenser, the second heat exchanger, the third heat exchanger, the heat source water line passed through the evaporator, and the first absorber The hot water withdrawal line that passes through the second absorber and circulates in the condenser, the low temperature water line that circulates in the first generator, and the first dilute solution line that exits from the first absorber and reaches the first generator are branched. The first bypass line for switching cooling connected to the second dilute solution line from the second absorber to the second generator and the second concentrated solution line from the third generator to the second absorber are branched to In the heating cycle, the second bypass line for cooling switching is connected to the first concentrated solution line from the first generator to the first absorber.
Refrigerant vapor that has pumped up heat from a low temperature heat source in the evaporator and evaporated is absorbed by the absorbing solution in the first absorber, and the dilute solution in the first absorber passes through the first heat exchanger by the solution pump,
It is heated by the low-temperature water introduced to the first generator to separate it into a refrigerant vapor and a concentrated solution, and the concentrated solution separated in the first generator is passed through the first heat exchanger, sent to the first absorber, and again. The refrigerant vapor is absorbed and circulated between the first absorber and the first generator, the refrigerant vapor generated in the first generator is absorbed in the absorbing solution in the second absorber, and the rare solution in the second absorber is absorbed. The solution pump guides it to the second generator through the second heat exchanger and the third heat exchanger and heats it with steam (high temperature heat source) to separate it into an intermediate concentration solution and refrigerant vapor, which is separated in the second generator. Leading the concentrated solution through the third heat exchanger to the third generator,
The refrigerant vapor generated in the second generator is further heated to separate into a concentrated solution and a refrigerant vapor, and the concentrated solution separated in the third generator is sent to the second absorber via the second heat exchanger, and again. The refrigerant vapor generated from the first generator is absorbed, the absorbing solution is circulated in the order of the second absorber, the second generator and the third generator, and the refrigerant vapor generated in the second generator is generated into the third generator. To the condenser to heat and condense the intermediate solution to condense it, then to the condenser 8 to guide the refrigerant vapor generated in the third generator to the condenser, and to provide cooling water (here, hot water for heating).
The latent heat is given to the condenser to condense it, and the refrigerant in the condenser is sent to the evaporator,
The heat of the low-temperature heat source is pumped up and evaporated, and the hot water for heating flows in the order of the first absorber, the second absorber, and the condenser via the hot water extraction line, and is absorbed in the first absorber and the second absorber. In the heat and the condenser, the heat of condensation is received to raise the temperature and circulate it in the radiator. In the cooling cycle, the refrigerant vapor generated by taking heat from the heat source water line in the evaporator is the first absorption. Absorbed in the absorption solution in the reactor, the diluted solution in the first absorber is guided to the second generator via the first heat exchanger and the third heat exchanger by the solution pump, and heated by steam to generate the intermediate concentration solution and the refrigerant vapor. And the intermediate concentration solution of the second generator is led to the third generator via the third heat exchanger and heated by the refrigerant vapor generated from the second generator to separate into a concentrated solution and a refrigerant vapor. , Concentrated solution of the third generator through the first heat exchanger Lead to the collector
The refrigerant vapor from the evaporator is again absorbed, the refrigerant vapor generated in the second generator is guided to the third generator, the intermediate-concentration solution is heated and concentrated, condensed and sent to the condenser, and is generated in the third generator. The refrigerant vapor is guided to the condenser to give latent heat to the cooling water for condensation, the refrigerant in the condenser is sent to the evaporator, and the cooling water takes heat from the cooling water to evaporate, and the cooling water is absorbed in the first absorber. Heat, heat of condensation is taken away in the condenser, and
And a low temperature heat source configured to switch the second bypass line to bypass the first generator and the second absorber, and to perform cooling in a normal dual-effect cycle during cooling. Absorption heat pump.
JP04338298A 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source Expired - Fee Related JP3103225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04338298A JP3103225B2 (en) 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04338298A JP3103225B2 (en) 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source

Publications (2)

Publication Number Publication Date
JPH06185828A true JPH06185828A (en) 1994-07-08
JP3103225B2 JP3103225B2 (en) 2000-10-30

Family

ID=18316822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04338298A Expired - Fee Related JP3103225B2 (en) 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source

Country Status (1)

Country Link
JP (1) JP3103225B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046622A1 (en) * 2002-09-26 2004-06-03 Ebara Corporation Absorption refrigerating machine
CN100412466C (en) * 2002-09-26 2008-08-20 株式会社荏原制作所 Absorption refrigerating machine
CN100451487C (en) * 2006-10-05 2009-01-14 李华玉 Two-stage absorbing heat pump of first type
WO2010118636A1 (en) * 2009-04-14 2010-10-21 Li Huayu Method for increasing heating temperature of heat pump and high temperature second-type absorption heat pump
JP2011242016A (en) * 2010-05-14 2011-12-01 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
WO2012145859A1 (en) * 2011-04-25 2012-11-01 Li Huayu Recuperative double-effect and triple-effect second-type absorption heat pump
CN108954900A (en) * 2018-09-18 2018-12-07 迪茗(上海)智能科技有限公司 A kind of refrigerating plant and method
CN111854220A (en) * 2020-07-31 2020-10-30 东北电力大学 Efficient energy-saving method for cold end of steam turbine of thermal power generating unit
CN113494784A (en) * 2020-03-19 2021-10-12 北京华源泰盟节能设备有限公司 Hot water driven absorption refrigeration equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665174U (en) * 1992-11-16 1994-09-13 山口電機工業株式会社 Automotive tire cover with optical display function
JP3025231U (en) * 1995-07-19 1996-06-11 ギュン−ゴン キム Rescue band

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046622A1 (en) * 2002-09-26 2004-06-03 Ebara Corporation Absorption refrigerating machine
US7398656B2 (en) 2002-09-26 2008-07-15 Ebara Corporation Absorption refrigerating machine
CN100412466C (en) * 2002-09-26 2008-08-20 株式会社荏原制作所 Absorption refrigerating machine
US7827821B2 (en) 2002-09-26 2010-11-09 Ebara Corporation Absorption refrigerating machine
CN100451487C (en) * 2006-10-05 2009-01-14 李华玉 Two-stage absorbing heat pump of first type
WO2010118636A1 (en) * 2009-04-14 2010-10-21 Li Huayu Method for increasing heating temperature of heat pump and high temperature second-type absorption heat pump
JP2011242016A (en) * 2010-05-14 2011-12-01 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
WO2012145859A1 (en) * 2011-04-25 2012-11-01 Li Huayu Recuperative double-effect and triple-effect second-type absorption heat pump
CN108954900A (en) * 2018-09-18 2018-12-07 迪茗(上海)智能科技有限公司 A kind of refrigerating plant and method
CN113494784A (en) * 2020-03-19 2021-10-12 北京华源泰盟节能设备有限公司 Hot water driven absorption refrigeration equipment
CN111854220A (en) * 2020-07-31 2020-10-30 东北电力大学 Efficient energy-saving method for cold end of steam turbine of thermal power generating unit

Also Published As

Publication number Publication date
JP3103225B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
CN105923676A (en) Efficient solar seawater desalination and air conditioner refrigeration combined operation method and system thereof
AU2390495A (en) Absorption-type refrigeration systems and methods
JPH06185828A (en) Absorption heat pump using low temperature heat source
CN107215916A (en) The new type low temperature seawater desalination system that capillarity is coupled with solar energy
JP2011220613A (en) Absorption type refrigeration method
WO2002018849A1 (en) Absorption refrigerating machine
JPS5886357A (en) Air-conditioning method utilizing solar heat and its device
JP2696575B2 (en) Absorption refrigerator
JP3103224B2 (en) Absorption heat pump using low-temperature heat source
JP2000205691A (en) Absorption refrigerating machine
CA2180747A1 (en) Generator-absorber heat exchange heat transfer apparatus and method using an intermediate liquor and use thereof in an absorption heat pump
JP2657703B2 (en) Absorption refrigerator
JP3297720B2 (en) Absorption refrigerator
JP3401546B2 (en) Absorption refrigerator
WO2002018850A1 (en) Absorption refrigerating machine
KR102280099B1 (en) Absorption type chiller using composite heat source
JP3093471B2 (en) Absorption heat pump using low-temperature heat source
JPH0552438A (en) Absorption heat pump
JP2892519B2 (en) Absorption heat pump equipment
JPH05223389A (en) Fuel cell-refrigerator integral system and controlling method therefor
JP4134579B2 (en) Absorption heat type absorption refrigeration system
JP2696574B2 (en) Absorption refrigerator
JP3093472B2 (en) Absorption heat pump using low-temperature heat source
JP3401545B2 (en) Absorption refrigerator
JP2542537B2 (en) Absorption heat pump device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees