JPH06185827A - Absorption heat pump using low temperature heat source - Google Patents

Absorption heat pump using low temperature heat source

Info

Publication number
JPH06185827A
JPH06185827A JP33829792A JP33829792A JPH06185827A JP H06185827 A JPH06185827 A JP H06185827A JP 33829792 A JP33829792 A JP 33829792A JP 33829792 A JP33829792 A JP 33829792A JP H06185827 A JPH06185827 A JP H06185827A
Authority
JP
Japan
Prior art keywords
generator
absorber
heat
refrigerant vapor
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33829792A
Other languages
Japanese (ja)
Other versions
JP3103224B2 (en
Inventor
Hiroshi Kojima
弘 小島
Masahiro Oka
雅博 岡
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP04338297A priority Critical patent/JP3103224B2/en
Publication of JPH06185827A publication Critical patent/JPH06185827A/en
Application granted granted Critical
Publication of JP3103224B2 publication Critical patent/JP3103224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To reduce consumption quantity of vapor to be used to obtain warm water for heating by sequentially feeding the warm water for heating through a first absorber, a second absorber and a condenser, and absorbing absorption heat and condensation heat to raise its temperature. CONSTITUTION:Refrigerant vapor evaporated by an evaporator 1 is absorbed to absorption solution in a first absorber 2. Refrigerant vapor generated in a first generator 3 is absorbed to absorption solution in a second absorber 5. Dilute solution of the absorber 5 is separated into intermediate concentration solution and refrigerant vapor in a second generator 6. The intermediate solution is separated into concentrated solution and refrigerant vapor in a third generator 7. The concentrated solution is absorbed to the refrigerant vapor in the absorber 5. The refrigerant vapor generated from the generators 6, 7 is guided to a condenser 8. The refrigerant of the condenser 8 is sent to the evaporator 1. Warm water for heating is sequentially fed through the absorber 2, 5 and the condenser 8 while such a cycle is repeated, and raised by absorption heat by the absorber 5 and condensation heat by the condenser 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は河川水又は下水処理水等
が保有する熱を駆動熱源として利用する低温熱源利用吸
収ヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature heat source absorption heat pump which uses heat contained in river water or sewage treatment water as a driving heat source.

【0002】[0002]

【従来の技術】従来の河川水又は下水処理水等を熱源水
として利用するヒートポンプは、直火焚き又は蒸気駆動
の単効用サイクルを組んで暖房用温水(40℃〜45℃)を
得ている。
2. Description of the Related Art A conventional heat pump that uses treated water such as river water or sewage as heat source water obtains hot water for heating (40 ° C to 45 ° C) by forming a single-effect cycle of direct fire or steam drive. .

【0003】[0003]

【発明が解決しようとする課題】しかし、燃料電池排熱
等の2温度レベルの排熱(低温水65℃〜75℃、蒸気)を
ヒートポンプの駆動用熱源として利用した場合、従来の
単効用サイクルでは、低温水排熱を高効率で利用するこ
とが不可能なため、蒸気のみを用いて単効用サイクルで
昇温し、さらに低温水排熱は熱交換器を用いて熱回収し
て暖房用温水を得ており、このために蒸気の消費量が多
くなるという欠点がある。
However, when exhaust heat of two temperature levels such as exhaust heat of a fuel cell (low temperature water 65 ° C. to 75 ° C., steam) is used as a heat source for driving a heat pump, a conventional single-effect cycle is used. Since it is not possible to use the low temperature water exhaust heat with high efficiency, the temperature is raised in a single-effect cycle using only steam, and the low temperature water exhaust heat is recovered by using a heat exchanger for heating. Since hot water is obtained, there is a drawback in that steam consumption becomes large.

【0004】本発明の目的は、低温熱源利用吸収ヒート
ポンプにおいて、暖房用温水を得るために使用される蒸
気の消費量を削減することである。
An object of the present invention is to reduce the consumption of steam used for obtaining hot water for heating in an absorption heat pump utilizing a low temperature heat source.

【0005】[0005]

【課題を解決するための手段】本発明に係る低温熱源利
用吸収ヒートポンプの構成は次のとおりである。
The structure of an absorption heat pump utilizing a low temperature heat source according to the present invention is as follows.

【0006】蒸発器、第1吸収器、第1発生器、第1熱
交換器、第2吸収器、第2発生器、第3発生器、凝縮
器、第2熱交換器、第3熱交換器、蒸発器内に通された
熱源水ライン、第1吸収器及び第2吸収器及び凝縮器を
経由する温水とり出しライン、から成ると共に蒸発器に
おいて低温熱源から熱を汲み上げ蒸発した冷媒蒸気を第
1吸収器において吸収溶液に吸収させ、第1吸収器の稀
溶液は溶液ポンプにより第1熱交換器を通し、第1発生
器に導き、低温水により加熱して冷媒蒸気と濃溶液とに
分離し、第1発生器において分離した濃溶液は、第1熱
交換器を通し、第1吸収器に送り、再び冷媒蒸気を吸収
させて第1吸収器と第1発生器の間を循環させ、第1発
生器において発生した冷媒蒸気は第2吸収器において吸
収溶液に吸収させ、第2吸収器の稀溶液は溶液ポンプに
より第2熱交換器、第3熱交換器を経て第2発生器に導
いて蒸気(高温熱源)により加熱して中間濃度溶液と冷
媒蒸気とに分離し、第2発生器において分離した中間濃
度溶液は第3熱交換器を経て第3発生器に導き、第2発
生器において発生した冷媒蒸気により、さらに加熱して
濃溶液と冷媒蒸気とに分離し、第3発生器において分離
した濃溶液は、第2熱交換器を経て第2吸収器に送り、
再び第1発生器より発生した冷媒蒸気を吸収し、吸収溶
液は第2吸収器、第2発生器、第3発生器の順で循環さ
せ、また、第2発生器において発生した冷媒蒸気は第3
発生器に導いて中間溶液を加熱濃縮し、凝縮した後、凝
縮器に導き、第3発生器において発生した冷媒蒸気を凝
縮器に導き、冷却水(ここでは暖房用温水)に潜熱を与
えて凝縮し、凝縮器の冷媒は蒸発器に送り、低温熱源の
熱を汲み上げて蒸発させ、このサイクルを繰り返す間
に、暖房用温水を温水とり出しラインを経由して第1吸
収器、第2吸収器、凝縮器の順に流し、第1吸収器、第
2吸収器においては吸収熱、凝縮器においては凝縮熱を
それぞれ吸収させて昇温し、これを放熱器側に循環させ
るように構成して成る低温熱源利用吸収ヒートポンプ。
Evaporator, first absorber, first generator, first heat exchanger, second absorber, second generator, third generator, condenser, second heat exchanger, third heat exchange And a heat source water line that passes through the evaporator, a hot water take-out line that passes through the first and second absorbers and the condenser, and pumps heat from a low-temperature heat source in the evaporator to remove evaporated refrigerant vapor. The absorbing solution is absorbed in the first absorber, and the dilute solution of the first absorber is passed through the first heat exchanger by the solution pump, is guided to the first generator, and is heated by low temperature water to be a refrigerant vapor and a concentrated solution. The concentrated solution that has been separated and separated in the first generator is passed through the first heat exchanger and sent to the first absorber to absorb the refrigerant vapor again and circulate between the first absorber and the first generator. , The refrigerant vapor generated in the first generator is absorbed by the absorbing solution in the second absorber, The dilute solution of the 2 absorber is guided to the 2nd generator through the 2nd heat exchanger and the 3rd heat exchanger by the solution pump and heated by the steam (high temperature heat source) to be separated into the intermediate concentration solution and the refrigerant vapor, The intermediate concentration solution separated in the second generator is led to the third generator via the third heat exchanger, and further heated by the refrigerant vapor generated in the second generator to be separated into a concentrated solution and a refrigerant vapor, The concentrated solution separated in the third generator is sent to the second absorber via the second heat exchanger,
The refrigerant vapor generated from the first generator is again absorbed, the absorbing solution is circulated in the order of the second absorber, the second generator, and the third generator, and the refrigerant vapor generated in the second generator is Three
Introduce to the generator to heat and concentrate the intermediate solution, condense it, and then to the condenser, to introduce the refrigerant vapor generated in the third generator to the condenser, to give latent heat to the cooling water (here, hot water for heating). After condensation, the refrigerant in the condenser is sent to the evaporator, the heat of the low temperature heat source is pumped up and evaporated, and while this cycle is repeated, the hot water for heating is passed through the hot water extraction line to the first absorber and the second absorber. It is made to flow in the order of the condenser and the condenser, and the absorption heat is absorbed in the first absorber and the second absorber, and the condensation heat is absorbed in the condenser to raise the temperature, which is circulated to the radiator side. An absorption heat pump that uses a low-temperature heat source.

【0007】[0007]

【作用】蒸発器において、熱源水ラインの熱により加熱
されて蒸発した冷媒蒸気は第1吸収器において吸収溶液
に吸収される。第1吸収器の稀溶液は溶液ポンプにより
第1熱交換器を通り、第1発生器に導かれ低温水からの
加熱を受けて冷媒蒸気と濃溶液とに分離される。第1発
生器において分離された濃溶液は、第1熱交換器を通
り、第1吸収器に送られ、再び冷媒蒸気を吸収すること
により第1吸収器と第1発生器の間を循環する。また、
第1発生器において発生した冷媒蒸気は第2吸収器にお
いて吸収溶液に吸収される。第2吸収器の稀溶液は溶液
ポンプにより第2熱交換器、第3熱交換器を経て第2発
生器に導かれ蒸気(高温熱源)による加熱を受けて中間
濃度溶液と冷媒蒸気とに分離される。第2発生器におい
て分離された中間濃度溶液は第3熱交換器を経て第3発
生器に導かれ、第2発生器において発生した冷媒蒸気に
より、さらに加熱され濃溶液と冷媒蒸気とに分離され
る。第3発生器において分離された濃溶液は、第2熱交
換器を経て第2吸収器に送られ再び第1発生器より発生
した冷媒蒸気を吸収することにより、吸収溶液は第2吸
収器、第2発生器、第3発生器の順で循環する。また、
第2発生器において発生した冷媒蒸気は第3発生器に導
かれ中間溶液を加熱濃縮し、凝縮した後、凝縮器に導か
れる。また、第3発生器において発生した冷媒蒸気も凝
縮器に導かれ、冷却水(ここでは暖房用温水)に潜熱を
与えて凝縮する。凝縮器の冷媒は蒸発器に送られ、低温
熱源の熱を汲み上げて蒸発する。上記のようなサイクル
を繰り返す間に、暖房用温水は温水とり出しラインを経
由しながら第1吸収器、第2吸収器、凝縮器の順に流
れ、第1吸収器、第2吸収器においては吸収熱、凝縮器
においては凝縮熱をそれぞれ貰うことにより昇温されて
放熱器内を循環する。
In the evaporator, the refrigerant vapor heated and evaporated by the heat of the heat source water line is absorbed in the absorbing solution in the first absorber. The dilute solution in the first absorber passes through the first heat exchanger by the solution pump, is guided to the first generator, is heated by the low-temperature water, and is separated into the refrigerant vapor and the concentrated solution. The concentrated solution separated in the first generator passes through the first heat exchanger, is sent to the first absorber, and circulates between the first absorber and the first generator by absorbing the refrigerant vapor again. . Also,
The refrigerant vapor generated in the first generator is absorbed by the absorbing solution in the second absorber. The dilute solution in the second absorber is introduced into the second generator via the second heat exchanger and the third heat exchanger by the solution pump and is heated by the steam (high temperature heat source) to be separated into the intermediate concentration solution and the refrigerant vapor. To be done. The intermediate-concentration solution separated in the second generator is introduced into the third generator via the third heat exchanger, and further heated by the refrigerant vapor generated in the second generator to be separated into a concentrated solution and a refrigerant vapor. It The concentrated solution separated in the third generator is sent to the second absorber via the second heat exchanger and again absorbs the refrigerant vapor generated from the first generator, so that the absorbing solution becomes the second absorber, The second generator and the third generator circulate in this order. Also,
The refrigerant vapor generated in the second generator is introduced into the third generator, the intermediate solution is heated and concentrated, condensed, and then introduced into the condenser. Further, the refrigerant vapor generated in the third generator is also guided to the condenser and gives latent heat to the cooling water (here, hot water for heating) to be condensed. The refrigerant in the condenser is sent to the evaporator and pumps up the heat of the low temperature heat source to evaporate. While repeating the above cycle, the hot water for heating flows in the order of the first absorber, the second absorber and the condenser while passing through the hot water take-out line, and is absorbed in the first absorber and the second absorber. In the heat and the condenser, the heat of condensation is received and the temperature of the condenser is raised, and the heat is circulated in the radiator.

【0008】[0008]

【実施例】図1において、1は蒸発器、2は第1吸収
器、3は第1発生器、4は第1熱交換器、5は第2吸収
器、6は第2発生器、7は第3発生器、8は凝縮器、9
は第2熱交換器、10は第3熱交換器、11は蒸発器1内に
通された下水処理水ライン(熱源水)、12は第1吸収器
2、第2吸収器5、凝縮器8を経由する暖房用温水とり
出しライン、13は第1蒸発器1と第2吸収器2間を結ぶ
蒸気ライン、14は第1発生器3と第2吸収器5を結ぶ蒸
気ライン、15は第2発生器6と第3発生器7を結ぶ蒸気
ライン、16は第3発生器7と凝縮器8を結ぶ蒸気ライ
ン、17は第2発生器6内に通された加熱蒸気ラインであ
って、次のサイクルで暖房運転が行われる。
1 is an evaporator, 2 is a first absorber, 3 is a first generator, 4 is a first heat exchanger, 5 is a second absorber, 6 is a second generator, and 7 is a generator. Is a third generator, 8 is a condenser, and 9
Is a second heat exchanger, 10 is a third heat exchanger, 11 is a sewage treatment water line (heat source water) passed through the evaporator 1, 12 is a first absorber 2, a second absorber 5, a condenser A hot water extraction line for heating via 8, 13 is a steam line connecting the first evaporator 1 and the second absorber 2, 14 is a steam line connecting the first generator 3 and the second absorber 5, and 15 is A steam line connecting the second generator 6 and the third generator 7, a steam line 16 connecting the third generator 7 and the condenser 8, and a heating steam line 17 passing through the second generator 6 , Heating operation is performed in the next cycle.

【0009】蒸発器1において熱源水ライン11を経由し
て例えば下水処理水の保有熱を汲み上げ蒸発した冷媒蒸
気は蒸気ライン13から第1吸収器2内に入り、ここにお
いて吸収溶液に吸収される。第1吸収器2の稀溶液は溶
液ポンプにより第1熱交換器4を通り、第1発生器9に
導かれ低温水からの加熱を受けて冷媒蒸気と濃溶液とに
分離される。第1発生器3において分離された濃溶液
は、第1熱交換器4を通り、第1吸収器2に送られ、再
び冷媒蒸気を吸収することにより第1吸収器2と第1発
生器3の間を循環する。また、第1発生器3において発
生した冷媒蒸気は蒸気ライン14を通り第2吸収器5にお
いて吸収溶液に吸収される。第2吸収器5の稀溶液は溶
液ポンプにより第2熱交換器9、第3熱交換器10を経て
第2発生器6に導かれ加熱蒸気ライン17から供給される
蒸気(高温熱源)による加熱を受けて中間濃度溶液と冷
媒蒸気とに分離される。第2発生器6において分離され
た中間濃度溶液は第3熱交換器10を経て第3発生器7に
導かれ、第2発生器6において発生した冷媒蒸気によ
り、さらに加熱され濃溶液と冷媒蒸気とに分離される。
第3発生器7において分離された濃溶液は、第2熱交換
器9を経て第2吸収器5に送られ再び第1発生器3より
発生した冷媒蒸気を吸収することにより、吸収溶液は第
2吸収器5、第2発生器6、第3発生器7の順で循環す
る。また、第2発生器6において発生した冷媒蒸気は蒸
気ライン15から第3発生器7に導かれ中間溶液を加熱濃
縮し、凝縮した後、凝縮器8に導かれる。また、第3発
生器7において発生した冷媒蒸気も蒸気ライン16から凝
縮器8に導かれ、冷却水(ここでは暖房用温水)に潜熱
を与えて凝縮する。凝縮器8の冷媒は蒸発器1に送ら
れ、低温熱源の熱を汲み上げて蒸発する。上記のような
サイクルを繰り返す間に、暖房用温水は第1吸収器2、
第2吸収器5、凝縮器8の順に流れ、第1吸収器2、第
2吸収器5においては吸収熱、凝縮器8においては凝縮
熱をそれぞれ貰うことにより昇温され、温水とり出しラ
イン12を経由して放熱器(図示せず)に導かれる。
In the evaporator 1, for example, the refrigerant vapor that has pumped up the retained heat of the sewage treatment water via the heat source water line 11 and evaporated enters the first absorber 2 from the vapor line 13 where it is absorbed by the absorbing solution. . The diluted solution in the first absorber 2 passes through the first heat exchanger 4 by the solution pump, is guided to the first generator 9, and is heated by the low-temperature water to be separated into the refrigerant vapor and the concentrated solution. The concentrated solution separated in the first generator 3 passes through the first heat exchanger 4 and is sent to the first absorber 2 to absorb the refrigerant vapor again, thereby absorbing the refrigerant vapor and the first absorber 2 and the first generator 3 again. Circulate between. Further, the refrigerant vapor generated in the first generator 3 passes through the vapor line 14 and is absorbed in the absorbing solution in the second absorber 5. The dilute solution in the second absorber 5 is introduced into the second generator 6 via the second heat exchanger 9 and the third heat exchanger 10 by the solution pump and heated by the steam (high-temperature heat source) supplied from the heating steam line 17. Upon receipt, it is separated into an intermediate concentration solution and a refrigerant vapor. The intermediate-concentration solution separated in the second generator 6 is guided to the third generator 7 via the third heat exchanger 10, and is further heated by the refrigerant vapor generated in the second generator 6 and the concentrated solution and the refrigerant vapor. And separated.
The concentrated solution separated in the third generator 7 is sent to the second absorber 5 via the second heat exchanger 9 and again absorbs the refrigerant vapor generated from the first generator 3, whereby the absorbing solution is The two absorbers 5, the second generator 6, and the third generator 7 are circulated in this order. Further, the refrigerant vapor generated in the second generator 6 is introduced from the vapor line 15 to the third generator 7, where the intermediate solution is heated and concentrated, condensed, and then introduced to the condenser 8. Further, the refrigerant vapor generated in the third generator 7 is also guided from the vapor line 16 to the condenser 8 and imparts latent heat to the cooling water (here, hot water for heating) to be condensed. The refrigerant in the condenser 8 is sent to the evaporator 1 and pumps up the heat of the low temperature heat source to evaporate. While repeating the cycle as described above, the warm water for heating receives the first absorber 2,
It flows in the order of the second absorber 5 and the condenser 8, and the first absorber 2 and the second absorber 5 receive the heat of absorption and the condenser 8 receive the heat of condensation, respectively, so that the temperature is raised and the hot water take-out line 12 Through a radiator (not shown).

【0010】次に上記実施例を用いた吸収サイクルの計
算条件例を説明する。 1.初期条件 (1)冷水温度 入口 12 ℃ 出口 9 ℃ (2)加熱用低温温水温度 入口 70 ℃ 出口 65 ℃ (3)加熱用蒸気圧力 5 kg/ cm2 G (4)温水温度 入口 40 ℃ 出口 45 ℃ 2.計算に用いたサイクル条件 初期条件より決定した新しいサイクルのサイクル条件を
以下に示す。
Next, an example of absorption cycle calculation conditions using the above embodiment will be described. 1. Initial conditions (1) Cold water temperature inlet 12 ℃ outlet 9 ℃ (2) Low temperature hot water temperature inlet for heating 70 ℃ outlet 65 ℃ (3) Steam pressure for heating 5 kg / cm 2 G (4) Hot water temperature inlet 40 ℃ outlet 45 ℃ 2. Cycle conditions used for calculation The cycle conditions of the new cycle determined from the initial conditions are shown below.

【0011】 (1)蒸発器 温度 tE 7.5 ℃ 圧力 PE 8 mmHg (2)吸収器 第1 圧力 PE 8 mmHg 第2 圧力 PCE 14 mmHg (3)凝縮器 温度 tC 47 ℃ 圧力 PC 80 mmHg (4)再生器 第1 圧力 PCE 14 mmHg 第2 圧力 PC 80 mmHg 第3 圧力 PC 589 mmHg (5)溶液濃度 低段側 稀溶液 ξL1 60.0 % 濃溶液 ξL2 63.0 % 高段側 稀溶液 ξH1 55.2 % 中間溶液 ξH2 57.0 % 濃溶液 ξH2 58.2 % 3.比較に用いた従来のシステム 単効用吸収ヒートポンプ+低温排熱回収温水熱交換器 4.比較結果 <計算結果例> 100 kcal/hの暖房用温水を得る場合 新しいサイクル 低温水排熱利用量 40.4 kcal/h 蒸気消費量 30.0 kcal/h 従来のシステム 低温水排熱利用量 40.4 kcal/h 蒸気消費量 35.1 kcal/h 蒸気消費量削減率 (35.1−30.0)/35.1×100=14.
5% 以上より、同じ低温水排熱がある場合、従来のシステム
と比較すると蒸気の消費量が15%程度削減可能となっ
た。
(1) Evaporator temperature t E 7.5 ℃ Pressure P E 8 mmHg (2) Absorber 1st pressure P E 8 mmHg 2nd pressure P CE 14 mmHg (3) Condenser temperature t C 47 ℃ Pressure P C 80 mmHg (4) Regenerator 1st pressure P CE 14 mmHg 2nd pressure P C 80 mmHg 3rd pressure P C 589 mmHg (5) Solution concentration Low-stage side diluted solution ξ L1 60.0% Concentrated solution ξ L2 63.0% High stage Side diluted solution ξ H1 55.2% Intermediate solution ξ H2 57.0% Concentrated solution ξ H2 58.2% 3. Conventional system used for comparison Single-effect absorption heat pump + low-temperature waste heat recovery hot water heat exchanger 4. Comparative results <Example of calculation results> When obtaining hot water for heating at 100 kcal / h New cycle Low-temperature water exhaust heat utilization 40.4 kcal / h Steam consumption 30.0 kcal / h Conventional system Low-temperature water exhaust heat utilization 40.4 kcal / h Steam consumption 35.1 kcal / h Steam consumption reduction rate (35.1-30.0) /35.1 × 100 = 14.
From 5% or more, it is possible to reduce steam consumption by about 15% compared to the conventional system when the same low temperature water exhaust heat is present.

【0012】図2に上記新サイクル運転時のデューリン
グ線図を示す。
FIG. 2 shows a Duhring diagram during the above new cycle operation.

【0013】[0013]

【発明の効果】本発明は以上の如き構成と作用により、
第2発生器で消費する蒸気量を約15%程度削減が可能で
ある。
The present invention has the following features and functions.
It is possible to reduce the amount of steam consumed by the second generator by about 15%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るヒートポンプの実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of a heat pump according to the present invention.

