JPH06185825A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPH06185825A
JPH06185825A JP33280892A JP33280892A JPH06185825A JP H06185825 A JPH06185825 A JP H06185825A JP 33280892 A JP33280892 A JP 33280892A JP 33280892 A JP33280892 A JP 33280892A JP H06185825 A JPH06185825 A JP H06185825A
Authority
JP
Japan
Prior art keywords
solution
generator
exhaust gas
temperature generator
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33280892A
Other languages
Japanese (ja)
Other versions
JP2795109B2 (en
Inventor
Toshitaka Takei
俊孝 武居
Kenji Yasuda
賢二 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4332808A priority Critical patent/JP2795109B2/en
Publication of JPH06185825A publication Critical patent/JPH06185825A/en
Application granted granted Critical
Publication of JP2795109B2 publication Critical patent/JP2795109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve energy efficiency of an absorption type refrigerator in which a burning efficiency of a burner is enhanced by efficiently recovering heat of waste gas with dilute solution or condensed refrigerant. CONSTITUTION:A waste gas recovering unit 26 having a heat exchanging tube 25 for recovering heat from waste gas of a burner 22 is provided in a generator 1 having the burner 22, an inlet side of the tube 25 is opened at a discharge side of a solution pump 19, and an outlet side is opened at the generator 1. Dilute solution is passed through the tube 25 to recover heat of the waste gas to lower a temperature of the waste gas, thereby improving a burning efficiency and to improve an energy efficiency of an absorption type refrigerator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷凍機、詳しく
は、バーナーの燃焼により稀溶液から冷媒蒸気を発生さ
せる発生器を備えた吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine, and more particularly to an absorption refrigerating machine having a generator for generating a refrigerant vapor from a dilute solution by burning a burner.

【0002】[0002]

【従来の技術】従来、発生器にバーナーを装備し、この
バーナーの燃焼により稀溶液から冷媒蒸気を発生させる
ようにしたものは、例えば空気調和・衛生工学第64巻
第5号(平成2年5月発行)の吸収冷温水機と電子技術
の欄に開示されている。
2. Description of the Related Art Conventionally, a generator equipped with a burner and generating a refrigerant vapor from a dilute solution by the combustion of the burner is disclosed, for example, in Air Conditioning and Sanitary Engineering Vol. 64, No. 5 (1990). It is disclosed in the column of absorption chiller / heater and electronic technology (issued in May).

【0003】この従来の吸収式冷凍機は、図9に示した
ように、バーナーAを配置した高温発生器B、低温発生
器C、凝縮器D、蒸発器E、吸収器F及び溶液ポンプG
を備え、該ポンプGで前記高温発生器Bに戻す稀溶液
を、低温熱交換器H及び高温熱交換器Iにおいて熱交換
させ、前記高温発生器Bに戻る稀溶液の温度を上昇させ
てから、前記バーナーAの燃焼炎により加熱し、稀溶液
から冷媒蒸発を発生させると共に中間溶液を得るように
している。
As shown in FIG. 9, this conventional absorption refrigerator has a high temperature generator B having a burner A, a low temperature generator C, a condenser D, an evaporator E, an absorber F and a solution pump G.
The dilute solution returned to the high temperature generator B by the pump G is heat-exchanged in the low temperature heat exchanger H and the high temperature heat exchanger I, and the temperature of the dilute solution returned to the high temperature generator B is increased. The combustion flame of the burner A is heated to generate refrigerant evaporation from the dilute solution and obtain an intermediate solution.

【0004】また、前記高温発生器Bには、前記バーナ
ーAの燃焼炎が延びる燃焼室J及び該燃焼室Jに連通す
る排ガス通路K及び排出管Lを設け、前記燃焼炎の排ガ
スを該排ガス管Lを介して大気中に排出している。尚、
図5中、Mは稀溶液管、Nは中間溶液管、Oは濃溶液管
である。
Further, the high temperature generator B is provided with a combustion chamber J in which the combustion flame of the burner A extends, an exhaust gas passage K and an exhaust pipe L communicating with the combustion chamber J, and the exhaust gas of the combustion flame is exhausted from the exhaust gas. It is discharged to the atmosphere through the pipe L. still,
In FIG. 5, M is a dilute solution tube, N is an intermediate solution tube, and O is a concentrated solution tube.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記バーナ
ーAに供給する例えば都市ガスを燃焼させ、この燃焼に
より前記低温及び高温熱交換器H、Iにおける熱交換に
より例えば130℃に昇温した稀溶液を前記高温発生器
Bで加熱している。一方前記バーナーAの前記燃焼室J
から前記排ガス通路Kを経て前記排出管Lから排出され
る排ガス温度は約230℃であって、前記溶液ポンプG
の吐出により前記高温発生器Bに戻る稀溶液の温度(1
30℃)よりかなり高温になっている。
By the way, for example, city gas supplied to the burner A is combusted, and this combustion causes a dilute solution heated to, for example, 130 ° C. by heat exchange in the low-temperature and high-temperature heat exchangers H and I. Is heated by the high temperature generator B. On the other hand, the combustion chamber J of the burner A
The temperature of the exhaust gas discharged from the discharge pipe L through the exhaust gas passage K is about 230 ° C., and the solution pump G
Temperature of the dilute solution returned to the high temperature generator B by discharging (1
It is much higher than 30 ℃.

【0006】所が、前記高温発生器Bでは、前記燃焼室
J及び排ガス通路Kに連通する前記排出管Lを介して高
温の排ガスをそのまま大気中に排出している。このた
め、稀溶液より高温である排ガスの熱を利用することな
く無駄に排出することになり、それだけ吸収冷凍機のエ
ネルギー効率が低下する問題があった。
In the high temperature generator B, however, the high temperature exhaust gas is directly discharged into the atmosphere through the exhaust pipe L communicating with the combustion chamber J and the exhaust gas passage K. Therefore, the heat of the exhaust gas, which has a higher temperature than that of the dilute solution, is wastefully discharged without being used, and there is a problem that the energy efficiency of the absorption refrigerator is reduced accordingly.

【0007】しかして、本発明は、発生器に戻る稀溶液
温度よりかなり高温であるバーナーの排ガスを利用する
ことなく大気中に排出していることに注目したもので、
本発明の主たる目的は、溶液ポンプにより発生器に戻る
稀溶液により排ガスの熱を回収できるようにしてエネル
ギー効率のよい吸収式冷凍機を提供する点にある。ま
た、他の目的は、2重効用式の吸収式冷凍機において低
温発生器で凝縮する冷媒により排ガスの熱を回収できる
ようにする点にある。
Therefore, the present invention focuses on the fact that the exhaust gas of the burner, which is considerably higher than the temperature of the dilute solution returned to the generator, is discharged to the atmosphere without utilizing it.
A main object of the present invention is to provide an energy-efficient absorption refrigerating machine capable of recovering heat of exhaust gas by a dilute solution returned to a generator by a solution pump. Another object is to enable the heat of exhaust gas to be recovered by the refrigerant condensed in the low temperature generator in the double-effect absorption refrigerator.

【0008】[0008]

【課題を解決するための手段】上記目的を得るため、本
発明は、バーナー22をもった発生器1、凝縮器2、蒸
発器4、吸収器5及び溶液ポンプ19を備え、該ポンプ
19により前記吸収器5から稀溶液を前記発生器1に戻
し、前記バーナー22の燃焼により前記発生器1に戻っ
た稀溶液から冷媒蒸気を発生させる吸収式冷凍機であっ
て、前記発生器1に、前記バーナー22の排ガスから熱
を回収する熱交換チューブ25をもつ排ガス熱回収装置
26を設け、この排ガス熱回収装置26の熱交換チュー
ブ25における入口側を前記溶液ポンプ19の吐出側に
接続して、前記溶液ポンプ19から吐出される稀溶液を
流入させると共に、前記熱交換チューブ25の出口側を
前記発生器1に開口させたのである。
In order to achieve the above object, the present invention comprises a generator 1 having a burner 22, a condenser 2, an evaporator 4, an absorber 5 and a solution pump 19. An absorption refrigerator that returns a dilute solution from the absorber 5 to the generator 1 and generates a refrigerant vapor from the dilute solution returned to the generator 1 by combustion of the burner 22. An exhaust gas heat recovery device 26 having a heat exchange tube 25 for recovering heat from the exhaust gas of the burner 22 is provided, and the inlet side of the heat exchange tube 25 of the exhaust gas heat recovery device 26 is connected to the discharge side of the solution pump 19. The dilute solution discharged from the solution pump 19 is introduced, and the outlet side of the heat exchange tube 25 is opened to the generator 1.

【0009】また、バーナー22をもった高温発生器
1、低温発生器1A、凝縮器2、蒸発器4、吸収器5及
び溶液ポンプ19を備え、該ポンプ19により前記吸収
器5から稀溶液を前記高温発生器1に戻し、前記バーナ
ー22の燃焼により前記高温発生器1に戻った稀溶液か
ら冷媒蒸気を発生させると共に、該高温発生器1の冷媒
蒸気を前記低温発生器1Aに流し、前記冷媒蒸気による
加熱により前記高温発生器1から導く中間溶液から冷媒
蒸気を発生させる2重効用式の吸収式冷凍機において、
前記高温発生器1に、前記バーナー22の排ガスから熱
を回収する熱交換チューブ25をもつ排ガス熱回収装置
26を設け、この排ガス熱回収装置26の熱交換チュー
ブ25における入口側を、前記低温発生器1Aの出口側
に接続して、前記低温発生器1Aで凝縮した冷媒の1部
を流入させると共に、前記熱交換チューブ25の出口側
を、前記高温発生器1の冷媒蒸気域又は該冷媒蒸気域に
接続する冷媒蒸気管8に開口させるのである。
Further, a high temperature generator 1 having a burner 22, a low temperature generator 1A, a condenser 2, an evaporator 4, an absorber 5 and a solution pump 19 are provided, and the pump 19 is used to draw a dilute solution from the absorber 5. Refrigerant vapor is generated from the diluted solution returned to the high temperature generator 1 and returned to the high temperature generator 1 by combustion of the burner 22, and the refrigerant vapor of the high temperature generator 1 is caused to flow to the low temperature generator 1A. In a double-effect absorption refrigerating machine for generating a refrigerant vapor from an intermediate solution introduced from the high temperature generator 1 by heating with a refrigerant vapor,
The high temperature generator 1 is provided with an exhaust gas heat recovery device 26 having a heat exchange tube 25 for recovering heat from the exhaust gas of the burner 22, and the inlet side of the exhaust gas heat recovery device 26 is provided with the low temperature generation device. Connected to the outlet side of the reactor 1A to allow a part of the refrigerant condensed in the low temperature generator 1A to flow in, and the outlet side of the heat exchange tube 25 is connected to the refrigerant vapor region of the high temperature generator 1 or the refrigerant vapor. The refrigerant vapor pipe 8 connected to the area is opened.

【0010】また、バーナー22をもった発生器1、凝
縮器2、蒸発器4、吸収器5及び溶液ポンプ19を備
え、該ポンプ19により前記吸収器5から稀溶液を前記
発生器1に戻し、前記バーナー22の燃焼により前記発
生器1に戻った稀溶液から冷媒蒸気を発生させる吸収式
冷凍機において、前記発生器1は、下部に稀溶液チャン
バーS1を設けると共に、該チャンバーS1に連通する
多数の液管80を配列して燃焼室21と排ガス通路23
とを画成し、かつ、前記液管列の上部に濃溶液又は中間
溶液チャンバーS2を形成して、この濃溶液又は中間溶
液チャンバーS2に溶液出口9と冷媒出口7とを連通さ
せる一方、前記液管80のうち、排ガス通路23を画成
する液管80の全部又は1部の入口側を、前記溶液ポン
プ19の吐出側に接続して、前記溶液ポンプ19から吐
出される稀溶液を流入させると共に、出口側を前記濃溶
液又は中間溶液チャンバーS2と稀溶液チャンバーS1
との少なくとも一方に開口させてもよい。
Further, a generator 1 having a burner 22, a condenser 2, an evaporator 4, an absorber 5 and a solution pump 19 are provided, and the pump 19 returns a dilute solution from the absorber 5 to the generator 1. In an absorption refrigerator that generates a refrigerant vapor from a dilute solution returned to the generator 1 by the combustion of the burner 22, the generator 1 is provided with a dilute solution chamber S1 at its lower portion and communicates with the chamber S1. A large number of liquid pipes 80 are arranged to form the combustion chamber 21 and the exhaust gas passage 23.
And a concentrated solution or intermediate solution chamber S2 is formed in the upper part of the liquid pipe array, and the solution outlet 9 and the refrigerant outlet 7 are communicated with the concentrated solution or intermediate solution chamber S2. Of the liquid pipe 80, the whole or a part of the inlet side of the liquid pipe 80 that defines the exhaust gas passage 23 is connected to the discharge side of the solution pump 19 so that the dilute solution discharged from the solution pump 19 flows in. At the same time, the outlet side is provided with the concentrated solution or intermediate solution chamber S2 and the dilute solution chamber S1.
And at least one of them may be opened.

【0011】更に、バーナー22をもった高温発生器1
及び低温発生器1Aをもち、前記高温発生器1から前記
低温発生器1Aに導く中間溶液からも冷媒蒸気を発生さ
せる2重効用式の吸収式冷凍機において、前記高温発生
器1は、下部に稀溶液チャンバーS1を設けると共に、
該チャンバーS1に連通する多数の液管80を配列して
燃焼室21と排ガス通路23とを画成し、かつ、前記液
管列の上部に濃溶液又は中間溶液チャンバーS2を形成
して、この濃溶液又は中間溶液チャンバーS2に溶液出
口9と冷媒出口7とを連通させる一方、前記液管80の
うち、排ガス通路23を画成する液管80の全部又は1
部の入口側を、前記低温発生器1Aの出口側に接続し
て、前記液管80に前記低温発生器1Aで凝縮した冷媒
の1部を流入させると共に、出口側を前記高温発生器1
の冷媒蒸気域又は冷媒蒸気域に接続する冷媒蒸気管8に
開口させてもよい。
Further, a high temperature generator 1 having a burner 22
And a double-effect absorption refrigerating machine having a low-temperature generator 1A and generating refrigerant vapor also from an intermediate solution guided from the high-temperature generator 1 to the low-temperature generator 1A, the high-temperature generator 1 With the dilute solution chamber S1,
A large number of liquid pipes 80 communicating with the chamber S1 are arranged to define the combustion chamber 21 and the exhaust gas passage 23, and a concentrated solution or intermediate solution chamber S2 is formed above the liquid pipe array. While the solution outlet 9 and the refrigerant outlet 7 are communicated with the concentrated solution or intermediate solution chamber S2, all or one of the liquid pipes 80 that define the exhaust gas passage 23 among the liquid pipes 80.
The inlet side of the part is connected to the outlet side of the low temperature generator 1A so that a part of the refrigerant condensed in the low temperature generator 1A flows into the liquid pipe 80, and the outlet side is connected to the high temperature generator 1A.
It may be opened to the refrigerant vapor region or the refrigerant vapor pipe 8 connected to the refrigerant vapor region.

【0012】[0012]

【作用】前記溶液ポンプ19から吐出される稀溶液を前
記熱交換チューブ25に流入させることによりこの熱交
換チューブ25で排ガスの熱を稀溶液に回収することが
できる。従って、排ガスの熱を回収することにより、前
記排ガス温度を例えば230℃を160℃に低下させら
れ、排ガスの熱を回収しない場合に比較して燃焼効率
を、例えば5%アップができるし、また、熱を回収した
だけ吸収式冷凍機のエネルギー効率を向上させることが
できる。
By allowing the diluted solution discharged from the solution pump 19 to flow into the heat exchange tube 25, the heat of the exhaust gas can be recovered into the diluted solution by the heat exchange tube 25. Therefore, by recovering the heat of the exhaust gas, the exhaust gas temperature can be lowered from, for example, 230 ° C. to 160 ° C., and the combustion efficiency can be increased by, for example, 5% as compared with the case where the heat of the exhaust gas is not recovered. The energy efficiency of the absorption refrigerator can be improved only by recovering the heat.

【0013】また、バーナー22をもった高温発生器1
及び低温発生器1Aをもち、前記高温発生器1から前記
低温発生器1Aに導く中間溶液からも冷媒蒸気を発生さ
せる2重効用式の冷凍機において、前記高温発生器1
に、前記バーナー22の排ガスから熱を回収する熱交換
チューブ25をもつ排ガス熱回収装置26を設け、この
排ガス熱回収装置26の熱交換チューブ25における入
口側を、前記低温発生器1Aの出口側に接続して、前記
低温発生器1Aで凝縮した冷媒の全部又は1部を流入さ
せると共に、前記熱交換チューブ25の出口側を、前記
高温発生器1の冷媒蒸気域又は該冷媒蒸気域に接続する
冷媒蒸気管8に開口させた場合、前記低温発生器1で凝
縮した冷媒に排ガスの熱回収をさせられるのであって、
排ガスの熱回収を効率よく行え稀溶液に熱回収する場合
と同様、燃焼効率を向上できるし、またそれだけエネル
ギー効率を向上できるのである。
A high temperature generator 1 having a burner 22
And a double-effect refrigerator having a low-temperature generator 1A and generating refrigerant vapor also from an intermediate solution led from the high-temperature generator 1 to the low-temperature generator 1A.
Is provided with an exhaust gas heat recovery device 26 having a heat exchange tube 25 for recovering heat from the exhaust gas of the burner 22, and the inlet side of the heat exchange tube 25 of the exhaust gas heat recovery device 26 is the outlet side of the low temperature generator 1A. To flow in all or part of the refrigerant condensed in the low temperature generator 1A, and connect the outlet side of the heat exchange tube 25 to the refrigerant vapor region of the high temperature generator 1 or the refrigerant vapor region. When the refrigerant vapor pipe 8 is opened, the refrigerant condensed in the low temperature generator 1 can recover the heat of the exhaust gas,
As in the case of efficiently recovering the heat of the exhaust gas and recovering the heat to the dilute solution, the combustion efficiency can be improved and the energy efficiency can be improved accordingly.

【0014】更に、バーナー22をもった発生器1、凝
縮器2、蒸発器4、吸収器5及び溶液ポンプ19を備
え、該ポンプ19により前記吸収器5から稀溶液を前記
発生器1に戻し、前記バーナー22の燃焼により前記発
生器1に戻った稀溶液から冷媒蒸気を発生させる吸収式
冷凍機において、前記発生器1は、下部に稀溶液チャン
バーS1を設けると共に、該チャンバーS1に連通する
多数の液管80を配列して燃焼室21と排ガス通路23
とを画成し、かつ、前記液管列の上部に濃溶液又は中間
溶液チャンバーS2を形成して、この濃溶液又は中間溶
液チャンバーS2に溶液出口9と冷媒出口7とを連通さ
せる一方、前記液管80のうち、排ガス通路23を画成
する液管80の全部又は1部の入口側を、前記溶液ポン
プ19の吐出側に接続して、前記溶液ポンプ19から吐
出される稀溶液を流入させると共に、出口側を前記濃溶
液又は中間溶液チャンバーS2と稀溶液チャンバーS1
との少なくとも一方に開口させた場合、前記燃焼室21
を画成する液管80により該液管80を通過する稀溶液
を効率よく加熱でき、冷媒蒸気の発生効率を向上できな
がら、しかも、前記溶液ポンプ19から吐出される稀溶
液が前記排ガス通路23を画成する液管80の全部又は
1部を通過するから、この稀溶液により前記排ガス通路
23の排ガスの熱を有効に回収することができ、その上
前記排ガス通路23を画成する液管80を利用して熱回
収するのであるから、特別に熱回収装置を設ける場合に
比較して発生器の小形化が可能となる。
Further, a generator 1 having a burner 22, a condenser 2, an evaporator 4, an absorber 5 and a solution pump 19 are provided, and the pump 19 returns a dilute solution from the absorber 5 to the generator 1. In an absorption refrigerator that generates a refrigerant vapor from a dilute solution returned to the generator 1 by the combustion of the burner 22, the generator 1 is provided with a dilute solution chamber S1 at its lower portion and communicates with the chamber S1. A large number of liquid pipes 80 are arranged to form the combustion chamber 21 and the exhaust gas passage 23.
And a concentrated solution or intermediate solution chamber S2 is formed in the upper part of the liquid pipe array, and the solution outlet 9 and the refrigerant outlet 7 are communicated with the concentrated solution or intermediate solution chamber S2. Of the liquid pipe 80, the whole or a part of the inlet side of the liquid pipe 80 that defines the exhaust gas passage 23 is connected to the discharge side of the solution pump 19 so that the dilute solution discharged from the solution pump 19 flows in. At the same time, the outlet side is provided with the concentrated solution or intermediate solution chamber S2 and the dilute solution chamber S1.
And at least one of them is opened, the combustion chamber 21
The dilute solution passing through the liquid pipe 80 can be efficiently heated by the liquid pipe 80 that defines the flow rate, and the dilute solution discharged from the solution pump 19 can be improved while the efficiency of generating the refrigerant vapor is improved. Since it passes through all or a part of the liquid pipe 80 that defines the exhaust gas, the heat of the exhaust gas in the exhaust gas passage 23 can be effectively recovered by this dilute solution, and the liquid pipe that defines the exhaust gas passage 23 is also formed. Since 80 is used to recover heat, the size of the generator can be made smaller than in the case where a heat recovery device is specially provided.

【0015】更に、バーナー22をもった高温発生器1
及び低温発生器1Aをもち、前記高温発生器1から前記
低温発生器1Aに導く中間溶液からも冷媒蒸気を発生さ
せる2重効用式の冷凍機において、前記高温発生器1
は、下部に稀溶液チャンバーS1を設けると共に、該チ
ャンバーS1に連通する多数の液管80を配列して燃焼
室21と排ガス通路23とを画成し、かつ、前記液管列
の上部に濃溶液又は中間溶液チャンバーS2を形成し
て、この濃溶液又は中間溶液チャンバーS2に溶液出口
9と冷媒出口7とを連通させる一方、前記液管80のう
ち、排ガス通路23を画成する液管80の全部又は1部
の入口側を、前記低温発生器1Aの出口側に接続して、
前記液管80に前記低温発生器1Aで凝縮した冷媒の1
部を流入させると共に、出口側を前記高温発生器1の冷
媒蒸気域又は冷媒蒸気域に接続する冷媒蒸気管8に開口
させる場合、前記低温発生器1Aで凝縮した冷媒に熱回
収をさせられるのであって、稀溶液に熱回収する場合と
同様、稀溶液の加熱効率を向上でき、かつ、発生器を小
形化できながら排ガスの熱回収による燃焼効率の向上が
図れると共に、エネルギー効率を向上できるのである。
Further, a high temperature generator 1 having a burner 22
And a double-effect refrigerator having a low-temperature generator 1A and generating refrigerant vapor also from an intermediate solution led from the high-temperature generator 1 to the low-temperature generator 1A.
Is provided with a dilute solution chamber S1 in the lower part, and a large number of liquid pipes 80 communicating with the chamber S1 are arranged to define the combustion chamber 21 and the exhaust gas passage 23, and a concentrated liquid is provided in the upper part of the liquid pipe row. A solution or intermediate solution chamber S2 is formed and the solution outlet 9 and the refrigerant outlet 7 are communicated with the concentrated solution or intermediate solution chamber S2, while the liquid pipe 80 of the liquid pipe 80 that defines the exhaust gas passage 23 is formed. The whole or a part of the inlet side is connected to the outlet side of the low temperature generator 1A,
1 of the refrigerant condensed in the low temperature generator 1A in the liquid pipe 80
When the outlet side is opened and the outlet side is opened to the refrigerant vapor region of the high temperature generator 1 or the refrigerant vapor pipe 8 connected to the refrigerant vapor region, the refrigerant condensed in the low temperature generator 1A can recover heat. Therefore, as in the case of recovering heat to the dilute solution, the heating efficiency of the dilute solution can be improved, and the combustion efficiency can be improved by the heat recovery of the exhaust gas while the generator can be downsized, and the energy efficiency can be improved. is there.

【0016】[0016]

【実施例】図1は高温発生器1と低温発生器1Aとを備
えた2重効用式の吸収式冷凍機を示しており、前記低温
発生器1Aと凝縮器2とを一つの胴体3内に設けると共
に、蒸発器4と吸収器5とを一つの胴体6に内装してい
る。
FIG. 1 shows a double-effect absorption refrigerator having a high temperature generator 1 and a low temperature generator 1A. The low temperature generator 1A and the condenser 2 are provided in one body 3. And the evaporator 4 and the absorber 5 are incorporated in one body 6.

【0017】また、前記高温発生器1の冷媒蒸気域に開
口する冷媒出口7と前記凝縮器2の冷媒液域との間に、
前記低温発生器1Aを通って凝縮器2に至る冷媒蒸気管
8を設ける一方、前記高温発生器1の溶液出口9と前記
低温発生器1Aとの間に、中間に高温熱交換器10をも
った中間溶液管11を設けると共に、前記低温発生器1
Aの底部と前記吸収器5に設ける散布装置12との間
に、中間に低温熱交換器13をもった濃溶液管14を設
けている。
Between the refrigerant outlet 7 opening in the refrigerant vapor region of the high temperature generator 1 and the refrigerant liquid region of the condenser 2,
A refrigerant vapor pipe 8 leading to the condenser 2 through the low temperature generator 1A is provided, while a high temperature heat exchanger 10 is provided between the solution outlet 9 of the high temperature generator 1 and the low temperature generator 1A. In addition to providing the intermediate solution pipe 11, the low temperature generator 1
A concentrated solution pipe 14 having a low temperature heat exchanger 13 is provided between the bottom portion of A and the spraying device 12 provided in the absorber 5.

【0018】更に、前記凝縮器2と前記蒸発器4との間
には、前記凝縮器2の冷媒液を前記蒸発器4に送る冷媒
液管15を設けると共に、前記蒸発器4の下部側と該蒸
発器4に設ける散布装置16の間には、中間に冷媒ポン
プ17をもった冷媒循環管18を設ける一方、前記吸収
器5の底部には、中間に溶液ポンプ19をもち、前記低
温及び高温熱交換器13、10を通過して前記高温発生
器1に至る稀溶液管20を接続している。
Further, a refrigerant liquid pipe 15 for sending the refrigerant liquid of the condenser 2 to the evaporator 4 is provided between the condenser 2 and the evaporator 4, and is connected to the lower side of the evaporator 4. A refrigerant circulation pipe 18 having a refrigerant pump 17 in the middle is provided between the spraying devices 16 provided in the evaporator 4, while a solution pump 19 is provided in the middle of the absorber 5 at the bottom, and the low temperature and A dilute solution pipe 20 passing through the high temperature heat exchangers 13 and 10 and reaching the high temperature generator 1 is connected.

【0019】また、前記高温発生器1の下部に設ける燃
焼室21には例えば都市ガスを燃料とするバーナー22
が配置され、該バーナー22の上方には前記燃焼室21
に連通する排ガス通路23を設け、この排ガス通路23
には、大気に開放する排出管24を設けて、燃焼排ガス
が前記排出管24から大気に排出されるようにしてお
り、前記バーナー22の燃焼により、前記溶液ポンプ1
9により前記高温発生器1へ戻った稀溶液を加熱して、
冷媒蒸気を発生させると共に中間溶液を得るようにして
いる。
In the combustion chamber 21 provided under the high temperature generator 1, for example, a burner 22 using city gas as fuel is used.
Is disposed above the burner 22.
An exhaust gas passage 23 communicating with the exhaust gas passage 23
Is provided with a discharge pipe 24 open to the atmosphere so that combustion exhaust gas is discharged from the discharge pipe 24 to the atmosphere. The combustion of the burner 22 causes the solution pump 1 to be discharged.
The diluted solution returned to the high temperature generator 1 by 9 is heated,
The refrigerant vapor is generated and an intermediate solution is obtained.

【0020】しかして、図1に示した吸収式冷凍機は、
前記高温発生器1における前記排ガス通路23に、熱交
換チューブ25を蛇行状に屈曲形成した排ガス熱回収装
置26を設け、前記熱交換チューブ25の入口側に、前
記稀溶液管20における前記低温熱交換器13の上流側
から分岐する分岐管27を接続して、該分岐管27を経
て前記溶液ポンプ19から吐出される稀溶液の一部を前
記熱交換チューブ25に流入させると共に、前記熱交換
チューブ25の出口側を前記高温発生器1の溶液溜り2
8に開口させ、該熱交換チューブ25の中を流れる稀溶
液により、前記排ガスの熱を回収できるようにしたもの
である。
Therefore, the absorption refrigerator shown in FIG.
An exhaust gas heat recovery device 26 in which a heat exchange tube 25 is bent in a meandering shape is provided in the exhaust gas passage 23 of the high temperature generator 1, and the low temperature heat in the dilute solution pipe 20 is provided at the inlet side of the heat exchange tube 25. A branch pipe 27 that branches from the upstream side of the exchanger 13 is connected, and a part of the dilute solution discharged from the solution pump 19 through the branch pipe 27 is caused to flow into the heat exchange tube 25 and the heat exchange is performed. The outlet side of the tube 25 is connected to the solution reservoir 2 of the high temperature generator 1.
8 is opened so that the heat of the exhaust gas can be recovered by the dilute solution flowing in the heat exchange tube 25.

【0021】又、図1に示した実施例では、前記熱交換
チューブ25の出口温度を検出する温度センサー31
と、前記稀溶液管20における前記高温発生器1の入口
側における入口温度を検出する温度センサー32とを設
け、また、前記分岐管27の途中に電磁弁33を介装す
ると共に、入力側に前記各温度センサー31、32を接
続し、出力側に前記電磁弁33を接続したコントローラ
34を設け、該コントローラ34により前記電磁弁33
を開閉制御して、前記分岐管27を流れる稀溶液の流量
を調節し、前記熱交換チューブ25の出口温度が、前記
高温発生器1の入口側における入口温度より高くなるよ
うにするのである。
Further, in the embodiment shown in FIG. 1, a temperature sensor 31 for detecting the outlet temperature of the heat exchange tube 25.
And a temperature sensor 32 for detecting an inlet temperature on the inlet side of the high temperature generator 1 in the dilute solution pipe 20, and an electromagnetic valve 33 is provided in the middle of the branch pipe 27 and is connected to the input side. A controller 34, which connects the temperature sensors 31 and 32 and connects the solenoid valve 33 to the output side, is provided, and the solenoid valve 33 is connected by the controller 34.
Is controlled to control the flow rate of the dilute solution flowing through the branch pipe 27 so that the outlet temperature of the heat exchange tube 25 becomes higher than the inlet temperature at the inlet side of the high temperature generator 1.

【0022】以上のように構成することにより、前記分
岐管27を流れる稀溶液により、前記排ガス熱回収装置
26の熱交換チューブ25を介して前記排出管24へ流
れる排ガスの熱を回収することができるのであって、こ
の熱回収により前記バーナー22の燃焼効率を向上で
き、熱を回収しただけ吸収式冷凍機のエネルギー効率
(COP)を向上させることができる。
With the above construction, the heat of the exhaust gas flowing to the exhaust pipe 24 via the heat exchange tube 25 of the exhaust gas heat recovery device 26 can be recovered by the dilute solution flowing in the branch pipe 27. This is because it is possible to improve the combustion efficiency of the burner 22 by this heat recovery, and it is possible to improve the energy efficiency (COP) of the absorption chiller by recovering the heat.

【0023】即ち、前記排ガス熱回収装置26を設けな
いとき前記排ガス温度は通常230℃の高温となってい
るが、前記排ガス熱回収装置26を設けて前記分岐管2
7に取入れる低温(例えば38℃)の稀溶液により排ガ
スの熱を回収することにより、前記排ガス温度を、16
0℃に低下させられるのであって、この排ガス温度の低
下に相当する熱が稀溶液により回収されたことになり、
それだけ燃焼効率が向上し、吸収式冷凍機のエネルギー
効率を向上できるのである。
That is, when the exhaust gas heat recovery device 26 is not provided, the exhaust gas temperature is normally as high as 230 ° C., but the exhaust gas heat recovery device 26 is provided and the branch pipe 2 is provided.
By recovering the heat of the exhaust gas with a low temperature (for example, 38 ° C.) dilute solution taken in 7, the exhaust gas temperature is adjusted to 16
Since it is lowered to 0 ° C., the heat corresponding to the reduction of the exhaust gas temperature is recovered by the dilute solution,
The combustion efficiency is improved, and the energy efficiency of the absorption refrigerator is improved.

【0024】尚、図1に示したように前記コントローラ
34により前記分岐管27を流れる稀溶液の流量を制御
する場合、前記排ガス温度が低下する低下幅は前記分岐
管27を流れる稀溶液の流量に応じて変化することにな
る。
When the flow rate of the dilute solution flowing through the branch pipe 27 is controlled by the controller 34 as shown in FIG. 1, the extent to which the temperature of the exhaust gas decreases is determined by the flow rate of the dilute solution flowing through the branch pipe 27. Will change accordingly.

【0025】更に詳記すると、13Aの都市ガスを燃焼
させるときの燃焼効率は、図8に示すように、排気ガス
温度の室温に対する上昇幅の低下につれて向上するので
あって、前記排ガスのCO2 濃度を6%の状態で13A
の都市ガス(大阪ガス供給)を前記バーナー22に供給
して燃焼させる場合、排ガス温度が230℃のとき燃焼
効率は75%であるのに対し、前記排ガス熱回収装置2
6を設けて、排ガス温度が例えば160℃に低下した場
合、燃焼効率は80%に向上し、約5%の効率アップが
実現したことになるのである。
[0025] Upon further Shoki, combustion efficiency in the combustion of city gas 13A, as shown in FIG. 8, there is to increase with decreasing rise for room temperature of the exhaust gas temperature, the exhaust gas CO 2 13A at 6% concentration
When the city gas (Osaka gas supply) is supplied to the burner 22 and burned, the combustion efficiency is 75% when the exhaust gas temperature is 230 ° C., while the exhaust gas heat recovery device 2
When the exhaust gas temperature is lowered to, for example, 160 ° C. by providing No. 6, the combustion efficiency is improved to 80% and the efficiency is increased by about 5%.

【0026】また、図1に示した実施例では、前記分岐
管27を前記低温熱交換器13の上流側から分岐した
が、図2に示すように前記低温熱交換器13と高温熱交
換器10との間から分岐させてもよいのであって、この
場合、前記分岐管27に稀溶液の一部を流して排ガスの
熱を回収するようにしても前記低温熱交換器13におけ
る稀溶液と濃溶液との熱交換量を一定に保持することが
できる利点がある。更に、図3に示すように前記稀溶液
管20を前記熱交換チューブ25の入口側に接続し、前
記溶液ポンプ19から吐出される全量の稀溶液を前記熱
交換チューブ25に流入させるようにしてもよい。この
場合には、二つの温度センサー31、32や前記電磁弁
33及びコントローラ34などの機器を設ける必要はな
い。
In the embodiment shown in FIG. 1, the branch pipe 27 is branched from the upstream side of the low temperature heat exchanger 13. However, as shown in FIG. 2, the low temperature heat exchanger 13 and the high temperature heat exchanger 13 are separated from each other. It may be branched from between 10 and, in this case, even if a part of the dilute solution is caused to flow through the branch pipe 27 to recover the heat of the exhaust gas, the dilute solution in the low temperature heat exchanger 13 There is an advantage that the amount of heat exchange with the concentrated solution can be kept constant. Further, as shown in FIG. 3, the dilute solution pipe 20 is connected to the inlet side of the heat exchange tube 25 so that all the dilute solution discharged from the solution pump 19 flows into the heat exchange tube 25. Good. In this case, it is not necessary to provide devices such as the two temperature sensors 31 and 32, the solenoid valve 33 and the controller 34.

【0027】また、図1〜図3に示し実施例では、前記
高温発生器1と低温発生器1Aとをもった二重効用の吸
収式冷凍機について説明したが、前記高温発生器1のみ
を用いる単効用の吸収式冷凍機にも適用できる。
In the embodiment shown in FIGS. 1 to 3, a double-effect absorption refrigerator having the high temperature generator 1 and the low temperature generator 1A has been described, but only the high temperature generator 1 is described. It can also be applied to a single-effect absorption refrigerator used.

【0028】更に、図1〜図3に示した各実施例では、
前記溶液ポンプ19により前記高温発生器1に戻る稀溶
液により排ガスの熱を回収するようにしたが、前記高温
発生器1と低温発生器1Aとをもった二重効用の吸収式
冷凍機においては、前記低温発生器1Aで凝縮した冷媒
の一部により排ガスの熱を回収するようにしてもよい。
Further, in each of the embodiments shown in FIGS. 1 to 3,
Although the heat of the exhaust gas is recovered by the dilute solution returned to the high temperature generator 1 by the solution pump 19, in the double-effect absorption refrigerator having the high temperature generator 1 and the low temperature generator 1A, The heat of the exhaust gas may be recovered by a part of the refrigerant condensed in the low temperature generator 1A.

【0029】即ち、図4に示した実施例は、前記冷媒蒸
気管8における前記低温発生器1Aの出口側から分岐す
る冷媒戻し管29を設け、該冷媒戻し管29の先端部を
前記排ガス熱回収装置26における熱交換チューブ25
の入口側に接続すると共に、出口側を前記高温発生器の
冷媒蒸気域に開口させたものである。
That is, in the embodiment shown in FIG. 4, a refrigerant return pipe 29 branching from the outlet side of the low temperature generator 1A in the refrigerant vapor pipe 8 is provided, and the tip of the refrigerant return pipe 29 is connected to the exhaust gas heat. Heat exchange tube 25 in recovery device 26
Is connected to the inlet side and the outlet side is opened to the refrigerant vapor region of the high temperature generator.

【0030】このように前記冷媒戻し管29を設け、前
記低温発生器1Aで凝縮した冷媒の1部を前記熱交換チ
ューブ25に流入させる場合、前記低温発生器1Aの出
口側における前記冷媒蒸気管8を流れる冷媒は、前記低
温発生器1Aにおける熱交換により凝縮し、その温度も
低下しているのであって、この温度の低下した液冷媒の
一部が前記冷媒戻し管29を介して前記熱交換チューブ
25を通過し冷媒蒸気に状態変化して排ガスから熱を回
収することができるのであるから、熱回収を有効に行え
るのである。
When the refrigerant return pipe 29 is thus provided and a part of the refrigerant condensed in the low temperature generator 1A flows into the heat exchange tube 25, the refrigerant vapor pipe on the outlet side of the low temperature generator 1A. The refrigerant flowing through 8 is condensed by heat exchange in the low temperature generator 1A, and the temperature thereof is also lowered. Therefore, a part of the liquid refrigerant whose temperature has dropped is passed through the refrigerant return pipe 29 to generate the heat. Since the heat can be recovered from the exhaust gas by passing through the exchange tube 25 and changing to the refrigerant vapor, the heat can be effectively recovered.

【0031】次に、図1〜図4の実施例に示した前記高
温発生器1の構造を変更した実施例を、図5〜図7に基
づいて説明する。
Next, an embodiment in which the structure of the high temperature generator 1 shown in the embodiment of FIGS. 1 to 4 is modified will be described with reference to FIGS.

【0032】図5〜図7に示した前記高温発生器1は横
長箱形状に形成した発生器本体50を備え、該発生器本
体50の上方には横長円筒状の分離器51を設け、該分
離器51の内部空間と前記発生器本体50の上部空間と
を連絡管52を介して連通させる一方、前記発生器本体
50内の上部及び下部にそれぞれ上下仕切板53・54
を設け、前記発生器本体50内における前記下部仕切板
54で仕切られた下部空間を稀溶液チャンバーS1と
し、また前記上部仕切板53で仕切られた上部空間を中
間溶液チャンバーS2とし、前記発生器本体50の下部
には、図6に示したように前記稀溶液チャンバーS1に
開口する稀溶液入口55を設けている。
The high temperature generator 1 shown in FIGS. 5 to 7 is provided with a generator main body 50 formed in a horizontally long box shape, and a horizontally long cylindrical separator 51 is provided above the generator main body 50. While the internal space of the separator 51 and the upper space of the generator main body 50 are communicated with each other via a connecting pipe 52, upper and lower partition plates 53 and 54 are provided in the upper and lower parts of the generator main body 50, respectively.
And a lower space partitioned by the lower partition plate 54 in the generator main body 50 is a dilute solution chamber S1, and an upper space partitioned by the upper partition plate 53 is an intermediate solution chamber S2. As shown in FIG. 6, a dilute solution inlet 55 opening to the dilute solution chamber S1 is provided at the bottom of the main body 50.

【0033】また、前記分離器51の上部には前記冷媒
蒸気管8に接続する冷媒出口7を、また、下部には前記
中間溶液管11に接続する溶液出口9をそれぞれ設ける
と共に、該分離器51内の中央上部にエリミネータ5
6、また該分離器51内の下部側方には前記連絡管52
と前記溶液出口9とを仕切る縦壁57を設けて、該縦壁
57により前記分離器51内における中間溶液の液面高
さを一定に保つようにしている。また、前記分離器51
の下部と前記発生器本体50との下部との間に中間溶液
戻り通路61を設けると共に、前記分離器51の側部に
は液面制御器62を取付けている。一方、前記発生器本
体50の長さ方向一側部には、送風機71とガスバーナ
ー22とをもった燃焼器72を取付け、該バーナー22
の炎口73を前記発生器本体50における前記上下仕切
板53・54間に開口させて、前記バーナー22の燃焼
炎が前記両仕切板53・54間の中間において前記発生
器本体50の長手方向に噴き出るようにしている。ま
た、前記発生器本体50内における前記上下仕切板53
・54間には、多数の液管80を互いに密に並列配置し
て、この配列により、前記発生器本体50内における前
記上下仕切板53・54間で仕切られた空間内に、前記
バーナー22の燃焼室21と該燃焼室21に連通する排
ガス通路23とを画成している。
Further, a refrigerant outlet 7 connected to the refrigerant vapor pipe 8 is provided in the upper portion of the separator 51, and a solution outlet 9 connected to the intermediate solution pipe 11 is provided in the lower portion. Eliminator 5 in the upper center of 51
6, and the connecting pipe 52 on the lower side of the separator 51.
A vertical wall 57 is provided to separate the solution outlet 9 from the solution outlet 9, and the vertical wall 57 keeps the liquid level of the intermediate solution in the separator 51 constant. In addition, the separator 51
An intermediate solution return passage 61 is provided between the lower part of the separator 51 and the lower part of the generator body 50, and a liquid level controller 62 is attached to the side of the separator 51. On the other hand, a combustor 72 having a blower 71 and a gas burner 22 is attached to one side in the length direction of the generator main body 50.
The flame port 73 of the burner 22 is opened between the upper and lower partition plates 53 and 54 of the generator main body 50 so that the combustion flame of the burner 22 extends in the longitudinal direction of the generator main body 50 in the middle between the partition plates 53 and 54. I'm trying to squirt. Also, the upper and lower partition plates 53 in the generator body 50.
A large number of liquid pipes 80 are densely arranged in parallel with each other between 54, and by this arrangement, the burner 22 is placed in the space partitioned between the upper and lower partition plates 53 and 54 in the generator main body 50. The combustion chamber 21 and the exhaust gas passage 23 communicating with the combustion chamber 21 are defined.

【0034】即ち、図6に示すように、前記燃焼室21
の両側部を画成する側部液管列L1−1と前記バーナー
22の前記炎口73に対向して前記燃焼室21の前部を
画成する前部液管列L1−2とから成る平面視コ字とし
た第1液管列L1により、前記上下仕切板53・54間
に前記燃焼室21を形成すると共に、前記側部液管列L
1−1の外側に、多数の液管80を密に配列した第2液
管列L2を設けて、この第2液管列L2と前記各側部液
管列L1−1との間に第1排ガス通路R1を、また、前
記第2液管列L2と前記発生器本体50の側壁との間に
第2排ガス通路R2を設ける一方、前記第1液管列L1
の前部液管列L1−2の背面側に複数の液管80を密に
配列した第3液管列L3を設けて、前記第2排ガス通路
R2から分岐して流れる二つの第3排ガス通路R3設
け、これら第1及び第2排ガス通路R1、R2と第3排
ガス通路R3とにより、前記燃焼室21から前記第1液
管列L1の前部液管列L1−1の外側方であって、前記
バーナー22の炎口に対向する位置に設ける排ガス出口
58に至る排ガス通路23を形成するのである。尚、各
液管80間にはスペーサ81を介装し隙間を閉鎖してい
る。
That is, as shown in FIG. 6, the combustion chamber 21
And a front part liquid pipe line L1-2 which defines the front part of the combustion chamber 21 so as to face the flame port 73 of the burner 22. The combustion chamber 21 is formed between the upper and lower partition plates 53 and 54 by the first liquid pipe array L1 having a U-shape in plan view, and the side liquid pipe array L is formed.
A second liquid pipe row L2 in which a large number of liquid pipes 80 are densely arranged is provided outside 1-1, and a second liquid pipe row L2 is provided between the second liquid pipe row L2 and each side liquid pipe row L1-1. A first exhaust gas passage R1 is provided, and a second exhaust gas passage R2 is provided between the second liquid pipe array L2 and the side wall of the generator body 50, while the first liquid pipe array L1 is provided.
A third liquid pipe row L3 in which a plurality of liquid pipes 80 are densely arranged is provided on the back side of the front liquid pipe row L1-2, and two third exhaust gas passages that branch off from the second exhaust gas passage R2 and flow. R3 is provided, and these first and second exhaust gas passages R1, R2 and the third exhaust gas passage R3 are located outside the combustion chamber 21 to the front liquid pipe row L1-1 of the first liquid pipe row L1. The exhaust gas passage 23 reaching the exhaust gas outlet 58 provided at a position facing the flame opening of the burner 22 is formed. A spacer 81 is interposed between the liquid pipes 80 to close the gap.

【0035】しかして、第1及び第2液管列L1、L2
を構成する各液管80を前記稀溶液チャンバーS1及び
中間溶液チャンバーS2に連通させ、第1及び第2液管
列L1、L2を通過する稀溶液を加熱することにより、
冷媒蒸気及び中間溶液の必要量がほぼ得られるようにす
る一方、前記第3液管列L3を構成する各液管80の上
端部を前記中間溶液チャンバーS2に開口すると共に、
下端部を連通管60を介して互いに連通させて、この連
通管60の入口60aを図1に示した前記分岐管27の
先端部に接続し、該分岐管27から前記連通管60を経
て各第3液管列L3を構成する各液管80を流れる稀溶
液により、前記燃焼室21から前記排ガス通路23を経
て前記排ガス出口58へ流れる排ガスの熱を回収できる
ようにするのである。
Thus, the first and second liquid pipe rows L1 and L2
By connecting each of the liquid pipes 80 constituting the above to the dilute solution chamber S1 and the intermediate solution chamber S2, and heating the dilute solution passing through the first and second liquid pipe rows L1 and L2,
While making it possible to substantially obtain the required amounts of the refrigerant vapor and the intermediate solution, the upper ends of the liquid pipes 80 forming the third liquid pipe line L3 are opened to the intermediate solution chamber S2, and
The lower end portions are made to communicate with each other through the communication pipe 60, the inlet 60a of the communication pipe 60 is connected to the tip end portion of the branch pipe 27 shown in FIG. 1, and each branch pipe 27 is passed through the communication pipe 60. The heat of the exhaust gas flowing from the combustion chamber 21 through the exhaust gas passage 23 to the exhaust gas outlet 58 can be recovered by the dilute solution flowing through each liquid pipe 80 forming the third liquid pipe array L3.

【0036】以上のように液管80を用いて前記燃焼室
21及び排ガス通路23を画成した前記高温発生器1を
用いる場合、前記稀溶液入口55から前記稀溶液チャン
バーS1に流入する稀溶液は、前記第1及び第2液管列
L1、L2を構成する液管80を通って前記中間溶液チ
ャンバーS2に流入するのであるが、前記第1液管列L
1を構成する液管80を通過する稀溶液は、前記バーナ
ー22の燃焼炎により、また、前記第2液管列L2を構
成する液管80を通過する稀溶液は、前記第1及び前記
第2排ガス通路R1、R2を通る燃焼ガスによりそれぞ
れ加熱されると共に、前記第3液管列L3を構成する液
管80を前記連通管60から前記中間溶液チャンバーS
2へ通過する稀溶液も、前記排ガス通路23から前記排
ガス出口58へ流れる排ガスにより加熱されるのであ
り、また、前記バーナー22の燃焼により発生する冷媒
蒸気は、前記分離器51の前記エリミネータ56を通過
し、前記冷媒出口7を経て前記冷媒蒸気管8に流入する
一方、冷媒蒸気の発生により濃縮された中間溶液は前記
分離器51の前記縦壁57をオーバーフローし前記溶液
出口9から中間溶液管11に流入するのである。
When the high temperature generator 1 in which the combustion chamber 21 and the exhaust gas passage 23 are defined by using the liquid pipe 80 as described above is used, the dilute solution flowing from the dilute solution inlet 55 into the dilute solution chamber S1 is used. Flows into the intermediate solution chamber S2 through the liquid pipes 80 forming the first and second liquid pipe lines L1 and L2.
The dilute solution passing through the liquid pipe 80 constituting the No. 1 is due to the combustion flame of the burner 22, and the dilute solution passing through the liquid pipe 80 constituting the second liquid pipe line L2 is While being heated by the combustion gas that passes through the two exhaust gas passages R1 and R2, the liquid pipe 80 that forms the third liquid pipe line L3 is connected from the communication pipe 60 to the intermediate solution chamber S.
The dilute solution passing to the second exhaust gas is also heated by the exhaust gas flowing from the exhaust gas passage 23 to the exhaust gas outlet 58, and the refrigerant vapor generated by the combustion of the burner 22 passes through the eliminator 56 of the separator 51. While passing through and flowing into the refrigerant vapor pipe 8 via the refrigerant outlet 7, the intermediate solution concentrated by the generation of the refrigerant vapor overflows the vertical wall 57 of the separator 51 and flows from the solution outlet 9 to the intermediate solution pipe. It flows into 11.

【0037】このように、多数の液管80により前記燃
焼室21及び排ガス通路23を画成することにより、前
記稀溶液チャンバーS1から前記中間溶液チャンバーS
2へ流れる稀溶液を第1及び第2液管列L1、L2を構
成する液管80で効率よく加熱することができると共
に、前記第3液管列L3を構成する液管80を通過する
稀溶液は、前記排ガス通路23から前記排ガス出口58
へ流れる排ガスにより加熱され、この加熱によって排ガ
スの熱を回収できるのである。尚、排ガスの熱回収で冷
媒蒸気を発生し、中間濃度になる中間溶液は、前記中間
溶液チャンバーS2へ流入するし、また、前記稀溶液へ
の排ガスの熱回収により、前記排ガス出口58から排出
される排ガスの温度は、前記第3液管列L3を設けない
ときに比較して低温になる。
As described above, the combustion chamber 21 and the exhaust gas passage 23 are defined by a large number of liquid pipes 80, so that the diluted solution chamber S1 to the intermediate solution chamber S are formed.
The rare solution flowing to No. 2 can be efficiently heated by the liquid pipes 80 forming the first and second liquid pipe lines L1 and L2, and the rare solution passing through the liquid pipes 80 forming the third liquid pipe line L3. The solution flows from the exhaust gas passage 23 to the exhaust gas outlet 58.
It is heated by the exhaust gas flowing to and the heat of the exhaust gas can be recovered by this heating. It should be noted that an intermediate solution that generates a refrigerant vapor by heat recovery of exhaust gas and has an intermediate concentration flows into the intermediate solution chamber S2, and is exhausted from the exhaust gas outlet 58 by heat recovery of exhaust gas to the dilute solution. The temperature of the generated exhaust gas becomes lower than that when the third liquid pipe line L3 is not provided.

【0038】以上のように、前記溶液ポンプ19により
前記分岐管27から前記第3液管列L3の各液管80に
流す稀溶液により、前記排ガス出口58へ流出する排ガ
スの熱を回収できるのであって、この熱回収により燃焼
効率を向上でき、吸収式冷凍機のCOPを向上させるこ
とができるし、しかも、前記第3液管列L3の各液管8
0で排ガスの熱を回収することができるから、特別な熱
回収装置を用いなくとも熱回収を有効に行えるのであっ
て、前記高温発生器1を大形にすることなく排ガスの熱
回収を行うことができる。
As described above, the heat of the exhaust gas flowing out to the exhaust gas outlet 58 can be recovered by the dilute solution flowing from the branch pipe 27 to each liquid pipe 80 of the third liquid pipe line L3 by the solution pump 19. Therefore, the heat recovery can improve the combustion efficiency, improve the COP of the absorption chiller, and can further improve the liquid pipes 8 of the third liquid pipe line L3.
Since the heat of the exhaust gas can be recovered at 0, the heat recovery can be effectively performed without using a special heat recovery device, and the heat recovery of the exhaust gas is performed without increasing the size of the high temperature generator 1. be able to.

【0039】また、図5〜図7では、前記第3液管列L
3を構成する各液管80の上端部を前記中間溶液チャン
バーS2に開口する一方、下端部を前記分岐管27に連
通させたが逆にしてもよい。即ち、前記第3液管列L3
を構成する各液管80の上端部を前記分岐管27に連通
させると共に、下端部を前記稀溶液チャンバーS1に開
口させてもよい。更に、図4と同様に前記冷媒蒸気管8
における前記低温発生器1Aの出口側から分岐する前記
冷媒戻し管29に連通させ、前記低温発生器1Aから前
記冷媒戻し管29に流入する冷媒が前記第3液管列L3
を構成する液管80を通過するようにしてもよい。
Further, in FIGS. 5 to 7, the third liquid pipe line L is used.
Although the upper end of each liquid pipe 80 constituting 3 is opened to the intermediate solution chamber S2, and the lower end is communicated with the branch pipe 27, it may be reversed. That is, the third liquid pipe array L3
The upper end of each liquid pipe 80 constituting the above may be communicated with the branch pipe 27, and the lower end may be opened to the dilute solution chamber S1. Further, as in FIG. 4, the refrigerant vapor pipe 8 is
In the refrigerant return pipe 29 branched from the outlet side of the low temperature generator 1A, the refrigerant flowing from the low temperature generator 1A into the refrigerant return pipe 29 is the third liquid pipe line L3.
May pass through the liquid pipe 80 constituting the above.

【0040】更に、以上の説明では、前記第3液管列L
3を構成する液管80を前記分岐管27や前記冷媒戻し
管29に連通させたが、前記第3液管列L3を構成する
液管80の他に、前記第1液管列L1を構成する前記側
部液管列L1−1と共に前記第1排ガス通路R1を画成
する前記第2液管列L2を構成する液管80の一部を、
前記分岐管27や前記冷媒戻し管29に連通させてもよ
いし、全部を連通させてもよい。また、この場合前記分
岐管27や前記冷媒戻し管29に連通させた液管80の
出口側は前記中間溶液チャンバーS2に開口させてもよ
いし、また前記稀溶液チャンバーS1に開口させてもよ
い。換言すると、前記排ガス通路23を画成する液管8
0の一部又は全部を通過する稀溶液又は冷媒により排ガ
スの熱を回収するようにしてもよいのである。
Furthermore, in the above description, the third liquid pipe array L is used.
Although the liquid pipe 80 forming the third pipe is communicated with the branch pipe 27 and the refrigerant return pipe 29, the first liquid pipe line L1 is formed in addition to the liquid pipe 80 forming the third liquid pipe line L3. A part of the liquid pipe 80 forming the second liquid pipe line L2 that defines the first exhaust gas passage R1 together with the side liquid pipe line L1-1.
The branch pipe 27 and the refrigerant return pipe 29 may be communicated with each other, or all of them may be communicated with each other. In this case, the outlet side of the liquid pipe 80 communicating with the branch pipe 27 and the refrigerant return pipe 29 may be opened to the intermediate solution chamber S2 or the dilute solution chamber S1. . In other words, the liquid pipe 8 that defines the exhaust gas passage 23.
The heat of the exhaust gas may be recovered by a dilute solution or a refrigerant that passes through part or all of zero.

【0041】尚、図5〜図7に示した実施例では、2重
効用吸収式冷凍機に適用したもので前記発生器本体50
内の上部に上仕切板53を設けて前記中間溶液チャンバ
ーS2を形成したが、前記低温発生器1Aを設けない単
効用の吸収式冷凍機に適用してもよい。この場合、前記
中間溶液チャンバーS2が濃溶液で満たされる濃溶液チ
ャンバーとなるのである。
In the embodiment shown in FIGS. 5 to 7, the generator main body 50 is applied to a double-effect absorption refrigerator.
Although the upper partition plate 53 is provided in the upper part of the inside to form the intermediate solution chamber S2, it may be applied to a single-effect absorption refrigerator without the low temperature generator 1A. In this case, the intermediate solution chamber S2 is a concentrated solution chamber filled with a concentrated solution.

【0042】[0042]

【発明の効果】以上説明したように、本発明は、バーナ
ー22をもった発生器1、凝縮器2、蒸発器4、吸収器
5及び溶液ポンプ19を備え、該ポンプ19により前記
吸収器5から稀溶液を前記発生器1に戻し、前記バーナ
ー22の燃焼により前記発生器1に戻った稀溶液から冷
媒蒸気を発生させる吸収式冷凍機であって、前記発生器
1に、前記バーナー22の排ガスから熱を回収する熱交
換チューブ25をもつ排ガス熱回収装置26を設け、こ
の排ガス熱回収装置26の熱交換チューブ25における
入口側を前記溶液ポンプ19の吐出側に接続して、前記
溶液ポンプ19から吐出される稀溶液を流入させると共
に、前記熱交換チューブ25の出口側を前記発生器1に
開口させたから、前記溶液ポンプ19から吐出される稀
溶液を前記熱交換チューブ25に流入させることによ
り、この稀溶液に排ガスの熱を回収することができ、排
ガスの熱回収を有効に行うことができ、また、稀溶液に
より排ガスの熱を回収することにより、前記排ガス温度
を有効に低下させられ、排ガスの熱を回収しない場合に
比較して燃焼効率を向上でき、また、熱を回収しただけ
吸収式冷凍機のエネルギー効率を向上させることができ
る。
As described above, the present invention comprises the generator 1 having the burner 22, the condenser 2, the evaporator 4, the absorber 5 and the solution pump 19, and the pump 19 allows the absorber 5 to operate. Is an absorption refrigerator that generates a refrigerant vapor from the diluted solution returned to the generator 1 by the combustion of the burner 22 by returning the diluted solution from the burner 22 to the generator 1. An exhaust gas heat recovery device 26 having a heat exchange tube 25 for recovering heat from the exhaust gas is provided, and the inlet side of the heat exchange tube 25 of the exhaust gas heat recovery device 26 is connected to the discharge side of the solution pump 19 so that the solution pump The diluted solution discharged from the solution pump 19 is introduced and the outlet side of the heat exchange tube 25 is opened to the generator 1. Therefore, the diluted solution discharged from the solution pump 19 is heat-exchanged. By flowing into the tube 25, the heat of the exhaust gas can be recovered in this dilute solution, the heat of the exhaust gas can be effectively recovered, and the heat of the exhaust gas can be recovered by the dilute solution. The temperature can be effectively lowered, the combustion efficiency can be improved as compared with the case where the heat of the exhaust gas is not recovered, and the energy efficiency of the absorption chiller can be improved only by recovering the heat.

【0043】また、バーナー22をもった高温発生器1
及び低温発生器1Aをもち、前記高温発生器1から前記
低温発生器1Aに導く中間溶液からも冷媒蒸気を発生さ
せる2重効用式の冷凍機において、前記高温発生器1
に、前記バーナー22の排ガスから熱を回収する熱交換
チューブ25をもつ排ガス熱回収装置26を設け、この
排ガス熱回収装置26の熱交換チューブ25における入
口側を、前記低温発生器1Aの出口側に接続して、前記
低温発生器1Aで凝縮した冷媒の1部を流入させると共
に、前記熱交換チューブ25の出口側を、前記高温発生
器1の冷媒蒸気域又は該冷媒蒸気域に接続する冷媒蒸気
管8に開口させた場合、前記低温発生器1で凝縮した冷
媒に排ガスの熱回収をさせられるのであって、排ガスの
熱回収を効率よく行え稀溶液に熱回収する場合と同様、
燃焼効率を向上できるし、またそれだけエネルギー効率
を向上できるのである。
Further, the high temperature generator 1 having the burner 22
And a double-effect refrigerator having a low-temperature generator 1A and generating refrigerant vapor also from an intermediate solution led from the high-temperature generator 1 to the low-temperature generator 1A.
Is provided with an exhaust gas heat recovery device 26 having a heat exchange tube 25 for recovering heat from the exhaust gas of the burner 22, and the inlet side of the heat exchange tube 25 of the exhaust gas heat recovery device 26 is the outlet side of the low temperature generator 1A. To allow a part of the refrigerant condensed in the low temperature generator 1A to flow in, and to connect the outlet side of the heat exchange tube 25 to the refrigerant vapor region of the high temperature generator 1 or the refrigerant vapor region. When the steam pipe 8 is opened, the refrigerant condensed in the low temperature generator 1 can recover the heat of the exhaust gas, so that the heat recovery of the exhaust gas can be efficiently performed and the heat recovery to the dilute solution can be performed.
Combustion efficiency can be improved, and energy efficiency can be improved accordingly.

【0044】更に、バーナー22をもった発生器1、凝
縮器2、蒸発器4、吸収器5及び溶液ポンプ19を備
え、該ポンプ19により前記吸収器5から稀溶液を前記
発生器1に戻し、前記バーナー22の燃焼により前記発
生器1に戻った稀溶液から冷媒蒸気を発生させる吸収式
冷凍機において、前記発生器1は、下部に稀溶液チャン
バーS1を設けると共に、該チャンバーS1に連通する
多数の液管80を配列して燃焼室21と排ガス通路23
とを画成し、かつ、前記液管列の上部に濃溶液又は中間
溶液チャンバーS2を形成して、この濃溶液又は中間溶
液チャンバーS2に溶液出口9と冷媒出口7とを連通さ
せる一方、前記液管80のうち、排ガス通路23を画成
する液管80の全部又は1部の入口側を、前記溶液ポン
プ19の吐出側に接続して、前記溶液ポンプ19から吐
出される稀溶液を流入させると共に、出口側を前記濃溶
液又は中間溶液チャンバーS2と稀溶液チャンバーS1
との少なくとも一方に開口させた場合、前記燃焼室21
を画成する液管80により該液管80を通過する稀溶液
を効率よく加熱でき、冷媒蒸気の発生効率を向上できな
がら、しかも、前記溶液ポンプ19から吐出される稀溶
液が前記排ガス通路23を画成する液管80の全部又は
1部を通過するから、この稀溶液により前記排ガス通路
23の排ガスの熱を有効に回収することができ、その上
前記排ガス通路23を画成する液管80を利用して熱回
収するのであるから、特別に熱回収装置を設ける場合に
比較して発生器の小形化が可能となる。
Further, a generator 1 having a burner 22, a condenser 2, an evaporator 4, an absorber 5 and a solution pump 19 are provided, and the pump 19 returns a dilute solution from the absorber 5 to the generator 1. In an absorption refrigerator that generates a refrigerant vapor from a dilute solution returned to the generator 1 by the combustion of the burner 22, the generator 1 is provided with a dilute solution chamber S1 at its lower portion and communicates with the chamber S1. A large number of liquid pipes 80 are arranged to form the combustion chamber 21 and the exhaust gas passage 23.
And a concentrated solution or intermediate solution chamber S2 is formed in the upper part of the liquid pipe array, and the solution outlet 9 and the refrigerant outlet 7 are communicated with the concentrated solution or intermediate solution chamber S2. Of the liquid pipe 80, the whole or a part of the inlet side of the liquid pipe 80 that defines the exhaust gas passage 23 is connected to the discharge side of the solution pump 19 so that the dilute solution discharged from the solution pump 19 flows in. At the same time, the outlet side is provided with the concentrated solution or intermediate solution chamber S2 and the dilute solution chamber S1.
And at least one of them is opened, the combustion chamber 21
The dilute solution passing through the liquid pipe 80 can be efficiently heated by the liquid pipe 80 that defines the flow rate, and the dilute solution discharged from the solution pump 19 can be improved while the efficiency of generating the refrigerant vapor is improved. Since it passes through all or a part of the liquid pipe 80 that defines the exhaust gas, the heat of the exhaust gas in the exhaust gas passage 23 can be effectively recovered by this dilute solution, and the liquid pipe that defines the exhaust gas passage 23 is also formed. Since 80 is used to recover heat, the size of the generator can be made smaller than in the case where a heat recovery device is specially provided.

【0045】また、バーナー22をもった高温発生器1
及び低温発生器1Aをもち、前記高温発生器1から前記
低温発生器1Aに導く中間溶液からも冷媒蒸気を発生さ
せる2重効用式の冷凍機において、前記高温発生器1
は、下部に稀溶液チャンバーS1を設けると共に、該チ
ャンバーS1に連通する多数の液管80を配列して燃焼
室21と排ガス通路23とを画成し、かつ、前記液管列
の上部に濃溶液又は中間溶液チャンバーS2を形成し
て、この濃溶液又は中間溶液チャンバーS2に溶液出口
9と冷媒出口7とを連通させる一方、前記液管80のう
ち、排ガス通路23を画成する液管80の全部又は1部
の入口側を、前記低温発生器1Aの出口側に接続して、
前記液管80に前記低温発生器1Aで凝縮した冷媒の1
部を流入させると共に、出口側を前記高温発生器1の冷
媒蒸気域又は冷媒蒸気域に接続する冷媒蒸気管8に開口
させる場合、前記低温発生器1Aで凝縮した冷媒に熱回
収をさせられるのであって、稀溶液に熱回収する場合と
同様、稀溶液の加熱効率を向上でき、かつ、発生器を小
形化できながら排ガスの熱回収による燃焼効率の向上が
図れると共に、エネルギー効率を向上できるのである。
Also, a high temperature generator 1 having a burner 22
And a double-effect refrigerator having a low-temperature generator 1A and generating refrigerant vapor also from an intermediate solution led from the high-temperature generator 1 to the low-temperature generator 1A.
Is provided with a dilute solution chamber S1 in the lower part, and a large number of liquid pipes 80 communicating with the chamber S1 are arranged to define the combustion chamber 21 and the exhaust gas passage 23, and a concentrated liquid is provided in the upper part of the liquid pipe row. A solution or intermediate solution chamber S2 is formed and the solution outlet 9 and the refrigerant outlet 7 are communicated with the concentrated solution or intermediate solution chamber S2, while the liquid pipe 80 of the liquid pipe 80 that defines the exhaust gas passage 23 is formed. The whole or a part of the inlet side is connected to the outlet side of the low temperature generator 1A,
1 of the refrigerant condensed in the low temperature generator 1A in the liquid pipe 80
When the outlet side is opened and the outlet side is opened to the refrigerant vapor region of the high temperature generator 1 or the refrigerant vapor pipe 8 connected to the refrigerant vapor region, the refrigerant condensed in the low temperature generator 1A can recover heat. Therefore, as in the case of recovering heat to the dilute solution, the heating efficiency of the dilute solution can be improved, and the combustion efficiency can be improved by the heat recovery of the exhaust gas while the generator can be downsized, and the energy efficiency can be improved. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸収式冷凍機の配管系統図である。FIG. 1 is a piping system diagram of an absorption refrigerator according to the present invention.

【図2】第2実施例を示す配管系統図である。FIG. 2 is a piping system diagram showing a second embodiment.

【図3】第3実施例を示す配管系統図である。FIG. 3 is a piping system diagram showing a third embodiment.

【図4】第4実施例を示す配管系統図である。FIG. 4 is a piping system diagram showing a fourth embodiment.

【図5】高温発生器の一部切欠側面図である。FIG. 5 is a partially cutaway side view of the high temperature generator.

【図6】図5におけるX−X線断面図である。6 is a sectional view taken along line XX in FIG.

【図7】図5におけるY−Y線断面図である。7 is a cross-sectional view taken along the line YY in FIG.

【図8】排ガス温度上昇に応じて変化する燃焼効率を示
すグラフである。
FIG. 8 is a graph showing the combustion efficiency that changes according to the rise in exhaust gas temperature.

【図9】従来例を示す配管系統図である。FIG. 9 is a piping system diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 (高温)発生器 1A 低温発生器 2 凝縮器 4 蒸発器 5 吸収器 7 冷媒出口 8 冷媒蒸気管 9 溶液出口 19 溶液ポンプ 20 稀溶液管 21 燃焼室 22 バーナー 23 排ガス通路 25 熱交換チューブ 26 排ガス熱回収装置 29 冷媒戻し管 S1 稀溶液チャンバー S2 中間(濃)溶液チャンバー 1 (High temperature) generator 1A Low temperature generator 2 Condenser 4 Evaporator 5 Absorber 7 Refrigerant outlet 8 Refrigerant vapor pipe 9 Solution outlet 19 Solution pump 20 Dilute solution pipe 21 Combustion chamber 22 Burner 23 Exhaust gas passage 25 Heat exchange tube 26 Exhaust gas Heat recovery device 29 Refrigerant return pipe S1 Dilute solution chamber S2 Intermediate (concentrated) solution chamber

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バーナー22をもった発生器1、凝縮器
2、蒸発器4、吸収器5及び溶液ポンプ19を備え、該
ポンプ19により前記吸収器5から稀溶液を前記発生器
1に戻し、前記バーナー22の燃焼により前記発生器1
に戻った稀溶液から冷媒蒸気を発生させる吸収式冷凍機
であって、前記発生器1に、前記バーナー22の排ガス
から熱を回収する熱交換チューブ25をもつ排ガス熱回
収装置26を設け、この排ガス熱回収装置26の熱交換
チューブ25における入口側を前記溶液ポンプ19の吐
出側に接続して、前記溶液ポンプ19から吐出される稀
溶液を流入させると共に、前記熱交換チューブ25の出
口側を前記発生器1に開口させていることを特徴とする
吸収式冷凍機。
1. A generator 1 having a burner 22, a condenser 2, an evaporator 4, an absorber 5 and a solution pump 19 are provided, and a diluted solution is returned from the absorber 5 to the generator 1 by the pump 19. , The generator 1 by combustion of the burner 22
Which is an absorption refrigerating machine for generating refrigerant vapor from the diluted solution returned to the above, wherein the generator 1 is provided with an exhaust gas heat recovery device 26 having a heat exchange tube 25 for recovering heat from the exhaust gas of the burner 22, The inlet side of the heat exchange tube 25 of the exhaust gas heat recovery device 26 is connected to the discharge side of the solution pump 19 to allow the dilute solution discharged from the solution pump 19 to flow in, and the outlet side of the heat exchange tube 25 to be connected. An absorption chiller characterized in that the generator 1 is opened.
【請求項2】 バーナー22をもった高温発生器1、低
温発生器1A、凝縮器2、蒸発器4、吸収器5及び溶液
ポンプ19を備え、該ポンプ19により前記吸収器5か
ら稀溶液を前記高温発生器1に戻し、前記バーナー22
の燃焼により前記高温発生器1に戻った稀溶液から冷媒
蒸気を発生させると共に、該高温発生器1の冷媒蒸気を
前記低温発生器1Aに流し、前記冷媒蒸気による加熱に
より前記高温発生器1から導く中間溶液から冷媒蒸気を
発生させる2重効用式の吸収式冷凍機であって、前記高
温発生器1に、前記バーナー22の排ガスから熱を回収
する熱交換チューブ25をもつ排ガス熱回収装置26を
設け、この排ガス熱回収装置26の熱交換チューブ25
における入口側を、前記低温発生器1Aの出口側に接続
して、前記低温発生器1Aで凝縮した冷媒の1部を流入
させると共に、前記熱交換チューブ25の出口側を、前
記高温発生器1の冷媒蒸気域又は該冷媒蒸気域に接続す
る冷媒蒸気管8に開口させていることを特徴とする2重
効用式の吸収式冷凍機。
2. A high temperature generator 1 having a burner 22, a low temperature generator 1A, a condenser 2, an evaporator 4, an absorber 5 and a solution pump 19 are provided, and the pump 19 is used to draw a dilute solution from the absorber 5. Returning to the high temperature generator 1, the burner 22
The refrigerant vapor is generated from the dilute solution returned to the high temperature generator 1 by the combustion of, and the refrigerant vapor of the high temperature generator 1 is caused to flow to the low temperature generator 1A, and the refrigerant vapor heats the high temperature generator 1 from the high temperature generator 1. A dual-effect absorption refrigerating machine that generates a refrigerant vapor from an intermediate solution to be guided, and an exhaust gas heat recovery device 26 having a heat exchange tube 25 for recovering heat from the exhaust gas of the burner 22 in the high temperature generator 1. And a heat exchange tube 25 of the exhaust gas heat recovery device 26.
Is connected to the outlet side of the low temperature generator 1A to allow a part of the refrigerant condensed in the low temperature generator 1A to flow in, and the outlet side of the heat exchange tube 25 is connected to the high temperature generator 1A. The double-effect absorption refrigerating machine is characterized in that it is opened to the refrigerant vapor region of or the refrigerant vapor pipe 8 connected to the refrigerant vapor region.
【請求項3】 バーナー22をもった発生器1、凝縮器
2、蒸発器4、吸収器5及び溶液ポンプ19を備え、該
ポンプ19により前記吸収器5から稀溶液を前記発生器
1に戻し、前記バーナー22の燃焼により前記発生器1
に戻った稀溶液から冷媒蒸気を発生させる吸収式冷凍機
であって、前記発生器1は、下部に稀溶液チャンバーS
1を設けると共に、該チャンバーS1に連通する多数の
液管80を配列して燃焼室21と排ガス通路23とを画
成し、かつ、前記液管列の上部に濃溶液又は中間溶液チ
ャンバーS2を形成して、この濃溶液又は中間溶液チャ
ンバーS2に溶液出口9と冷媒出口7とを連通させる一
方、前記液管80のうち、排ガス通路23を画成する液
管80の全部又は1部の入口側を、前記溶液ポンプ19
の吐出側に接続して、前記溶液ポンプ19から吐出され
る稀溶液を流入させると共に、出口側を前記濃溶液又は
中間溶液チャンバーS2と稀溶液チャンバーS1との少
なくとも一方に開口させていることを特徴とする吸収式
冷凍機。
3. A generator 1 having a burner 22, a condenser 2, an evaporator 4, an absorber 5 and a solution pump 19 are provided, and the pump 19 returns a dilute solution from the absorber 5 to the generator 1. , The generator 1 by combustion of the burner 22
Is an absorption refrigerator that generates a refrigerant vapor from the diluted solution returned to the above, wherein the generator 1 has a diluted solution chamber S at the bottom.
1, a plurality of liquid pipes 80 communicating with the chamber S1 are arranged to define a combustion chamber 21 and an exhaust gas passage 23, and a concentrated solution or intermediate solution chamber S2 is provided above the liquid pipe array. The solution outlet 9 and the refrigerant outlet 7 are formed to communicate with the concentrated solution or intermediate solution chamber S2, and all or a part of the liquid pipe 80 that defines the exhaust gas passage 23 of the liquid pipe 80 is formed. On the side, the solution pump 19
Of the concentrated solution or intermediate solution chamber S2 and the diluted solution chamber S1 while allowing the diluted solution discharged from the solution pump 19 to flow in. A characteristic absorption refrigerator.
【請求項4】 バーナー22をもった高温発生器1、低
温発生器1A、凝縮器2、蒸発器4、吸収器5及び溶液
ポンプ19を備え、該ポンプ19により前記吸収器5か
ら稀溶液を前記高温発生器1に戻し、前記バーナー22
の燃焼により前記高温発生器1に戻った稀溶液から冷媒
蒸気を発生させると共に、該高温発生器1の冷媒蒸気を
前記低温発生器1Aに流し、前記冷媒蒸気による加熱に
より前記高温発生器1から導く中間溶液から冷媒蒸気を
発生させる2重効用式の吸収式冷凍機であって、前記高
温発生器1は、下部に稀溶液チャンバーS1を設けると
共に、該チャンバーS1に連通する多数の液管80を配
列して燃焼室21と排ガス通路23とを画成し、かつ、
前記液管列の上部に濃溶液又は中間溶液チャンバーS2
形成して、この濃溶液又は中間溶液チャンバーS2に溶
液出口9と冷媒出口7とを連通させる一方、前記液管8
0のうち、排ガス通路23を画成する液管80の全部又
は1部の入口側を、前記低温発生器1Aの出口側に接続
して、前記液管80に前記低温発生器1Aで凝縮した冷
媒の1部を流入させると共に、出口側を前記高温発生器
1の冷媒蒸気域又は冷媒蒸気域に接続する冷媒蒸気管8
に開口させていることを特徴とする2重効用式の吸収式
冷凍機。
4. A high temperature generator 1 having a burner 22, a low temperature generator 1A, a condenser 2, an evaporator 4, an absorber 5 and a solution pump 19 are provided, and the pump 19 is used to draw a dilute solution from the absorber 5. Returning to the high temperature generator 1, the burner 22
The refrigerant vapor is generated from the dilute solution returned to the high temperature generator 1 by the combustion of, and the refrigerant vapor of the high temperature generator 1 is caused to flow to the low temperature generator 1A, and the refrigerant vapor heats the high temperature generator 1 from the high temperature generator 1. A double-effect absorption refrigerator that generates a refrigerant vapor from an intermediate solution to be introduced. The high temperature generator 1 is provided with a dilute solution chamber S1 at a lower portion thereof and a large number of liquid pipes 80 communicating with the chamber S1. Are arranged to define the combustion chamber 21 and the exhaust gas passage 23, and
A concentrated solution or intermediate solution chamber S2 is provided above the liquid tube array.
When the solution outlet 9 and the refrigerant outlet 7 are communicated with the concentrated solution or intermediate solution chamber S2 after being formed,
Of 0, all or a part of the inlet side of the liquid pipe 80 that defines the exhaust gas passage 23 is connected to the outlet side of the low temperature generator 1A, and condensed in the liquid pipe 80 by the low temperature generator 1A. Refrigerant vapor pipe 8 for flowing in a part of the refrigerant and connecting the outlet side to the refrigerant vapor region of the high temperature generator 1 or the refrigerant vapor region.
A double-effect absorption chiller characterized by being opened in the.
JP4332808A 1992-12-14 1992-12-14 Absorption refrigerator Expired - Fee Related JP2795109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4332808A JP2795109B2 (en) 1992-12-14 1992-12-14 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4332808A JP2795109B2 (en) 1992-12-14 1992-12-14 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH06185825A true JPH06185825A (en) 1994-07-08
JP2795109B2 JP2795109B2 (en) 1998-09-10

Family

ID=18259036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4332808A Expired - Fee Related JP2795109B2 (en) 1992-12-14 1992-12-14 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2795109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7694673B2 (en) * 2005-12-19 2010-04-13 Brown Jr Joseph Francis Combination heat recovery—solar collector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194254U (en) * 1984-06-04 1985-12-24 矢崎総業株式会社 Direct-fired double-effect absorption refrigerator
JPH01244257A (en) * 1988-03-25 1989-09-28 Yazaki Corp Double-effect absorption water cooler/heater
JPH04214155A (en) * 1990-12-03 1992-08-05 Hitachi Ltd Absorption type refrigerating machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194254U (en) * 1984-06-04 1985-12-24 矢崎総業株式会社 Direct-fired double-effect absorption refrigerator
JPH01244257A (en) * 1988-03-25 1989-09-28 Yazaki Corp Double-effect absorption water cooler/heater
JPH04214155A (en) * 1990-12-03 1992-08-05 Hitachi Ltd Absorption type refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7694673B2 (en) * 2005-12-19 2010-04-13 Brown Jr Joseph Francis Combination heat recovery—solar collector

Also Published As

Publication number Publication date
JP2795109B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US4548048A (en) Direct fired absorption machine flue gas recuperator
US4570456A (en) Direct fired heat exchanger
US6675608B2 (en) Absorption cold or hot water generating machine
US20040187511A1 (en) Absorption chiller-heater
JP2795109B2 (en) Absorption refrigerator
KR20190128830A (en) Heat Recovery System for Boiler
JP3935610B2 (en) Heat exchanger and absorption refrigerator
KR100472623B1 (en) Drink hot water heating apparatus of absorption refrigerator
CN100549562C (en) The absorption refrigerating machine of triple function
JP6180152B2 (en) Absorption refrigerator
KR100473566B1 (en) Combustive region improved slim desorber
JP2586242B2 (en) Absorption refrigerator generator
KR200161048Y1 (en) Regenerator of absorption type refrigerator
JP3331363B2 (en) Absorption refrigerator
RU2715073C1 (en) Combined cycle gas turbine with cooled diffuser
JPS5812507B2 (en) Hybrid type absorption heat pump
JP4169318B2 (en) Exhaust gas type absorption chiller / heater
JP3754108B2 (en) Absorption chiller / heater regenerator
KR19990001571A (en) Hot water supply system of absorption type air conditioner.
JP2000249423A (en) Absorption refrigerating machine
JP3938712B2 (en) High-temperature regenerator and absorption chiller / heater
JP3965485B2 (en) Absorption chiller / heater using waste heat
KR100449973B1 (en) Double effect model absorbtion type refrigerator
JP2000199601A (en) Boiler
JPH04116356A (en) High temperature regenerator for absorption refrigerating machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees