JPH0618539A - Method an device for detecting speed of traveling object - Google Patents

Method an device for detecting speed of traveling object

Info

Publication number
JPH0618539A
JPH0618539A JP4174616A JP17461692A JPH0618539A JP H0618539 A JPH0618539 A JP H0618539A JP 4174616 A JP4174616 A JP 4174616A JP 17461692 A JP17461692 A JP 17461692A JP H0618539 A JPH0618539 A JP H0618539A
Authority
JP
Japan
Prior art keywords
speed
image
moving
blood
moving object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4174616A
Other languages
Japanese (ja)
Inventor
Shinichiro Matsumoto
紳一郎 松本
Nobuhiko Okitsu
伸彦 興津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4174616A priority Critical patent/JPH0618539A/en
Publication of JPH0618539A publication Critical patent/JPH0618539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To obtain a method and device by which the moving speed of an obscurely observed traveling object can be measured in a noncontacting state by using a simple technique. CONSTITUTION:The concentration tracing curve g(x) 11 is found along a line Y in the moving direction of blood corpuscles from an obscure blood-flow picture 9 of (m) in magnification taken from a blood vessel through which a traveling object moves at a shutter speed (t) and a one-dimensional Fourier spectrum G(f) is found from the curve g(x) 11. Since the spectrum G(f) periodically indicates minimum points f1, f2,... in a cycle Fc against a spatial frequency (f), the speed Vy of the blood flow along the line Y is calculated from the cycle Fc, magnification (m), shutter speed (t), number of samples at the time of Fourier transformation, and calibrating value. It is also possible to calculate the speed distribution V in the blood flow and the flow rate of the blood flow from the speed Vy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動物体の速度検出方
法および装置に関し、詳しくは残像により像がぼやけて
観察される移動物体および流動体の移動速度を非接触測
定する方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for detecting the velocity of a moving object, and more particularly to a method and a device for non-contact measurement of the moving velocity of a moving object and a fluid which are observed in an image blurred due to an afterimage. Is.

【0002】[0002]

【従来の技術】運動する物体、または固気混合体や固液
混合体から成る流動体の移動速度に関して、これまで多
種多様な方法が提案されている。それらのうち、物体の
移動方向や速度、あるいは流動体の速度ベクトルの分布
を乱してしまうプローグなどの挿入のない非接触な測定
法には、物体の照射した電磁気、光、超音波などの変化
量をセンサで捕らえ、速度やその他の物理量に変換する
方法(例えば、特開平1−124437号公報、特開平
2−105064号公報)と、速度を計測したい部位を
ビデオまたは写真撮影し、画像処理によって速度を求め
る方法がある。
2. Description of the Related Art A wide variety of methods have been proposed so far for the moving speed of a moving object or a fluid composed of a solid-gas mixture or a solid-liquid mixture. Among them, non-contact measurement methods without insertion such as a prog that disturbs the moving direction and speed of the object or the distribution of the velocity vector of the fluid include electromagnetic waves, light, ultrasonic waves, etc. irradiated by the object. A method of capturing the amount of change with a sensor and converting it into a speed or other physical quantity (for example, JP-A-1-124437 and JP-A-2-105064), and a portion of which the speed is to be measured is video or photographed to obtain an image. There is a method of obtaining the speed by processing.