【図2】実施例の場合のデューリング線図の説明図。FIG. 2 is an explanatory diagram of a Duhring diagram in the case of an embodiment.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 第1吸収器 3 第1発生器 4 第1熱交換器 5 第2吸収器 6 第2発生器 7 第3発生器 8 凝縮器 9 第2熱交換器 10 第3熱交換器 11 熱源水ライン 12 温水とり出しライン 13、14、15、16 蒸気ライン 17 加熱蒸気ライン 1 Evaporator 2 1st absorber 3 1st generator 4 1st heat exchanger 5 2nd absorber 6 2nd generator 7 3rd generator 8 Condenser 9 2nd heat exchanger 10 3rd heat exchanger 11 Heat source water line 12 Hot water extraction line 13, 14, 15, 16 Steam line 17 Heating steam line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、第1吸収器、第1発生器、第1
熱交換器、第2吸収器、第2発生器、第3発生器、凝縮
器、第2熱交換器、第3熱交換器、蒸発器内に通された
熱源水ライン、第1吸収器及び第2吸収器及び凝縮器を
経由する温水とり出しライン、から成ると共に蒸発器に
おいて低温熱源から熱を汲み上げ蒸発した冷媒蒸気を第
1吸収器において吸収溶液に吸収させ、第1吸収器の稀
溶液は溶液ポンプにより第1熱交換器を通し、第1発生
器に導き、低温水により加熱して冷媒蒸気と濃溶液とに
分離し、第1発生器において分離した濃溶液は、第1熱
交換器を通し、第1吸収器に送り、再び冷媒蒸気を吸収
させて第1吸収器と第1発生器の間を循環させ、第1発
生器において発生した冷媒蒸気は第2吸収器において吸
収溶液に吸収させ、第2吸収器の稀溶液は溶液ポンプに
より第2熱交換器、第3熱交換器を経て第2発生器に導
いて蒸気(高温熱源)により加熱して中間濃度溶液と冷
媒蒸気とに分離し、第2発生器において分離した中間濃
度溶液は第3熱交換器を経て第3発生器に導き、第2発
生器において発生した冷媒蒸気により、さらに加熱して
濃溶液と冷媒蒸気とに分離し、第3発生器において分離
した濃溶液は、第2熱交換器を経て第2吸収器に送り、
再び第1発生器より発生した冷媒蒸気を吸収し、吸収溶
液は第2吸収器、第2発生器、第3発生器の順で循環さ
せ、また、第2発生器において発生した冷媒蒸気は第3
発生器に導いて中間溶液を加熱濃縮し、凝縮した後、凝
縮器に導き、第3発生器において発生した冷媒蒸気を凝
縮器に導き、冷却水(ここでは暖房用温水)に潜熱を与
えて凝縮し、凝縮器の冷媒は蒸発器に送り、低温熱源の
熱を汲み上げて蒸発させ、このサイクルを繰り返す間
に、暖房用温水を温水とり出しラインを経由して第1吸
収器、第2吸収器、凝縮器の順に流し、第1吸収器、第
2吸収器においては吸収熱、凝縮器においては凝縮熱を
それぞれ吸収させて昇温し、これを放熱器側に循環させ
るように構成して成る低温熱源利用吸収ヒートポンプ。
1. An evaporator, a first absorber, a first generator, a first
A heat exchanger, a second absorber, a second generator, a third generator, a condenser, a second heat exchanger, a third heat exchanger, a heat source water line passed through the evaporator, a first absorber and A hot water take-out line passing through a second absorber and a condenser, and pumping heat from a low-temperature heat source in the evaporator to vaporize the evaporated refrigerant vapor into the absorbing solution in the first absorber, thereby diluting the first absorber. Is passed through the first heat exchanger by the solution pump, is guided to the first generator, is heated by low temperature water to be separated into the refrigerant vapor and the concentrated solution, and the concentrated solution separated in the first generator is the first heat exchange. Through the reactor, sent to the first absorber, and again absorbs the refrigerant vapor to circulate between the first absorber and the first generator, and the refrigerant vapor generated in the first generator is absorbed by the second absorber. And the diluted solution in the second absorber is absorbed by the second heat exchanger by the solution pump. After passing through the third heat exchanger to the second generator, it is heated by steam (high temperature heat source) and separated into an intermediate concentration solution and a refrigerant vapor, and the intermediate concentration solution separated in the second generator is the third heat exchanger. To the third generator and further heated by the refrigerant vapor generated in the second generator to separate into a concentrated solution and a refrigerant vapor, and the concentrated solution separated in the third generator is the second heat exchanger. Sent to the second absorber via
The refrigerant vapor generated from the first generator is again absorbed, the absorbing solution is circulated in the order of the second absorber, the second generator, and the third generator, and the refrigerant vapor generated in the second generator is Three
Introduce to the generator to heat and concentrate the intermediate solution, condense it, and then to the condenser, to introduce the refrigerant vapor generated in the third generator to the condenser, to give latent heat to the cooling water (here, hot water for heating). After condensation, the refrigerant in the condenser is sent to the evaporator, and the heat of the low-temperature heat source is pumped up and evaporated. Flow in the order of the condenser and the condenser, and the absorption heat is absorbed in the first absorber and the second absorber, and the condensation heat is absorbed in the condenser to raise the temperature, and this is circulated to the radiator side. An absorption heat pump that uses a low-temperature heat source.
JP04338297A 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source Expired - Fee Related JP3103224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04338297A JP3103224B2 (en) 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04338297A JP3103224B2 (en) 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source

Publications (2)

Publication Number Publication Date
JPH06185827A true JPH06185827A (en) 1994-07-08
JP3103224B2 JP3103224B2 (en) 2000-10-30

Family

ID=18316812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04338297A Expired - Fee Related JP3103224B2 (en) 1992-12-18 1992-12-18 Absorption heat pump using low-temperature heat source

Country Status (1)

Country Link
JP (1) JP3103224B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046622A1 (en) * 2002-09-26 2004-06-03 Ebara Corporation Absorption refrigerating machine
CN110332729A (en) * 2019-06-17 2019-10-15 华电电力科学研究院有限公司 One kind is based on absorption heat pump and organic rankine cycle system and operation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046622A1 (en) * 2002-09-26 2004-06-03 Ebara Corporation Absorption refrigerating machine
US7398656B2 (en) 2002-09-26 2008-07-15 Ebara Corporation Absorption refrigerating machine
US7827821B2 (en) 2002-09-26 2010-11-09 Ebara Corporation Absorption refrigerating machine
CN110332729A (en) * 2019-06-17 2019-10-15 华电电力科学研究院有限公司 One kind is based on absorption heat pump and organic rankine cycle system and operation method
CN110332729B (en) * 2019-06-17 2023-09-05 华电电力科学研究院有限公司 Absorption heat pump and organic Rankine cycle system and operation method

Also Published As

Publication number Publication date
JP3103224B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
CN101482339B (en) Absorption heat pump system and method with energy grade promoted by low temperature exhaust heat
US5584193A (en) Absorption-type refrigeration systems and methods
CN105923676A (en) Efficient solar seawater desalination and air conditioner refrigeration combined operation method and system thereof
CN105783023A (en) Device and method for driving air heater through absorption type heat pump
US4546620A (en) Absorption machine with desorber-resorber
JP3103225B2 (en) Absorption heat pump using low-temperature heat source
CN110553420A (en) Ammonia absorption type refrigerating system based on lithium bromide unit
JP2000257976A (en) Absorption refrigerating machine
JPS5886357A (en) Air-conditioning method utilizing solar heat and its device
JPH06185827A (en) Absorption heat pump using low temperature heat source
US3389573A (en) Refrigerant condensate circuit in multiple-effect absorption refrigeration systems
JP2000205691A (en) Absorption refrigerating machine
JP3093471B2 (en) Absorption heat pump using low-temperature heat source
JP3297720B2 (en) Absorption refrigerator
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
JP2657703B2 (en) Absorption refrigerator
JPH05280825A (en) Absorption heat pump
JP2002098435A (en) Absorption freezer
JP3093472B2 (en) Absorption heat pump using low-temperature heat source
JPS61122428A (en) Floor heater using 2-stage absorbing heat pump
JP2001165523A (en) Absorption water cooler/heater
KR100234062B1 (en) Ammonia absorber cycle
JP2696574B2 (en) Absorption refrigerator
JPH0694964B2 (en) Multi-effect absorption refrigerator
JP3401545B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees