JPH0618518A - Water quality data measuring instrument - Google Patents

Water quality data measuring instrument

Info

Publication number
JPH0618518A
JPH0618518A JP17685692A JP17685692A JPH0618518A JP H0618518 A JPH0618518 A JP H0618518A JP 17685692 A JP17685692 A JP 17685692A JP 17685692 A JP17685692 A JP 17685692A JP H0618518 A JPH0618518 A JP H0618518A
Authority
JP
Japan
Prior art keywords
water quality
wire
depth
float
quality data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17685692A
Other languages
Japanese (ja)
Inventor
Kunihiko Amano
邦彦 天野
Katsuji Terazono
勝二 寺薗
Shigeru Sanpei
茂 三瓶
Kazuhiko Endo
和彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAM SUIGENCHI KANKYO SEIBI CEN
DAM SUIGENCHI KANKYO SEIBI CENTER
TSURUMI PRECISION INSTR
TSURUMI SEIKI KK
Original Assignee
DAM SUIGENCHI KANKYO SEIBI CEN
DAM SUIGENCHI KANKYO SEIBI CENTER
TSURUMI PRECISION INSTR
TSURUMI SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAM SUIGENCHI KANKYO SEIBI CEN, DAM SUIGENCHI KANKYO SEIBI CENTER, TSURUMI PRECISION INSTR, TSURUMI SEIKI KK filed Critical DAM SUIGENCHI KANKYO SEIBI CEN
Priority to JP17685692A priority Critical patent/JPH0618518A/en
Publication of JPH0618518A publication Critical patent/JPH0618518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a water quality data measuring instrument which can inexpensively measure the water quality of a storage dam. CONSTITUTION:The title measuring instrument is provided with a float 11 with a through hole at nearly its center, wire winch device 12 which is mounted on the float 11 and winds/unwinds a wire, underwater sensor section 18 which is connected to the front end of the wire and mounted with various kinds of water quality measuring instruments and a memory for storing water quality data, and sequence circuit 13 mounted on the floating body 11. When measuring time comes, the circuit 13 moves the section 18 forward and backward to a set water depth by automatically actuating the device 12 and the section 18 measures water quality data at every prescribed depth with the various kinds of water quality measuring instruments and stores the data in the memory.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はダム等の水質を測定する
水質デ−タ測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality data measuring device for measuring the water quality of a dam or the like.

【0002】[0002]

【従来の技術】ダム貯水池における冷濁水障害、プラン
クトン障害等の環境問題を未然に防止するため、水質管
理の必要性が増大してきている。
2. Description of the Related Art There is an increasing need for water quality management in order to prevent environmental problems such as cold muddy water damage and plankton damage in dam reservoirs.

【0003】[0003]

【発明が解決しようとする課題】そこで、時間的あるい
は空間的にきめ細かな水質測定を可能とする計測システ
ムが開発され、きめ細かい水質測定が可能となってきて
いるが、いずれの計測システムも土木工事,電気工事を
伴なうため、工事が大掛かりとなり、その工事に要する
費用も数千万円にも及ぶという問題があった。本発明は
上記の点に鑑みてなされたもので、その目的は低コスト
でダム等の水質を測定する水質デ−タ測定装置を提供す
ることにある。
Therefore, a measuring system capable of finely measuring the water quality temporally or spatially has been developed, and the fine water quality measurement has become possible. , Because of the electrical work involved, the construction work was large and the cost required for the work was tens of millions of yen. The present invention has been made in view of the above points, and an object thereof is to provide a water quality data measuring device for measuring the water quality of a dam or the like at low cost.

【0004】[0004]

【課題を解決するための手段】本発明に係わる水質デ−
タ測定装置は、ほぼ中央部に貫通孔が設けられた浮力体
と、この浮力体上に設置されワイヤを巻上げ/繰出しす
るワイヤウインチ装置と、上記ワイヤの先端に連結され
各種水質計及び水質デ−タを記憶するメモリが搭載され
た水中センサ部と、上記浮力体に設けられた制御装置と
を具備し、この制御装置は測定時刻になると、自動的に
上記ワイヤウインチ装置を作動させて水中センサ部を水
中設定深度まで往復移動させる制御手段を具備し、上記
水中センサ部は所定深度毎の水質デ−タを各種水質計で
測定し記憶する制御手段とから構成される。
A water quality data according to the present invention.
The data measuring device includes a buoyant body having a through hole formed in a substantially central portion thereof, a wire winch device installed on the buoyant body to wind / unwind a wire, and various water quality meters and water quality meters connected to the tip of the wire. -It is equipped with an underwater sensor section equipped with a memory for storing data and a control device provided on the buoyant body, and this control device automatically activates the wire winch device at the measurement time, and The underwater sensor unit is provided with a control unit for reciprocating the sensor unit to a set depth in water, and the underwater sensor unit includes a control unit for measuring and storing water quality data for each predetermined depth with various water quality meters.

【0005】[0005]

【作用】測定時刻になると、自動的に上記ワイヤウイン
チ装置を作動させて水中センサ部を水中設定深度まで往
復移動させ、所定深度毎の水質デ−タを各種水質計によ
り測定し、メモリに記憶するようにしている。
[Function] At the measurement time, the wire winch device is automatically operated to reciprocate the underwater sensor unit to the set depth in water, and the water quality data at each predetermined depth is measured by various water quality meters and stored in the memory. I am trying to do it.

【0006】[0006]

【実施例】以下図面を参照して本発明の一実施例に係わ
る水質デ−タ測定装置について説明する。図1は本発明
の一実施例に係わる水質デ−タ計測装置のフロ−ト部と
水中センサ部の概略構成を示す側面図、図2はフロ−ト
部の平面図、図3はフロ−ト部の設置方法を説明するた
めの図、図4はフロ−ト部と水中センサ部の制御回路を
示す図、図5はフロ−ト部上に設置されたワイヤウイン
チを示す側面図、図6はワイヤゆるみ検知装置の要部を
示す図、図7は水中センサ部の詳細な構成を示す側面
図、図8及び図9はフロ−ト部の制御部の制御内容を示
すフロ−チャ−ト、図10は水中センサ部の制御部の制
御内容を示すフロ−チャ−ト、である。図1において、
11は断面がド−ナツ状のフロ−トである。このフロ−
ト11の上面にはワイヤウインチ装置12、シ−ケンス
回路13が設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A water quality data measuring apparatus according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing a schematic configuration of a float portion and an underwater sensor portion of a water quality data measuring apparatus according to an embodiment of the present invention, FIG. 2 is a plan view of the float portion, and FIG. 3 is a flow chart. FIG. 4 is a view for explaining a method of installing the float part, FIG. 4 is a view showing a control circuit of the float part and the underwater sensor part, and FIG. 5 is a side view showing a wire winch installed on the float part. 6 is a view showing a main part of the wire looseness detection device, FIG. 7 is a side view showing a detailed configuration of the underwater sensor part, and FIGS. 8 and 9 are flow charts showing the control contents of the control part of the float part. FIG. 10 is a flow chart showing the control contents of the control unit of the underwater sensor unit. In FIG.
Reference numeral 11 is a doughnut-shaped float. This flow
A wire winch device 12 and a sequence circuit 13 are installed on the upper surface of the boot 11.

【0007】ワイヤウインチ12にはワイヤ14が巻か
れており、そのワイヤ14はレバ−15の先端部に取り
付けられた滑車16、貫通孔17を介して鉛直下方に垂
下し、水中センサ部18の上端部に連結されている。な
お、19はワイヤ14のゆるみを検出するためのワイヤ
ゆるみ検知装置であり、その詳細な構成については後述
する。またフロ−ト11の周囲には環状部材20が取り
付けられており、この環状部材11は流木防止ネット2
1等に係留可能である。次に、図2に図1の平面図を示
しておく。図2において、31は電源部である。
A wire 14 is wound around the wire winch 12, and the wire 14 hangs vertically downward through a pulley 16 and a through hole 17 attached to a tip end portion of a lever 15, and a submerged sensor portion 18 It is connected to the upper end. Reference numeral 19 denotes a wire looseness detecting device for detecting the looseness of the wire 14, and the detailed configuration thereof will be described later. An annular member 20 is attached to the periphery of the float 11, and the annular member 11 serves as the driftwood prevention net 2
It can be moored to the first class. Next, FIG. 2 shows a plan view of FIG. In FIG. 2, reference numeral 31 is a power supply unit.

【0008】また、図3に示すようにフロ−ト11は例
えばダムの湖底41に打ち込まれたアンカ42,43に
それぞれ連結されたロ−プ44,45の一端に接続さ
れ、ダムの水面上の一箇所に固定される。
Further, as shown in FIG. 3, the float 11 is connected to one end of ropes 44 and 45 respectively connected to anchors 42 and 43 driven into the lake bottom 41 of the dam, for example, on the water surface of the dam. Fixed in one place.

【0009】次に、図4を参照してフロ−ト11及び水
中センサ部18に搭載された制御回路の詳細な構成につ
いて説明する。図4において、ワイヤウインチ装置12
にはワイヤウインチ装置12の駆動源であるモ−タ(図
示しない)を正転,逆転,停止制御する駆動回路51が
接続される。
Next, the detailed structure of the control circuit mounted on the float 11 and the underwater sensor section 18 will be described with reference to FIG. In FIG. 4, the wire winch device 12
A drive circuit 51 for controlling a motor (not shown), which is a drive source of the wire winch device 12, to rotate normally, reversely, and stop is connected to the.

【0010】この駆動回路51にはワイヤウインチ装置
12によりワイヤ14が最上位位置まで巻き上げられた
ときにオン信号を出力する巻上リミッタ52、ワイヤ1
4を繰り出す際のワイヤ14のゆるみを検出するワイヤ
ゆるみ検出装置53が接続されている。さらに、駆動回
路51にはシ−ケンス回路54が接続される。
In the drive circuit 51, a winding limiter 52 that outputs an ON signal when the wire 14 is wound up to the uppermost position by the wire winch device 12, and the wire 1
A wire looseness detection device 53 for detecting the looseness of the wire 14 when the wire 4 is fed out is connected. Further, a sequence circuit 54 is connected to the drive circuit 51.

【0011】このシ−ケンス回路54には、ワイヤ14
の先端部に取り付けられた水中センサ部18が到達すべ
き最大深度(つまり、フロ−ト11が設置された場所で
のダムの深度)を設定する最大到達深度設定スイッチ5
5、時刻を計数するタイマ56が接続されている。
The sequence circuit 54 includes wires 14
Maximum reach depth setting switch 5 for setting the maximum depth (that is, the depth of the dam at the place where the float 11 is installed) that the underwater sensor section 18 attached to the tip of the
5. A timer 56 for counting time is connected.

【0012】このシ−ケンス回路54は図8及び図9に
示すシ−ケンスで制御を行うように駆動回路51にモ−
タの回転,逆転,停止信号を出力する。ここで、57は
蓄電池である。
The sequence circuit 54 is controlled by the drive circuit 51 so that the sequence shown in FIGS. 8 and 9 is controlled.
Rotation, reverse rotation and stop signals are output. Here, 57 is a storage battery.

【0013】また、61は濁度を検出するワイパ−付き
積分球式濁度計、62は水温を検出する水温計、63は
水深を検出する水深計である。ワイパ−付き積分球式濁
度計61,水温計62,水深計63の検知信号はマルチ
プレクサ64を介してA/Dコンバ−タ65に入力され
る。このA/Dコンバ−タ65は入力される濁度、水
温、水深をデジタルデ−タに変換してマイクロプロセッ
サ66に出力する。このマイクロプロセッサ66にはI
Cメモリ67が接続れる。このICメモリ67はダムの
鉛直方向の例えば1m毎の濁度、水温、水深を記憶す
る。
Reference numeral 61 is an integrating sphere type turbidimeter with a wiper for detecting turbidity, 62 is a water thermometer for detecting water temperature, and 63 is a depth gauge for detecting water depth. The detection signals of the integrating sphere turbidity meter 61 with a wiper, the water temperature meter 62, and the water depth meter 63 are input to the A / D converter 65 via the multiplexer 64. The A / D converter 65 converts the input turbidity, water temperature and water depth into digital data and outputs it to the microprocessor 66. This microprocessor 66 has I
The C memory 67 is connected. The IC memory 67 stores the turbidity, the water temperature, and the water depth in the vertical direction of the dam, for example, every 1 m.

【0014】また、68は水中センサ部18がダムの水
面から出るとオン信号を出力する干出センサである。こ
の干出センサ68は電源制御部69に接続される。この
電源制御部69には乾電池70が接続される。電源制御
回路69は干出センサ68からオン信号が出力されると
乾電池70の出力電圧をマイクロプロセッサ66に供給
する。
Reference numeral 68 is a dry-out sensor that outputs an ON signal when the underwater sensor unit 18 comes out of the water surface of the dam. The dry-out sensor 68 is connected to the power supply control unit 69. A dry battery 70 is connected to the power control unit 69. The power supply control circuit 69 supplies the output voltage of the dry battery 70 to the microprocessor 66 when the ON signal is output from the drying sensor 68.

【0015】次に、図5を参照してワイヤウインチ装置
12の周辺の詳細な構成、特にワイヤゆるみ検出装置5
3の詳細な構成について説明する。図5において、フロ
−ト11の上面にはくの字状のロ−ラ保持レバ−71を
揺動自在に支持する支持柱72が取り付けられている。
Next, referring to FIG. 5, a detailed structure around the wire winch device 12, particularly the wire slack detecting device 5 will be described.
The detailed configuration of No. 3 will be described. In FIG. 5, a support pillar 72 for swingably supporting a dogleg-shaped roller holding lever 71 is attached to the upper surface of the float 11.

【0016】このロ−ラ保持レバ−71は図6に示すよ
うに2つのロ−ラ73,74の回転軸が取り付けられて
いる。さらに、この保持枠71には検出片75が取り付
けられている。
As shown in FIG. 6, the rotary shafts of the two rollers 73 and 74 are attached to the roller holding lever 71. Further, a detection piece 75 is attached to the holding frame 71.

【0017】さらに、上述した支柱72には検出片75
が接近可能な位置にワイヤたるみ検出器76が取り付け
られている。ワイヤ14はロ−ラ73と74の間を通過
する。
Further, a detection piece 75 is attached to the above-mentioned support 72.
A wire slack detector 76 is attached at a position accessible by the. Wire 14 passes between rollers 73 and 74.

【0018】ワイヤ14が弛んでいない場合(つまり、
ワイヤ14に張力が加わっている場合)には、ロ−ラ保
持レバ−71は矢印B方向に引上げられる。このとき、
検出片75もロ−ラ支持レバ−71と共に移動するの
で、検出器76から検出片75が離れる。このため、ワ
イヤたるみ検出装置53からの検出信号はオフとなる。
一方、ワイヤ14が弛むと、ワイヤ14の張力がなくな
るので、、ロ−ラ保持レバ−71は矢印A方向に回動す
る。このため。検出片75が検出器76に接近するた
め、ワイヤたるみ検出装置53からの検出信号はオンと
なる。
When the wire 14 is not loose (that is,
When the wire 14 is under tension), the roller holding lever 71 is pulled up in the direction of arrow B. At this time,
Since the detection piece 75 also moves together with the roller support lever 71, the detection piece 75 is separated from the detector 76. Therefore, the detection signal from the wire slack detecting device 53 is turned off.
On the other hand, when the wire 14 is loosened, the tension of the wire 14 is lost, so that the roller holding lever 71 rotates in the arrow A direction. For this reason. Since the detection piece 75 approaches the detector 76, the detection signal from the wire slack detection device 53 is turned on.

【0019】次に、図7を参照して水中センサ部18の
詳細な構成について説明する。図7において、81はコ
の字状の吊下金具である。この吊下金具81の頭部には
ワイヤ14を連結するためのリング82が溶接されてい
る。さらに、吊下金具81にはセンサ本体83が取り付
けられている。このセンサ本体83の上端部には濁度、
水温、深度デ−タを読み取るためのコネクタ(防水キャ
ップ付)84及び干出センサ68が取り付けられてい
る。さらに、このセンサ本体83の中央部には乾電池7
0、水質デ−タを記憶するICメモリ67が内蔵されて
いる。また、センサ本体83の下端部にはワイパ−付積
分球式濁度計61、水温計62、水深計63が取り付け
られている。なお、85はワイパ−である。
Next, the detailed structure of the underwater sensor section 18 will be described with reference to FIG. In FIG. 7, reference numeral 81 is a U-shaped hanging fitting. A ring 82 for connecting the wire 14 is welded to the head of the hanging fitting 81. Further, a sensor body 83 is attached to the hanging metal fitting 81. Turbidity at the upper end of the sensor body 83,
A connector (with a waterproof cap) 84 for reading water temperature and depth data, and a drain sensor 68 are attached. Further, a dry battery 7 is provided at the center of the sensor body 83.
0, an IC memory 67 for storing water quality data is incorporated. Further, an integrating sphere type turbidity meter 61 with a wiper, a water temperature meter 62, and a water depth meter 63 are attached to the lower end of the sensor body 83. Reference numeral 85 is a wiper.

【0020】次ぎに、上記のように構成された本発明の
一実施例の動作について説明する。まず、本装置を作動
させる前に、測定を開始する測定時刻及びフロ−ト11
を設置した地点でのダムの深度をプリセットスイッチに
より設定しておく。
Next, the operation of the embodiment of the present invention constructed as above will be described. First, before operating the present apparatus, the measurement time and the float 11 at which the measurement is started.
Set the depth of the dam at the location where was set by the preset switch.

【0021】以下、動作について図8乃至図10のフロ
−チャ−トを参照しながら説明する。タイマ56に計数
される現在時刻が測定時刻になったかを判定し(ステッ
プS1)、現在時刻が測定時刻になると、フロ−ト11
の電源部オン処理(ステップS2)、つまりフロ−ト1
1の蓄電池57の電源を各部に供給する処理を行う。
The operation will be described below with reference to the flowcharts of FIGS. It is determined whether or not the current time counted by the timer 56 is the measurement time (step S1), and when the current time is the measurement time, the flow 11
Power-on part of the process (step S2), that is, the float 1
A process of supplying the power of the storage battery 57 of No. 1 to each unit is performed.

【0022】そして、シ−ケンス回路54から駆動回路
51に制御信号が出力され、ワイヤウインチ装置12の
モ−タ(図示しない)が正転駆動されて、ワイヤ14が
巻き上げられ、水中センサ部18の巻上げが開始される
(ステップS3)。
Then, a control signal is output from the sequence circuit 54 to the drive circuit 51, the motor (not shown) of the wire winch device 12 is driven to rotate normally, the wire 14 is wound up, and the underwater sensor portion 18 is fed. Winding is started (step S3).

【0023】この巻き上げ処理は巻上リミッタ52がオ
ンするまで継続される。ところで、この巻き上げが行わ
れ、水中センサ部18の頭部が水面から上がると、干出
センサ68がオンする。すると、図10に示すようにこ
の干出センサ68のオン信号は電源制御回路69に出力
され、乾電池70の電圧がマイクロプロセッサ66に供
給される。また、ワイパ−付積分球式濁度計61の表面
をきれいにするワイパ85が1分間作動する。
This winding process is continued until the winding limiter 52 is turned on. By the way, when this winding is performed and the head of the underwater sensor unit 18 rises above the surface of the water, the dehydration sensor 68 is turned on. Then, as shown in FIG. 10, the ON signal of the drain sensor 68 is output to the power supply control circuit 69, and the voltage of the dry battery 70 is supplied to the microprocessor 66. Further, the wiper 85 for cleaning the surface of the integrating sphere type turbidimeter 61 with wiper operates for 1 minute.

【0024】ところで、ワイヤ14が巻かれ、水中セン
サ部18が最上位位置までくると、巻上げリミッタ52
がオンする(ステップS4)。そして、この巻上げリミ
ッタ52がオンしてから、所定時間(ワイパ作動時間+
α、例えば1分10秒間)が経過するのを待って(ステ
ップS5)、シ−ケンス回路54は駆動回路51に制御
信号を出力し、モ−タを逆転させてワイヤ14を繰り出
す(ステップS6)。図10に戻って、水中センサ部1
8では1m毎の濁度、水温、深度を計61〜63から読
み取り、ICメモリ67に書き込む。また、図8のフロ
−チャ−トに戻って、深度が最大深度に到達したかを判
定する(ステップS7)。
By the way, when the wire 14 is wound and the underwater sensor section 18 reaches the uppermost position, the winding limiter 52.
Turns on (step S4). After the winding limiter 52 is turned on, a predetermined time (wiper operation time +
Waiting for α (for example, 1 minute and 10 seconds) to elapse (step S5), the sequence circuit 54 outputs a control signal to the drive circuit 51 to reverse the motor and feed the wire 14 (step S6). ). Returning to FIG. 10, the underwater sensor unit 1
In No. 8, the turbidity, the water temperature, and the depth for each 1 m are read from the total of 61 to 63 and written in the IC memory 67. Further, returning to the flow chart of FIG. 8, it is determined whether the depth has reached the maximum depth (step S7).

【0025】そして、深度が最大深度に到達したことが
検出されると、シ−ケンス回路54から駆動回路51に
制御信号が出力され、モ−タが停止され、ウインチ12
が停止れる。
When it is detected that the depth has reached the maximum depth, the sequence circuit 54 outputs a control signal to the drive circuit 51 to stop the motor and the winch 12
Is stopped.

【0026】そして、ウインチ12が停止してから設定
時間(例えば、10秒)経過してから(ステップS
9)、シ−ケンス回路54から駆動回路51に制御信号
が出力され、モ−タが正転され、ウインチ12によりワ
イヤ14の巻き上げが行われる(ステップS10)。そ
して、深度が1mまでくると、フロ−ト11の電源部を
オフする処理が行われる(ステップS11,S12)。
Then, after the set time (for example, 10 seconds) has passed since the winch 12 stopped (step S
9), a control signal is output from the sequence circuit 54 to the drive circuit 51, the motor is normally rotated, and the winch 12 winds the wire 14 (step S10). Then, when the depth reaches 1 m, a process of turning off the power supply unit of the float 11 is performed (steps S11 and S12).

【0027】なお、上記実施例で予め最大到達深度設定
スイッチ55で設定した最大深度より実際の深度が浅か
った場合には、ワイヤ14を繰り下げているときに水中
センサ部18が着底するとワイヤ14が弛み、ワイヤゆ
るみ検出装置53からオン信号が出力される。このオン
信号は駆動回路51に入力されると、ワイヤウインチ装
置12はワイヤ14の繰出しを緊急に停止し、巻き上げ
る処理を行う。このようなフェイルセ−フ機能も有して
いる。なお、水中センサ部18で検出する水中デ−タは
濁度、水温、深度に限らず、PH、電気伝導度、溶存酸
素量等を検出するようにしても良い。
If the actual depth is shallower than the maximum depth preset by the maximum reach depth setting switch 55 in the above embodiment, if the underwater sensor section 18 bottoms while the wire 14 is being lowered, the wire 14 Is loosened, and the wire looseness detection device 53 outputs an ON signal. When this ON signal is input to the drive circuit 51, the wire winch device 12 urgently stops the feeding of the wire 14 and performs a winding process. It also has such a fail-safe function. The underwater data detected by the underwater sensor unit 18 is not limited to turbidity, water temperature, and depth, but PH, electric conductivity, dissolved oxygen amount, etc. may be detected.

【0028】[0028]

【発明の効果】以上詳述したように本発明によれば、ダ
ム等の水質を測定する水質デ−タ測定装置を提供するこ
とができる。
As described in detail above, according to the present invention, it is possible to provide a water quality data measuring device for measuring the water quality of a dam or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる水質デ−タ測定装置
のフロ−ト部と水中センサ部の概略構成を示す側面図。
FIG. 1 is a side view showing a schematic configuration of a float portion and an underwater sensor portion of a water quality data measuring device according to an embodiment of the present invention.

【図2】フロ−ト部の平面図。FIG. 2 is a plan view of a float portion.

【図3】フロ−ト部の設置方法を説明するための図。FIG. 3 is a diagram for explaining a method of installing a float portion.

【図4】フロ−ト部と水中センサ部の制御回路を示す
図。
FIG. 4 is a diagram showing a control circuit of a float unit and an underwater sensor unit.

【図5】フロ−ト部上に設置されたワイヤウインチ装置
を示す側面図。
FIG. 5 is a side view showing the wire winch device installed on the float part.

【図6】ワイヤゆるみ検知装置の要部を示す図。FIG. 6 is a view showing a main part of a wire looseness detection device.

【図7】水中センサ部の詳細な構成を示す側面図であ
る。
FIG. 7 is a side view showing a detailed configuration of an underwater sensor section.

【図8】フロ−ト部の制御部の制御内容を示すフロ−チ
ャ−トの一部。
FIG. 8 is a part of a flow chart showing the control contents of the control section of the float section.

【図9】フロ−ト部の制御部の制御内容を示すフロ−チ
ャ−トの一部。
FIG. 9 is a part of a flowchart showing the control contents of the control unit of the float unit.

【図10】水中センサ部の制御部の制御内容を示すフロ
−チャ−ト。
FIG. 10 is a flowchart showing the control contents of the control unit of the underwater sensor unit.

【符号の説明】[Explanation of symbols]

11…フロ−ト、12…ワイヤウインチ装置、13…シ
−ケンス回路、14…ワイヤ、18…水中センサ部。
11 ... Float, 12 ... Wire winch device, 13 ... Sequence circuit, 14 ... Wire, 18 ... Underwater sensor section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三瓶 茂 神奈川県横浜市鶴見区鶴見中央2−2−20 株式会社鶴見精機内 (72)発明者 遠藤 和彦 神奈川県横浜市鶴見区鶴見中央2−2−20 株式会社鶴見精機内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeru Sanbe 2-2-20 Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Inside Tsurumi Seiki Co., Ltd. (72) Kazuhiko Endo 2-2 Tsurumi-chu, Tsurumi-ku, Yokohama-shi, Kanagawa −20 Tsurumi Seiki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ほぼ中央部に貫通孔が設けられた浮力体
と、 この浮力体上に設置されワイヤを巻上げ/繰出しするワ
イヤウインチ装置と、 上記ワイヤの先端に連結され各種水質計及び水質デ−タ
を記憶するメモリが搭載された水中センサ部と、 上記浮力体に設けられた制御装置とを具備し、 この制御装置は測定時刻になると、自動的に上記ワイヤ
ウインチ装置を作動させて水中センサ部を水中設定深度
まで往復移動させる制御手段を具備し、 上記水中センサ部は所定深度毎の水質デ−タを各種水質
計で測定し記憶する制御手段を具備したことを特徴とす
る水質デ−タ測定装置。
1. A buoyant body having a through hole formed in a substantially central portion thereof, a wire winch device installed on the buoyant body for winding / unwinding a wire, and various water quality meters and water quality meters connected to the tip of the wire. -It is equipped with an underwater sensor section equipped with a memory for storing data and a control device provided on the buoyant body, and this control device automatically activates the wire winch device at the measurement time and The water quality data is provided with a control means for reciprocating the sensor part to a set depth in water, and the underwater sensor part is equipped with a control means for measuring and storing water quality data for each predetermined depth with various water quality meters. -A measuring device.
JP17685692A 1992-07-03 1992-07-03 Water quality data measuring instrument Pending JPH0618518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17685692A JPH0618518A (en) 1992-07-03 1992-07-03 Water quality data measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17685692A JPH0618518A (en) 1992-07-03 1992-07-03 Water quality data measuring instrument

Publications (1)

Publication Number Publication Date
JPH0618518A true JPH0618518A (en) 1994-01-25

Family

ID=16021024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17685692A Pending JPH0618518A (en) 1992-07-03 1992-07-03 Water quality data measuring instrument

Country Status (1)

Country Link
JP (1) JPH0618518A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588203A1 (en) * 1992-09-18 1994-03-23 Bayer Ag Method and agent for the control of cockroaches
KR100972396B1 (en) * 2008-02-14 2010-07-27 주식회사 중원엔지니어링 Apparatus for measuring quality of water
JP2011209228A (en) * 2010-03-30 2011-10-20 Tsurumi Seiki:Kk Ocean data measurement device and ocean data measurement method
CN102889946A (en) * 2012-10-25 2013-01-23 杭州师范大学 Device for sensing and measuring temperature and salinity of water body on surface layer
CN103743880A (en) * 2014-01-11 2014-04-23 中农宸熙(福建)物联科技有限公司 Water body environment index remote monitoring system
CN104267003A (en) * 2014-10-22 2015-01-07 中山欧麦克仪器设备有限公司 Novel real-time automatic water quality analysis meter
CN105438408A (en) * 2015-12-29 2016-03-30 台州市航天恒通科技有限公司 All-dimensional intelligent detection buoy
CN105842414A (en) * 2016-05-24 2016-08-10 南宁市茂百科技有限公司 Sewage acidity testing device
CN110132198A (en) * 2019-04-18 2019-08-16 武汉云弘高精科技有限公司 A kind of underwater dynamic measurement system for stay wire displacement sensor
KR102190912B1 (en) * 2019-12-20 2020-12-15 동문이엔티(주) Real time water-bloom measurement system based internet of things
CN115932204A (en) * 2023-02-15 2023-04-07 广州中工水务信息科技有限公司 Water quality monitoring device and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588203A1 (en) * 1992-09-18 1994-03-23 Bayer Ag Method and agent for the control of cockroaches
KR100972396B1 (en) * 2008-02-14 2010-07-27 주식회사 중원엔지니어링 Apparatus for measuring quality of water
JP2011209228A (en) * 2010-03-30 2011-10-20 Tsurumi Seiki:Kk Ocean data measurement device and ocean data measurement method
CN102889946A (en) * 2012-10-25 2013-01-23 杭州师范大学 Device for sensing and measuring temperature and salinity of water body on surface layer
CN103743880A (en) * 2014-01-11 2014-04-23 中农宸熙(福建)物联科技有限公司 Water body environment index remote monitoring system
CN104267003A (en) * 2014-10-22 2015-01-07 中山欧麦克仪器设备有限公司 Novel real-time automatic water quality analysis meter
CN105438408A (en) * 2015-12-29 2016-03-30 台州市航天恒通科技有限公司 All-dimensional intelligent detection buoy
CN105842414A (en) * 2016-05-24 2016-08-10 南宁市茂百科技有限公司 Sewage acidity testing device
CN110132198A (en) * 2019-04-18 2019-08-16 武汉云弘高精科技有限公司 A kind of underwater dynamic measurement system for stay wire displacement sensor
KR102190912B1 (en) * 2019-12-20 2020-12-15 동문이엔티(주) Real time water-bloom measurement system based internet of things
CN115932204A (en) * 2023-02-15 2023-04-07 广州中工水务信息科技有限公司 Water quality monitoring device and method

Similar Documents

Publication Publication Date Title
JPH0618518A (en) Water quality data measuring instrument
KR100205663B1 (en) Automatic vertical reciprocal moving apparatus of water qualilty measuring instrument
US20100188236A1 (en) In-situ water analysis method and system
RU2007103743A (en) SYSTEMS AND METHODS FOR MANAGING THE WINDING OF LINEAR MATERIAL
US5803008A (en) System and method for monitoring and controlling anchor rode length
CA2962404C (en) Shipboard winch with computer-controlled motor
CN106990215A (en) A kind of automatic-lifting type water monitoring device for cultivating pool
GB2245736B (en) Monitoring a bed underlying water
JP3452559B2 (en) Water quality monitoring and measuring device that automatically rises and falls along the water surface
US3968954A (en) Oceanographic apparatus
GB1377593A (en) Floating probe device
US3781624A (en) Liquid level indicator and flow measuring device
JP3124761B1 (en) Elevating device for underwater observation equipment
CN215375373U (en) Hydrology water resource detection device
US5147531A (en) Salt level monitoring device for water softeners
CN214165246U (en) Multifunctional rotating rudder measuring boat capable of achieving bidirectional positioning
CA1138721A (en) Movable float system for boat launching ramps
CN216815689U (en) Magnetic float level meter
KR100217027B1 (en) Control method of vertical moving apparatus for water quality analysis system
US3104928A (en) Bathkymograph
CN201028969Y (en) Watercraft water gauge
JPH0222883B2 (en)
KR100217025B1 (en) Automatic water quality measuring apparatus
JPS5816451B2 (en) Powder level measuring device
Brown et al. Continuous temperature—depth profiling deep-moored buoy system