【0003】画像処理によって速度を求める方法には、
連続撮影により任意の枚数の画像を取り込み、移動する
物体、あるいは物体や流動体上の特徴点が取り込んだ画
像の中で移動した距離と連続画像の時間間隔によって移
動する物体や流動体の速度を求める方法(例えば特開平
2−257931号公報)や、予想される移動方向に沿
って任意の距離で観測点を二点設け、観測点の時系列信
号の相互相関長から移動する物体が二点を通過する際の
時間間隔を求め、速度を算出する方法(例えばK.Yazaw
a,J.Umetani,H.Minamitani,T.Ooshio,E.Sekizuka 「濃度
勾配法を用いた微小血管内の二次元速度分布の計測」 信
学論(D-11),J73-D11,2,276/282((Feb.1990)、T.Horikos
hi,H.Minamitani,S.Yazawa,T.Ooshio,M.Thutiya 「動画
像処理によるリンパ流速の自動計測」 信学論(D),J71-D,
5,917/925(1988))などがある。これらの測定方法では、
物体の輪郭や流動体の特徴点を鮮明にとらえるために高
速ビデオあるいは高速シャッターによる画像の取り込み
が行われる。
A method for obtaining speed by image processing is
An arbitrary number of images are captured by continuous shooting, and the moving distance of the moving object or the image in which the feature points on the object or the fluid are captured and the speed of the moving object or fluid depending on the time interval of the continuous image are displayed. The method of obtaining (for example, JP-A-2-257931) or two observation points at arbitrary distances along the expected movement direction, and two moving objects from the cross-correlation length of the time-series signal at the observation points How to calculate the speed by finding the time interval when passing through (eg K.Yazaw
a, J.Umetani, H.Minamitani, T.Ooshio, E.Sekizuka "Measurement of two-dimensional velocity distribution in microvessels using the concentration gradient method" Theory of theology (D-11), J73-D11, 2,276 / 282 ((Feb.1990), T. Horikos
hi, H.Minamitani, S.Yazawa, T.Ooshio, M.Thutiya "Automatic measurement of lymph flow velocity by moving image processing" IPSJ (D), J71-D,
5,917 / 925 (1988)). With these measurement methods,
Images are captured by high-speed video or high-speed shutter in order to clearly capture the contours of objects and the characteristic points of fluids.

【0004】[0004]

【発明が解決しようとする課題】先に挙げたような移動
物体の速度測定方法はその非侵襲性により、医療分野に
おいて血流やリンパ流の測定に使用されることが多い
が、測定対象の大きさや形、色、粘性などの物性により
充分な速度情報を得られない場合がある。画像処理によ
る速度測定方法は、測定対象の大きさを撮像系により変
えられるため、測定可能な対象物の大きさに限度のある
センサによる測定方法よりも利用範囲が広く、速度ベク
トルも絶対値で求められる利点がある。しかしながら、
この方法も速度の算出に複数枚の静止画像情報が必要な
ため、処理系にかかる負荷が大きい点や、高速ビデオに
より画像を取り込む場合は長時間の連続測定が難しい
点、測定システムの撮像系と処理系を連動させにくい点
など問題点も多い。
The velocity measuring method of a moving object as mentioned above is often used for measuring blood flow or lymph flow in the medical field due to its non-invasive nature, but In some cases, sufficient speed information may not be obtained due to physical properties such as size, shape, color, and viscosity. Since the speed measurement method by image processing can change the size of the measurement object by the imaging system, it has a wider range of use than the measurement method using a sensor with a limited size of the measurable object, and the speed vector is also an absolute value. There are advantages to be sought. However,
This method also requires multiple pieces of still image information to calculate the speed, which imposes a heavy load on the processing system, and it is difficult to continuously measure for a long time when capturing images with high-speed video. There are many problems such as the difficulty of linking the processing system with the processing system.

【0005】そこで本発明は、簡単な手法で速度の絶対
値を求め、速度分布の作成を可能とし、さらに長時間の
測定も可能とする新しい画像処理による移動物体の速度
検出方法および装置を提供することを目的とするもので
ある。また、本発明は画像処理の手法を単純化し、高速
撮影の必要性をなくし、撮像系の単純化、操作の簡単化
を計ることをも目的としている。
Therefore, the present invention provides a method and apparatus for detecting the velocity of a moving object by new image processing, which makes it possible to obtain the absolute value of the velocity by a simple method, create a velocity distribution, and also measure for a long time. The purpose is to do. Another object of the present invention is to simplify the image processing method, eliminate the need for high-speed shooting, simplify the imaging system, and simplify the operation.

【0006】[0006]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、(1)移動する物
体を所定倍率(m)、所定シャッタースピード(t)で
撮影する工程、(2)前記工程(1)で撮影した画像の
移動方向に対する濃度追跡曲線を得る工程、(3)前記
濃度追跡曲線を一次元フーリエ変換し、空間周波数分布
を得る工程、(4)前記空間周波数分布の中に周期的に
現れる極小点の周期(Fc)を得る工程、(5)撮影画
像の前記所定倍率(m)、前記所定シャッタースピード
(t)および前記極小点の周期(Fc)から移動物体の
移動速度(V)を求める工程からなる移動物体の速度検
出方法、または、移動物体を所定倍率(m)と所定シャ
ッタースピード(t)で撮影する撮影手段と、該撮影手
段で撮影された画像の移動方向の濃度追跡曲線から空間
周波数分布を求めて、その極小点の周期(Fc)を算出
する手段と、該極小点周期算出手段の算出値(Fc)と
前記撮影手段の所定倍率(m)と所定シャッタースピー
ド(t)から移動物体の移動速度(V)を算出する手段
とからなる移動物体の速度検出装置である。
The above objects of the present invention can be achieved by the following constitutions. That is, (1) a step of photographing a moving object at a predetermined magnification (m) and a predetermined shutter speed (t), (2) a step of obtaining a density tracking curve in the moving direction of the image photographed in the step (1), 3) One-dimensional Fourier transform of the concentration tracking curve to obtain a spatial frequency distribution, (4) Obtaining a cycle (Fc) of minimum points that periodically appear in the spatial frequency distribution, (5) Photographed image Of the moving speed of the moving object (V) from the predetermined magnification (m), the predetermined shutter speed (t), and the cycle (Fc) of the minimum points. A spatial frequency distribution is obtained from a photographing means for photographing at a predetermined magnification (m) and a predetermined shutter speed (t), and a density tracking curve in the moving direction of the image photographed by the photographing means, and the period (F) of the minimum point is obtained. ), And means for calculating the moving speed (V) of the moving object from the calculated value (Fc) of the minimum point period calculation means, the predetermined magnification (m) of the photographing means, and the predetermined shutter speed (t). Is a speed detection device for a moving object.

【0007】本発明において、移動物体が流動体であれ
ば、その流量が算出できることは明らかである。本測定
法の具体的な態様としては、画像取り込みのための撮像
管を、例えば一般のTVカメラあるいはシャッター付き
ビデオカメラとし、従来技術の上記画像処理方法とは異
なる手法による速度を求める。
In the present invention, if the moving object is a fluid, it is clear that the flow rate can be calculated. As a specific mode of the present measuring method, for example, a general TV camera or a video camera with a shutter is used as an image pickup tube for capturing an image, and the speed is calculated by a method different from the above-described image processing method of the prior art.

【0008】[0008]

【作用】移動する物体をTVカメラ、またはビデオカメ
ラにより画像として取り込む際には、一画面の取り込み
時間内にも物体は移動しているために、それに伴う輝度
の変化が積算され、残像が尾を引いた状態の、ぼけ画像
として取り込まれる。画像のぼけかたは物体の移動速度
に依存しており、移動方向に沿ってフーリエ変換により
空間周波数解析をおこなうと、残像のない静止画像の空
間周波数分布から特定の周期で周波数成分の抜け落ちた
分布が得られる。そのため、抜け落ちた周波数と取り込
み時間、フーリエ変換の際の標本数、撮影の際の較正値
から速度の絶対値が求められる。
When a moving object is captured as an image by a TV camera or a video camera, since the object is moving within the capturing time of one screen, the change in the brightness accompanying it is integrated and the afterimage remains. Is captured as a blurred image in the state where is drawn. The blurring of an image depends on the moving speed of an object.When spatial frequency analysis is performed along the moving direction by Fourier transform, the distribution in which frequency components are missing at a specific cycle from the spatial frequency distribution of a still image with no afterimage can get. Therefore, the absolute value of the velocity is obtained from the missing frequency and the acquisition time, the number of samples in the Fourier transform, and the calibration value in the photographing.

【0009】本発明の速度検出方法では前記特開平2−
257931号記載の方法のように高速ビデオカメラ等
による静止画像を使用する方法と異なり、一枚のぼけ画
像から物体の移動速度を算出できるので、一般のTVカ
メラが使用でき、撮像系の単純化、操作の簡単化が図れ
る。またビデオカメラによる履歴を残したい場合も長時
間の録画が可能となる。また、カメラシャッター付きの
ものにすることで非常に速いものから遅いものまで幅広
い速度測定が可能となる。
In the speed detecting method of the present invention, the above-mentioned Japanese Unexamined Patent Publication No.
Unlike the method using a still image by a high-speed video camera or the like like the method described in No. 257931, the moving speed of an object can be calculated from a single blurred image, so that a general TV camera can be used, and the imaging system can be simplified. The operation can be simplified. In addition, it is possible to record for a long time when it is desired to keep the history by the video camera. Also, by using a camera shutter, it is possible to measure a wide range of speeds, from very fast to slow.

【0010】本発明の速度検出方法による画像処理の流
れは、移動物体の移動方向の濃度追跡曲線の取り込み、
一次元フーリエ変換、周期的極小値の取り出し、速度の
算出で終了するが、処理範囲を設定することで速度分布
を求めることも可能であり、対象が流動体ならば流量も
算出も可能である。
The flow of image processing by the velocity detecting method of the present invention is as follows:
It ends with one-dimensional Fourier transform, extraction of the local minimum value, and calculation of the velocity, but it is also possible to obtain the velocity distribution by setting the processing range, and if the target is a fluid, the flow rate can also be calculated. .

【0011】[0011]

【実施例】以下、本発明の一実施例である微小循環系血
流速測定システムを例にして添付図面に基づき本実施例
を説明する。図1は測定システムの装置ブロック図であ
る。まず、資料とする微小循環系血管部を光学顕微鏡1
上に固定し焦点を合わせる。顕微鏡1で得られる血管像
をシャッターコントローラ3で制御されるTVカメラあ
るいはCCDカメラからなる撮影装置2で撮影する。シ
ャッターの開放時間に比例した量のぼけ画像をビデオレ
コーダ4で記録、あるいは直接A/D変換器5を通し画
像処理装置6に送り、計測をおこない、結果をモニタ7
に出力する。なお、モニタ7はビデオ録画された画像や
測定のために取り込んだ画像の再生用にも利用される。
The present embodiment will be described below with reference to the accompanying drawings by taking a microcirculatory blood flow velocity measuring system as an embodiment of the present invention as an example. FIG. 1 is a device block diagram of the measurement system. First, the optical microscope 1
Fix on top and focus. A blood vessel image obtained by the microscope 1 is photographed by the photographing device 2 which is a TV camera or a CCD camera controlled by the shutter controller 3. A blurred image of an amount proportional to the shutter opening time is recorded by the video recorder 4 or directly sent to the image processing device 6 through the A / D converter 5 to perform measurement, and the result is monitored 7
Output to. The monitor 7 is also used for playing back video-recorded images and images captured for measurement.

【0012】図2と図3は上記撮像系により取り込まれ
た微小血管画像から速度分布を算出するまでの流れ図で
ある。図2(a)は血球が移動中の血管をシャッタース
ピードtで撮影した血管画像である。画像は撮像管に依
存した画素数と濃度階調値からなり、血管画像には血管
壁8と血球が移動によりぼやけ、縞状に見える血流像9
とその他体組織10が観察できる。
2 and 3 are flow charts for calculating the velocity distribution from the micro blood vessel image captured by the image pickup system. FIG. 2A is a blood vessel image obtained by photographing a blood vessel in which blood cells are moving at a shutter speed t. The image is composed of the number of pixels and the density gradation value depending on the image pickup tube, and the blood vessel image and the blood flow image 9 appear to be striped in the blood vessel image because the blood vessel wall 8 and blood cells are blurred.
And other body tissues 10 can be observed.

【0013】画像処理装置6内での画像処理の手順とし
て、まず血管壁8を抽出し、血流像9を囲むように処理
ウインドゥ(Ys−Ye)を定める。そして以後の処理
はこのウインドゥ内でおこなう。次に、血管内の血球の
移動方向に沿って列Yの濃度追跡曲線g(x)を求め
る。列Yの濃度追跡曲線g(x)は、具体的には処理ウ
インドゥ(Ys−Ye)内の一方の端において血管を横
切る方向に任意の始点となる画素を定め、その画素から
血球が移動し、血流像9がぼやけて見える方向に画素と
その濃度値を他方の端まで一画素づつ追跡してゆくこと
で求めることができる。図2(a)のように血管が直線
的に伸びており、血流に乱れが見られない血流画像の場
合、列Yは画像の水平方向の全画素数に等しい画素数か
らなる直線となる。また、列の総数は処理ウインドゥ内
の画像垂直方向の画素数と等しい。図2(b)に示すよ
うに、列Yの濃度追跡曲線g(x)11が求まると、横
軸xは列Yの各画素位置を示し、縦軸は列Yの各画素位
置における画素濃度値を示す。
As a procedure of image processing in the image processing apparatus 6, first, the blood vessel wall 8 is extracted, and the processing window (Ys-Ye) is determined so as to surround the blood flow image 9. And the subsequent processing is performed in this window. Next, the concentration tracking curve g (x) of the row Y is obtained along the moving direction of blood cells in the blood vessel. Specifically, the concentration tracking curve g (x) of the row Y defines a pixel as an arbitrary starting point in the direction crossing the blood vessel at one end in the processing window (Ys-Ye), and a blood cell moves from the pixel. , The blood flow image 9 can be obtained by tracing the pixels and their density values pixel by pixel to the other end in the direction in which the blood flow image 9 appears blurred. In the case of a blood flow image in which blood vessels are linearly stretched as shown in FIG. 2A and the blood flow is not disturbed, the row Y is a straight line having a number of pixels equal to the total number of pixels in the horizontal direction of the image. Become. The total number of columns is equal to the number of pixels in the vertical direction of the image in the processing window. As shown in FIG. 2B, when the density tracking curve g (x) 11 of the column Y is obtained, the horizontal axis x indicates each pixel position of the column Y, and the vertical axis indicates the pixel density at each pixel position of the column Y. Indicates a value.

【0014】次いで、濃度追跡曲線g(x)11より図
3(a)の一次元フーリエスペクトラムG(f)12を
求める。一次元フーリエスペクトラムG(f)12はg
(x)11を離散フーリエ変換式(1)に代入して求め
られる。 G(f)=Σg(x)exp(−2jπxf/n) (1) ただし、jは虚数である。
Next, the one-dimensional Fourier spectrum G (f) 12 of FIG. 3 (a) is obtained from the density tracking curve g (x) 11. One-dimensional Fourier spectrum G (f) 12 is g
It is obtained by substituting (x) 11 into the discrete Fourier transform formula (1). G (f) = Σg (x) exp (−2jπxf / n) (1) where j is an imaginary number.

【0015】一般的なフリーエ変換は任意の波形を、そ
れに含まれる幾つかの異なる周波数の正弦波に分解し
て、その振幅を表すものであるが、離散フリーエ変換は
これの近似であり、有限な離散値をとる関数に対して使
用され、本実施例ではデータは有限であり、かつ、8ビ
ットフレームメモリを用いた場合、0〜255までの離
散値であるため離散フリーエ変換が使用できる。
The general Friere transform decomposes an arbitrary waveform into several sine waves of different frequencies contained in it, and expresses its amplitude. The discrete Fliere transform is an approximation of this. This is used for a function that takes a discrete value. In this embodiment, the data is finite, and when an 8-bit frame memory is used, since it is a discrete value from 0 to 255, the discrete Freeier transform can be used.

【0016】なお、フリーエ変換の際の標本数nは濃度
追跡曲線の全画素数に等しい。図3(a)はこのように
して求めた列Yの一次元フーリエスペクトラムG(f)
12であり、これから解るように、スペクトラムG
(f)12は空間周波数fに対し周期的に周期Fcで極
小点f1、f2、・・・、を示す。また、雑音などによ
り極小点f1、f2等を見つけにくい場合は複数のライ
ンデータより統計的に見つける方法も採用できる。
The number of samples n in the Frier conversion is equal to the total number of pixels in the density tracking curve. FIG. 3A shows the one-dimensional Fourier spectrum G (f) of the column Y thus obtained.
12 and, as you can see, spectrum G
(F) 12 indicates minimum points f1, f2, ... In a cycle Fc with respect to the spatial frequency f. Further, when it is difficult to find the minimum points f1, f2, etc. due to noise or the like, a method of statistically finding from the plurality of line data can be adopted.

【0017】前記周期Fcとシャッタースピードt、フ
ーリエ変換の際の標本数n、較正値から列Yにおける血
流速度Vyを次式(2)により算出する。 Vy=mt(n/Fc−1) (2) ただし、m:倍率、t:シャッタースピード、n:標本
数、Fc:カットオフ周波数である。
From the cycle Fc, the shutter speed t, the number of samples n in the Fourier transform, and the calibration value, the blood flow velocity Vy in the column Y is calculated by the following equation (2). Vy = mt (n / Fc-1) (2) However, m: magnification, t: shutter speed, n: number of samples, Fc: cutoff frequency.

【0018】図3(b)は血管内の総ての濃度追跡曲線
について速度を求め、速度分布Vを作成したものであ
る。また、血管径を求めれば血流量を算出することも可
能である。
FIG. 3 (b) shows the velocity distribution V created by obtaining the velocity for all the concentration tracking curves in the blood vessel. Further, the blood flow rate can be calculated by obtaining the blood vessel diameter.

【0019】画像処理装置6には図4に示す構成からな
る移動物体の速度算出のための装置が設けられている。
装置6はウインドゥ処理回路、濃度追跡曲線作成回路、
空間周波数分布作成回路(フリーエ変換回路)、極小点
周期算出回路、移動速度算出回路からなる処理部と各パ
ラメータ、画像データ、速度データ等を保存する記憶装
置によって構成される。
The image processing device 6 is provided with a device for calculating the velocity of a moving object having the configuration shown in FIG.
The device 6 is a window processing circuit, a concentration tracking curve creating circuit,
It is composed of a processing unit including a spatial frequency distribution creation circuit (Frier conversion circuit), a minimum point period calculation circuit, a moving speed calculation circuit, and a storage device for storing each parameter, image data, speed data, and the like.

【0020】まず、撮影装置2で撮影された画像信号が
一旦記憶装置に格納され、ウインドゥ処理回路で測定対
象と背景が分離される。次に濃度追跡曲線作成回路によ
り当該ウインドゥ(Ys−Ye)内のY列の濃度追跡曲
線g(x)が作成され、空間周波数分布作成回路に送ら
れ、一次元フーリエスペクトラムG(f)が作成され
る。この空間周波数分布スペクトラムG(f)は再び記
憶装置に格納され、このスペクトラムG(f)から、そ
の極小点の周期算出回路により、スペクトラムG(f)
の極小点の周期(Fc)を算出する。次いで極小点の周
期(Fc)と前記撮影装置2から入力する所定倍率
(m)と所定シャッタースピード(t)とが入力する移
動物体の移動速度算出回路で移動速度(V)が算出され
る。
First, the image signal photographed by the photographing device 2 is temporarily stored in the storage device, and the window processing circuit separates the measurement object from the background. Next, the density tracking curve creation circuit creates a density tracking curve g (x) of the Y column in the window (Ys-Ye) and sends it to the spatial frequency distribution creation circuit to create a one-dimensional Fourier spectrum G (f). To be done. This spatial frequency distribution spectrum G (f) is stored again in the storage device, and from this spectrum G (f), the spectrum G (f) is calculated by the period calculation circuit of the minimum point.
The cycle (Fc) of the minimum points of is calculated. Then, the moving speed (V) is calculated by the moving speed calculating circuit of the moving object, which is inputted with the cycle of the minimum point (Fc), the predetermined magnification (m) inputted from the photographing device 2 and the predetermined shutter speed (t).

【0021】[0021]

【発明の効果】本発明によれば、画像解析による速度測
定を試みる際に撮像系を安価で簡単に構成できる。ま
た、画像解析においても一枚のぼけ画像から速度の算出
ができるために演算処理系にかかる負荷が少なく、さら
に、任意の時刻の速度分布や時系列速度分布を求めるこ
とができる。
According to the present invention, the image pickup system can be constructed inexpensively and easily when trying to measure the velocity by image analysis. Also, in image analysis, since the speed can be calculated from a single blurred image, the load on the arithmetic processing system is small, and the speed distribution and time-series speed distribution at any time can be obtained.

【0022】したがって、本発明は各種移動物体、例え
ば走行中の自動車や列車などの車両、人や動物の運動速
度、他に配管中を輸送される粉体や液体、生体の血流や
リンパ流などの速度の測定、あるいは流量の計測などに
有用である。また、濃度追跡曲線を円周方向に取ること
でドラムやディスクの回転速度を求めることが期待でき
る。
Therefore, the present invention is applicable to various moving objects such as moving vehicles such as automobiles and trains, moving speeds of humans and animals, powders and liquids transported in pipes, blood flow and lymph flow of living bodies. It is useful for speed measurement, flow rate measurement, etc. Further, it is expected that the rotational speed of the drum or disk can be obtained by taking the density tracking curve in the circumferential direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例である微小循環系血流速計
測システムの装置構成を示すブロック図である。
FIG. 1 is a block diagram showing a device configuration of a microcirculatory blood flow velocity measuring system which is an embodiment of the present invention.

【図2】 速度分布の算出過程を示す流れ図であり、図
2(a)は血管画像、図2(b)は列Yの濃度追跡曲線
グラフを示す。
2 is a flow chart showing a process of calculating a velocity distribution, FIG. 2 (a) shows a blood vessel image, and FIG. 2 (b) shows a concentration tracking curve graph of column Y.

【図3】 速度分布の算出過程を示す流れ図であり、図
3(a)は列Yの空間周波数グラフ、図3(b)は血管
中の血流速度分布を示す。
FIG. 3 is a flowchart showing a process of calculating a velocity distribution, FIG. 3 (a) shows a spatial frequency graph of column Y, and FIG. 3 (b) shows a blood flow velocity distribution in a blood vessel.

【図4】 本発明の一実施例の濃度追跡曲線の作成から
移動速度算出までのバードウエア構成図である。
FIG. 4 is a bird's-wear configuration diagram from creation of a concentration tracking curve to calculation of a moving speed according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…顕微鏡、2…撮影装置(TVカメラまたはCC
D)、3…シャッターコントローラ、4…ビデオ、5…
A/D変換器、6…画像処理装置、7…テレビモニタ、
8…血流壁、9…血流像、10…体組織、11…濃度追
跡曲線、12…フーリエスペクトラム
1 ... Microscope, 2 ... Imaging device (TV camera or CC
D), 3 ... Shutter controller, 4 ... Video, 5 ...
A / D converter, 6 ... Image processing device, 7 ... TV monitor,
8 ... Blood flow wall, 9 ... Blood flow image, 10 ... Body tissue, 11 ... Concentration tracking curve, 12 ... Fourier spectrum

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // G08G 1/052 2105−3H Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // G08G 1/052 2105-3H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記の工程(1)〜(5)からなること
を特徴とする移動物体の速度検出方法。 (1)移動する物体を所定倍率(m)、所定シャッター
スピード(t)で撮影する工程、(2)前記工程(1)
で撮影した画像の移動方向に対する濃度追跡曲線を得る
工程、(3)前記濃度追跡曲線を一次元フーリエ変換
し、空間周波数分布を得る工程、(4)前記空間周波数
分布の中に周期的に現れる極小点の周期(Fc)を得る
工程、(5)撮影画像の前記所定倍率(m)、前記所定
シャッタースピード(t)および前記極小点の周期(F
c)から移動物体の移動速度(V)を求める工程。
1. A method for detecting a velocity of a moving object, comprising the following steps (1) to (5). (1) a step of photographing a moving object at a predetermined magnification (m) and a predetermined shutter speed (t), (2) the step (1)
A step of obtaining a density tracking curve with respect to the moving direction of the image photographed in 3., (3) a step of one-dimensional Fourier transforming the density tracking curve to obtain a spatial frequency distribution, and (4) a periodical appearance in the spatial frequency distribution. A step (5) of obtaining the cycle (Fc) of the minimum points, the predetermined magnification (m) of the photographed image, the predetermined shutter speed (t) and the cycle (F) of the minimum points.
The step of obtaining the moving speed (V) of the moving object from c).
【請求項2】 移動物体を所定倍率(m)と所定シャッ
タースピード(t)で撮影する撮影手段と、 該撮影手段で撮影された画像の移動方向の濃度追跡曲線
から空間周波数分布を求めて、その極小点の周期(F
c)を算出する手段と、 該極小点周期算出手段の算出値(Fc)と前記撮影手段
の所定倍率(m)と所定シャッタースピード(t)から
移動物体の移動速度(V)を算出する手段とを備えたこ
とを特徴とする移動物体の速度検出装置。
2. A photographing means for photographing a moving object at a predetermined magnification (m) and a predetermined shutter speed (t), and a spatial frequency distribution obtained from a density tracking curve in a moving direction of an image photographed by the photographing means, The cycle of the minimum point (F
c), means for calculating the moving speed (V) of the moving object from the calculated value (Fc) of the minimum point period calculation means, the predetermined magnification (m) of the photographing means and the predetermined shutter speed (t). A velocity detecting device for a moving object, comprising:
JP4174616A 1992-07-02 1992-07-02 Method an device for detecting speed of traveling object Pending JPH0618539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4174616A JPH0618539A (en) 1992-07-02 1992-07-02 Method an device for detecting speed of traveling object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4174616A JPH0618539A (en) 1992-07-02 1992-07-02 Method an device for detecting speed of traveling object

Publications (1)

Publication Number Publication Date
JPH0618539A true JPH0618539A (en) 1994-01-25

Family

ID=15981708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4174616A Pending JPH0618539A (en) 1992-07-02 1992-07-02 Method an device for detecting speed of traveling object

Country Status (1)

Country Link
JP (1) JPH0618539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069418A1 (en) 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. Blood fluidity measurement apparatus and blood fluidity measurement method
JP2010187925A (en) * 2009-02-18 2010-09-02 Nagoya Univ Blood flow observation apparatus
JP2011123887A (en) * 2009-12-10 2011-06-23 Mitsubishi Electric Research Laboratories Inc Method and system for extracting pixel from set of image
JP2017044511A (en) * 2015-08-25 2017-03-02 セイコーエプソン株式会社 Medium transportation state detector and printer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069418A1 (en) 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. Blood fluidity measurement apparatus and blood fluidity measurement method
JP2010187925A (en) * 2009-02-18 2010-09-02 Nagoya Univ Blood flow observation apparatus
JP2011123887A (en) * 2009-12-10 2011-06-23 Mitsubishi Electric Research Laboratories Inc Method and system for extracting pixel from set of image
US8941726B2 (en) 2009-12-10 2015-01-27 Mitsubishi Electric Research Laboratories, Inc. Method and system for segmenting moving objects from images using foreground extraction
JP2017044511A (en) * 2015-08-25 2017-03-02 セイコーエプソン株式会社 Medium transportation state detector and printer

Similar Documents

Publication Publication Date Title
CN109124615B (en) Selective area high dynamic laser speckle blood flow imaging device and method
Kiritani et al. High-speed digital image analysis of vocal cord vibration in diplophonia
CN110866892B (en) Offline vibration measurement analysis method and system based on vision
CN108225537A (en) A kind of contactless small items vibration measurement method based on high-speed photography
CN108876690A (en) A kind of Image Acquisition control method, control device and image capturing system
JPH0618539A (en) Method an device for detecting speed of traveling object
JPH0528133B2 (en)
CN110210359B (en) Speed measurement optimization method in spatial filtering speed measurement technology
Oberdier An instrumentation system to automate the analysis of fuel-spray images using computer vision
JP2780658B2 (en) Spatiotemporal filter, velocity measurement method and velocity measurement device
JPH0528134B2 (en)
JP2681745B2 (en) A method for measuring the vertical and lateral movement of an object to be measured with a speckle pattern using laser light.
JP2879501B2 (en) Tracer tracking method for visualized images
Pries et al. Real-time oriented image analysis in microcirculatory research
KR0157544B1 (en) Method & apparatus for measuring object size
Diller et al. Computer automated cell size and shape analysis in cryomicroscopy
WO2018203429A1 (en) Flow velocity measurement method, flow velocity measurement device, and program
Hadar et al. Numerical calculation of MTF for image motion: experimental verification
JP2743050B2 (en) Visualization method of micro tracer particles and tracking method thereof
JPH08325614A (en) Method for measuring gas flow rate in blast furnace
CN209751029U (en) High dynamic laser speckle blood flow imaging device of optional district
JPH05188071A (en) Method of measuring moving state of tracer grain in fluid and device therefor
Patsias et al. Image sequences and wavelets for vibration analysis: Part 1: Edge detection and extraction of natural frequencies
JPH07175922A (en) Tissue area extracting method for medical diagnostic image
Spandana et al. Measurement of Physiological Parameters Using Video Processing