JPH06184831A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH06184831A
JPH06184831A JP4354284A JP35428492A JPH06184831A JP H06184831 A JPH06184831 A JP H06184831A JP 4354284 A JP4354284 A JP 4354284A JP 35428492 A JP35428492 A JP 35428492A JP H06184831 A JPH06184831 A JP H06184831A
Authority
JP
Japan
Prior art keywords
furnace
pitch
exhaust gas
fiber
cyanides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4354284A
Other languages
Japanese (ja)
Inventor
Kikuji Komine
喜久治 小峰
Yoshimasa Chiba
喜政 千葉
Tsutomu Naito
勉 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP4354284A priority Critical patent/JPH06184831A/en
Publication of JPH06184831A publication Critical patent/JPH06184831A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Abstract

PURPOSE:To safely operate a graphitizing furnace by introducing cyanides such as cyanide or hydrogen cyanide, if produced in a graphitizing furnace using nitrogen gas, into an oxidizing atmosphere at 200-500 deg.C, decomposing and removing the cyanides. CONSTITUTION:A waste gas, produced in a graphitizing furnace and containing cyanides is introduced through a discharge conduit into a waste gas converter of an oxidizing atmosphere at 200-500 deg.C. Air is simultaneously introduced through a conduit into the waste gas converter. Thereby, the cyanides in the waste gas are then decomposed and removed by the waste gas converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般には、炭素繊維の
製造方法に関するものであり、特に予備炭化処理に続
き、この予備炭化繊維を1500℃以上3000℃まで
の温度にて窒素ガス雰囲気下で黒鉛化処理を行なう際に
発生する排ガス中のシアン及びシアン化水素などのシア
ン類を分解除去することを特徴とする炭素繊維の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a method for producing carbon fibers, and particularly to a preliminary carbonization treatment, in which the preliminary carbonized fibers are heated at a temperature of 1500 ° C. to 3000 ° C. under a nitrogen gas atmosphere. The present invention relates to a method for producing carbon fiber, which comprises decomposing and removing cyanogens such as cyanogen and hydrogen cyanide in exhaust gas generated during the graphitization treatment.

【0002】[0002]

【従来の技術】例えば、石油系ピッチ、石炭系ピッチ等
の炭素質ピッチから製造される炭素繊維は、現在、
(1)石油系ピッチ、石炭系ピッチ等から炭素繊維に適
した有機前駆体である炭素質ピッチを調製し、該ピッチ
を加熱溶融して紡糸機にて紡糸し、得られたピッチ繊維
を収束して繊維束となした後、(2)前記ピッチ繊維を
不融化炉にて酸化性雰囲気下にて最高温度250〜35
0℃までに加熱して不融化し、(3)得られた不融化繊
維を予備炭化炉で不活性ガス雰囲気中にて最高温度40
0〜1500℃まで加熱して予備炭化し、(4)予備炭
化された繊維を更に黒鉛化炉にて不活性ガス雰囲気下に
3000℃以下にまで加熱して黒鉛化すること、により
製造されている。
2. Description of the Related Art For example, carbon fibers produced from carbonaceous pitch such as petroleum pitch and coal pitch are currently
(1) A carbonaceous pitch, which is an organic precursor suitable for carbon fibers, is prepared from petroleum pitch, coal pitch, etc., the pitch is heated and melted and spun by a spinning machine, and the obtained pitch fibers are converged. (2) The maximum temperature of the pitch fibers is 250 to 35 in an infusible furnace under an oxidizing atmosphere.
(3) The obtained infusible fiber is heated to 0 ° C. to make it infusible, and the maximum temperature is 40 in an inert gas atmosphere in a preliminary carbonization furnace.
Manufactured by heating to 0 to 1500 ° C. to pre-carbonize, and (4) further heating the pre-carbonized fiber to 3000 ° C. or less in an inert gas atmosphere in a graphitizing furnace to graphitize. There is.

【0003】従来、上記の不融化、予備炭化、更には黒
鉛化の工程は、繊維束とされたピッチ繊維をテンション
下で連続不融化し、連続予備炭化し、連続黒鉛化する方
法が用いられている。
Conventionally, in the above-mentioned steps of infusibilization, preliminary carbonization, and further graphitization, a method of continuously infusibilizing pitch fibers made into a fiber bundle under tension, continuously precarbonizing, and continuously graphitizing has been used. ing.

【0004】[0004]

【発明が解決しようとする課題】ところで、黒鉛化炉に
おける予備炭化繊維の黒鉛化は、炉内を不活性ガス雰囲
気にするのに、不活性ガスとしてアルゴンガスを使用し
て行なわれている。しかしながら、アルゴンガスは希ガ
スであることから極めて高価であり、炭素繊維の製造コ
ストが少なからず増大するという大きな欠点があった。
By the way, the graphitization of the pre-carbonized fiber in the graphitization furnace is carried out by using argon gas as an inert gas to make the inside of the furnace an inert gas atmosphere. However, since argon gas is a rare gas, it is extremely expensive, and there is a big drawback that the production cost of carbon fiber increases not a little.

【0005】これに対し、不活性ガスとして窒素ガスを
用いれば上記の問題点を解決できるが、黒鉛化処理時
に、炉の発熱体として使用されている黒鉛製発熱体と反
応し毒性のシアン(ジシアンC22 )やシアン化水素
(HCN)などのシアン類が多量に発生し、そして、こ
のシアン類を多量に含んだ排ガスが炉外に排出されるこ
ととなり、黒鉛化炉の運転の安全性の点で問題があっ
た。
On the other hand, if nitrogen gas is used as the inert gas, the above problems can be solved, but during the graphitization treatment, it reacts with the graphite heating element used as the heating element of the furnace to produce toxic cyan ( A large amount of cyanides such as dicyan C 2 N 2 ) and hydrogen cyanide (HCN) is generated, and the exhaust gas containing a large amount of this cyanides is discharged to the outside of the furnace, so that the operation of the graphitization furnace is safe. There was a problem with.

【0006】本発明の目的は、窒素ガスを用いた黒鉛化
炉内にシアン或はシアン化水素などのシアン類が発生し
ても、このシアン類を200〜500℃の酸化性雰囲気
へと導き分解除去することによって、黒鉛化炉の安全運
転を可能とした炭素繊維の製造方法を提供することであ
る。
The object of the present invention is to remove, even if cyan or cyanides such as hydrogen cyanide are generated in a graphitization furnace using nitrogen gas, the cyanides are introduced into an oxidizing atmosphere at 200 to 500 ° C. and decomposed and removed. By doing so, it is possible to provide a method for producing carbon fiber, which enables safe operation of the graphitization furnace.

【0007】[0007]

【課題を解決するための手段】上記目的は本発明に係る
炭素繊維の製造方法にて達成される。要約すれば本発明
は、有機前駆体の繊維束を不融化し、予備炭化し、更に
前記予備炭化された繊維を、窒素ガス雰囲気下にて黒鉛
化して炭素繊維を得る炭素繊維の製造方法において、前
記黒鉛化炉にて発生した排ガスを200〜500℃の酸
化性雰囲気へと導き、それによって排ガス中のシアン類
を分解除去することを特徴とする炭素繊維の製造方法で
ある。シアン類の分解除去を速めるため、酸化性雰囲気
中で酸化触媒を通して行うのが好ましく、酸化触媒とし
ては、例えばシリカ或はアルミナ、又はシリカとアルミ
ナの混合物からなる担体に、活性成分としてPt、P
d、Ir、Ru、Rh、Os、Cu、Ni、V、Co、
Fe、Mn、及びAgから選ばれる1種又はこれらの混
合物を担持させた触媒が用いられる。
The above object can be achieved by the method for producing carbon fiber according to the present invention. In summary, the present invention relates to a method for producing a carbon fiber in which a fiber bundle of an organic precursor is infusibilized, pre-carbonized, and the pre-carbonized fiber is graphitized in a nitrogen gas atmosphere to obtain a carbon fiber. The method for producing carbon fiber is characterized in that the exhaust gas generated in the graphitization furnace is introduced into an oxidizing atmosphere at 200 to 500 ° C. to decompose and remove cyanides in the exhaust gas. In order to accelerate the decomposition and removal of cyanides, it is preferable to carry out through an oxidation catalyst in an oxidizing atmosphere. As the oxidation catalyst, for example, silica or alumina, or a carrier made of a mixture of silica and alumina, and Pt, P as an active ingredient are used.
d, Ir, Ru, Rh, Os, Cu, Ni, V, Co,
A catalyst supporting one or a mixture thereof selected from Fe, Mn, and Ag is used.

【0008】[0008]

【実施例】次に、本発明の炭素繊維の製造方法を更に詳
しく説明する。
EXAMPLES Next, the method for producing carbon fibers of the present invention will be described in more detail.

【0009】有機前駆体として、例えば、石油系ピッ
チ、石炭系ピッチなどから調製された炭素質ピッチを使
用し、このピッチを加熱溶融して紡糸機にて紡糸し、得
られたピッチ繊維を集束してピッチ繊維束とする。この
後、ピッチ繊維束は不融化炉内を通糸され、最高温度2
50〜350℃の酸化性ガス雰囲気中で加熱して不融化
される。次いで、不融化繊維は、予備炭化炉へと送給さ
れ、窒素又はアルゴン等の不活性ガス雰囲気中で最高温
度400〜1500℃に加熱して、予備炭化される。
As the organic precursor, for example, a carbonaceous pitch prepared from petroleum pitch, coal pitch or the like is used, and this pitch is heated and melted and spun by a spinning machine, and the obtained pitch fibers are bundled. To make a pitch fiber bundle. After this, the pitch fiber bundle is passed through the infusibilizing furnace and the maximum temperature 2
It is made infusible by heating in an oxidizing gas atmosphere at 50 to 350 ° C. Next, the infusible fiber is fed to a preliminary carbonization furnace and heated to a maximum temperature of 400 to 1500 ° C. in an inert gas atmosphere such as nitrogen or argon to be precarbonized.

【0010】次いで、以上のようにして得た予備炭化繊
維は、窒素ガス雰囲気とされる黒鉛化炉内へと導入され
る。黒鉛化炉内は、黒鉛製発熱体によって最高温度15
00〜3000℃の所定温度に保持されており、従っ
て、黒鉛化炉内へと導入された予備炭化繊維は、黒鉛化
炉を通過する間に加熱されて黒鉛化され、炭素繊維(黒
鉛繊維)とされる。
Next, the pre-carbonized fiber obtained as described above is introduced into a graphitizing furnace in a nitrogen gas atmosphere. The maximum temperature in the graphitization furnace is 15 due to the graphite heating element.
The pre-carbonized fiber, which is maintained at a predetermined temperature of 00 to 3000 ° C. and thus introduced into the graphitization furnace, is heated and graphitized while passing through the graphitization furnace, and carbon fiber (graphite fiber) It is said that

【0011】このように、不活性ガスとして窒素ガスを
用いる黒鉛化炉内には、炉内の窒素が、黒鉛製発熱体の
炭素及び繊維から出た炭化水素、水素等と反応して毒性
のシアン(ジシアンC22 )やシアン化水素(HC
N)などのシアン類を作り出す。これらの反応は極短時
間に平衡に達するので、発熱体への窒素ガスの供給を増
大させると、それに伴なって多量に発生することとな
る。
As described above, in the graphitization furnace using nitrogen gas as the inert gas, the nitrogen in the furnace reacts with the carbon of the graphite heating element and the hydrocarbons and hydrogens emitted from the fibers to cause toxicity. Cyan (dicyan C 2 N 2 ) and hydrogen cyanide (HC
N) and other cyanides are produced. Since these reactions reach equilibrium in a very short time, when the supply of nitrogen gas to the heating element is increased, a large amount of them are generated.

【0012】そこで、本発明によると、黒鉛化炉内に発
生したシアン類の排ガスを外部へと導出するための排出
導管が接続される。この排出導管には、200〜500
℃の酸化性雰囲気の排ガスコンバータが接続されてい
る。従って、黒鉛化炉からの排ガスは、この排ガスコン
バータを介して外部へと、即ち、大気中へと排出され
る。
Therefore, according to the present invention, an exhaust pipe for connecting the exhaust gas of cyanides generated in the graphitization furnace to the outside is connected. This discharge conduit contains 200-500
An exhaust gas converter in an oxidizing atmosphere at ℃ is connected. Therefore, the exhaust gas from the graphitization furnace is discharged to the outside, that is, to the atmosphere through the exhaust gas converter.

【0013】排ガスコンバータには好ましくは酸化触媒
が充填され、充填される触媒はシリカ或はアルミナ、又
はシリカとアルミナの混合物からなる担体に、活性成分
としてPt、Pd、Ir、Ru、Rh、Os、Cu、N
i、V、Co、Fe、Mn、及びAgから選ばれる1種
又はこれらの混合物を担持させた触媒とされる。活性成
分の担持量としては、担体の容積1リットル当たり0.
5g以上、好ましくは1.0〜3gとされる。
The exhaust gas converter is preferably filled with an oxidation catalyst, and the filled catalyst is a carrier made of silica or alumina, or a mixture of silica and alumina, and Pt, Pd, Ir, Ru, Rh, Os as an active ingredient. , Cu, N
It is a catalyst supporting one or a mixture of i, V, Co, Fe, Mn, and Ag. The amount of the active ingredient supported is 0.
It is 5 g or more, preferably 1.0 to 3 g.

【0014】又、触媒形状としては、ペレット型(粒状
型)、モノリス型(一体型或はハニカム型)などとされ
る。
The catalyst shape may be pellet type (granular type), monolith type (integral type or honeycomb type), or the like.

【0015】本発明を有効に実施するには、排ガスコン
バータにおける反応温度は200〜500℃、好ましく
は300〜400℃とされ、そして、時間当たり流れる
ガスの容積と触媒容積との比、即ち、空間速度は10
0,000Hr-1以下、好ましくは、50,000Hr
-1以下とされる。
In order to effectively carry out the present invention, the reaction temperature in the exhaust gas converter is 200 to 500 ° C., preferably 300 to 400 ° C., and the ratio of the volume of gas flowing per hour to the catalyst volume, that is, Space velocity is 10
50,000 Hr -1 or less, preferably 50,000 Hr
-1 or less.

【0016】更に、排ガス中の酸素が不足すると良好な
酸化性能を得ることができないために、排ガスコンバー
タには、排ガスコンバータに送給される黒鉛化炉からの
排ガス容量の大略10倍の空気が導管を介して導入され
るのが好ましい。
Further, if the exhaust gas is deficient in oxygen, good oxidation performance cannot be obtained. Therefore, the exhaust gas converter is supplied with air which is approximately 10 times the exhaust gas capacity from the graphitization furnace fed to the exhaust gas converter. It is preferably introduced via a conduit.

【0017】以上の構成にて、黒鉛化炉内にて発生した
シアン(ジシアンC22 )やシアン化水素(HCN)
などシアン類は、排ガスコンバータでの酸化作用によ
り、CO2 、N2 、H2 Oなどに転化され、無害とな
り、外部へと排出される。
With the above construction, cyan (dicyan C 2 N 2 ) and hydrogen cyanide (HCN) generated in the graphitization furnace are generated.
The cyanides are converted into CO 2 , N 2 , H 2 O, etc. by the oxidizing action of the exhaust gas converter, become harmless, and are discharged to the outside.

【0018】上記説明では、ピッチ系炭素繊維の製造を
例に採って説明したが、本発明は、ピッチ以外にも、ポ
リアクリロニトリル、レーヨンなど有機繊維とされる有
機前駆体から出発して炭素繊維を製造する場合にも適用
することができる。
In the above description, the production of pitch-based carbon fibers was described as an example. However, the present invention is not limited to pitch, but carbon fibers are also started from organic precursors such as polyacrylonitrile and rayon, which are organic fibers. It can also be applied to the case of manufacturing.

【0019】次に、本発明を実施例につき更に具体例に
説明する。
Next, the present invention will be described in more detail by way of examples.

【0020】実施例1 接触分解タールを原料として、熱分解重縮合により得た
光学的異方性相98%からなる炭素繊維用ピッチを、5
00孔の紡糸口金を有する溶融紡糸機(ノズル孔:直径
0.3mm)に通して紡糸した。
Example 1 Using catalytic cracking tar as a raw material, 5 pitches of carbon fiber pitch consisting of 98% of an optically anisotropic phase obtained by thermal decomposition polycondensation were obtained.
The melt was spun through a melt spinning machine (nozzle hole: diameter 0.3 mm) having a spinneret with 00 holes.

【0021】紡糸した500本のフィラメントは、エア
サッカーで略集束してオイルリングローラーに導き、糸
に対して約0.1重量%の割合で集束用油剤を供給し、
500フィラメントからなるピッチ繊維の糸条を形成し
た。油剤としては25℃における粘度が13cstのメ
チルフェニルポリシロキサンキサンを使用した。
The 500 spun filaments were substantially bundled by an air sucker and led to an oil ring roller, and a focusing oil agent was supplied at a ratio of about 0.1% by weight to the yarn,
A pitch fiber yarn consisting of 500 filaments was formed. As the oil agent, methylphenylpolysiloxanexane having a viscosity of 13 cst at 25 ° C. was used.

【0022】上記のピッチ繊維はノズル下部に設けた高
速で回転するボビンに巻取り、約500m/分の巻取り
速度で10分間紡糸した。
The above pitch fiber was wound on a bobbin rotating at a high speed provided under the nozzle and spun at a winding speed of about 500 m / min for 10 minutes.

【0023】次いでピッチ繊維束を巻いた前記のボビン
6個を解舒し、そしてオイルリングローラを使用して耐
熱性油剤を付与しながら合糸して、3000フィラメン
トからなるピッチ繊維束を形成し、他のボビンに巻取っ
た。
Next, the above-mentioned 6 bobbins wound with the pitch fiber bundle are unwound, and they are combined while applying a heat-resistant oil agent using an oil ring roller to form a pitch fiber bundle of 3000 filaments. , Wound on another bobbin.

【0024】合糸時に油剤として25℃で30cstの
メチルフェニルポリシロキサン(フェニル基35モル
%)を使用した。付与量は糸に対して0.5%であっ
た。
Methylphenylpolysiloxane (35 mol% of phenyl groups) of 30 cst at 25 ° C. was used as an oil agent at the time of forming yarn. The applied amount was 0.5% based on the yarn.

【0025】このようにして得たボビン巻きのピッチ繊
維束をボビンから解除しつつ、酸化性ガス雰囲気として
酸素/窒素=60/40の富酸素雰囲気の、炉入口温度
190℃、最高温度300℃の温度勾配を持った不融化
炉に連続的に線状で送給して、ピッチ繊維を不融化し
た。
While releasing the bobbin-wound pitch fiber bundle thus obtained from the bobbin, the furnace inlet temperature is 190 ° C. and the maximum temperature is 300 ° C. in an oxygen-rich atmosphere of oxygen / nitrogen = 60/40 as an oxidizing gas atmosphere. The pitch fiber was made infusible by continuously feeding it linearly to the infusibilizing furnace having a temperature gradient of.

【0026】不融化の時間は18分であった。不融化の
際、ピッチ繊維は1フィラメント当たり0.007gの
テンションがかけられた。
The infusibilization time was 18 minutes. When infusibilized, the pitch fiber was tensioned at 0.007 g per filament.

【0027】不融化により得られた不融化繊維は、連続
して予備炭化炉に導入して最高温度1000℃で予備炭
化した。予備炭化炉は入口部より400、500、60
0、700、1000℃へと階段状に上昇する態様にて
加熱保持され、且つ窒素ガスを供給して炉内を窒素ガス
雰囲気に維持された。予備炭化に要した時間は7分であ
った。
The infusibilized fiber obtained by infusibilization was continuously introduced into a pre-carbonization furnace and pre-carbonized at a maximum temperature of 1000.degree. The pre-carbonization furnace is 400, 500, 60 from the inlet.
It was heated and held in a mode in which the temperature was raised stepwise to 0, 700, and 1000 ° C., and nitrogen gas was supplied to maintain the inside of the furnace in a nitrogen gas atmosphere. The time required for pre-carbonization was 7 minutes.

【0028】上記の予備炭化によって得られた予備炭化
繊維は、次いで、黒鉛化炉に連続的に通糸して、窒素ガ
ス雰囲気中で黒鉛化を行なった。黒鉛化炉の炉温は25
00℃で、処理時間は120秒であった。黒鉛化時、1
フィラメント当たり0.1gのテンションを付与した。
The pre-carbonized fiber obtained by the above-mentioned pre-carbonization was then continuously passed through a graphitizing furnace and graphitized in a nitrogen gas atmosphere. The temperature of the graphitization furnace is 25
At 00 ° C., the treatment time was 120 seconds. When graphitized, 1
A tension of 0.1 g was applied per filament.

【0029】黒鉛化炉内には、ガス供給口から窒素ガス
を9.5m3 /hrの供給量にて供給し、排出導管よ
り、排出量5m3 /hrにて排ガスコンバータへと抜き
出した。排ガス中のシアン化水素(HCN)の濃度は9
1ppmであった。
Nitrogen gas was supplied into the graphitization furnace from a gas supply port at a supply rate of 9.5 m 3 / hr, and was discharged from an exhaust conduit at an emission rate of 5 m 3 / hr to an exhaust gas converter. The concentration of hydrogen cyanide (HCN) in the exhaust gas is 9
It was 1 ppm.

【0030】又同時に、排ガスコンバータには、導管を
介して、排ガスの10倍量に相当する50m3 /hrに
て空気を送給した。
At the same time, air was supplied to the exhaust gas converter at a rate of 50 m 3 / hr, which corresponds to 10 times the amount of exhaust gas, via a conduit.

【0031】本実施例で、触媒は、担体としてシリカを
使用し、活性成分としてのPtを、担体1リットルに対
して1.0gの割合で担持させた。
In this example, the catalyst used silica as a carrier, and Pt as an active component was loaded at a ratio of 1.0 g per 1 liter of the carrier.

【0032】排ガスコンバータにおける、触媒量は2.
75リットルであり、反応温度は320℃、空間速度は
20,000Hr-1であった。又、触媒層の厚さは6c
m、触媒形状は、ペレット型であった。
The amount of catalyst in the exhaust gas converter is 2.
The reaction temperature was 320 ° C., and the space velocity was 20,000 Hr −1 . The thickness of the catalyst layer is 6c
m, the catalyst shape was pellet type.

【0033】排ガスコンバータからの外部大気中へと放
出される清浄排出ガス中のシアン化水素の濃度は0pp
mであった。
The concentration of hydrogen cyanide in the clean exhaust gas discharged from the exhaust gas converter into the external atmosphere is 0 pp.
It was m.

【0034】[0034]

【発明の効果】以上説明したように、本発明の製造方法
では、窒素ガスを用いた黒鉛化炉においてシアン或はシ
アン化水素などのシアン類が発生しても、このシアン類
を200〜500℃の酸化性雰囲気へ導入して分解除去
する構成とされるので、黒鉛化処理を安全に行なうこと
ができる。
As described above, according to the manufacturing method of the present invention, even if cyan or cyanides such as hydrogen cyanide are generated in the graphitization furnace using nitrogen gas, the cyanides are heated to 200 to 500 ° C. Since it is configured to be introduced into an oxidizing atmosphere and decomposed and removed, the graphitization treatment can be safely performed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機前駆体の繊維束を不融化し、予備炭
化し、更に前記予備炭化された繊維を、窒素ガス雰囲気
下にて黒鉛化して炭素繊維を得る炭素繊維の製造方法に
おいて、前記黒鉛化炉にて発生した排ガスを200〜5
00℃の酸化性雰囲気へと導き、それによって排ガス中
のシアン類を分解除去することを特徴とする炭素繊維の
製造方法。
1. A method for producing a carbon fiber, wherein a fiber bundle of an organic precursor is infusibilized, pre-carbonized, and the pre-carbonized fiber is graphitized in a nitrogen gas atmosphere to obtain a carbon fiber. Exhaust gas generated in graphitization furnace is 200 to 5
A method for producing carbon fiber, which comprises leading to an oxidizing atmosphere at 00 ° C. to decompose and remove cyanides in the exhaust gas.
JP4354284A 1992-12-15 1992-12-15 Production of carbon fiber Pending JPH06184831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4354284A JPH06184831A (en) 1992-12-15 1992-12-15 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4354284A JPH06184831A (en) 1992-12-15 1992-12-15 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPH06184831A true JPH06184831A (en) 1994-07-05

Family

ID=18436511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4354284A Pending JPH06184831A (en) 1992-12-15 1992-12-15 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH06184831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133286A (en) * 2015-01-21 2016-07-25 大陽日酸株式会社 Exhaust gas treatment method and exhaust gas treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133286A (en) * 2015-01-21 2016-07-25 大陽日酸株式会社 Exhaust gas treatment method and exhaust gas treatment device
WO2016117167A1 (en) * 2015-01-21 2016-07-28 大陽日酸株式会社 Exhaust gas treatment method and exhaust gas treatment device
US10502417B2 (en) 2015-01-21 2019-12-10 Taiyo Nippon Sanso Corporation Exhaust gas treatment method and exhaust gas treatment device

Similar Documents

Publication Publication Date Title
US11408097B2 (en) Process for preparing a yarn comprising carbon nanotubes and yarn prepared thereby
JPH07277719A (en) Production of silicon carbide material
RU2393276C1 (en) Procedure for fabricating long oriented braids of carbon nano-fibres
US4576810A (en) Carbon fiber production
JP2615268B2 (en) Carbon yarn and method for producing the same
JPH06184831A (en) Production of carbon fiber
EP0118616B1 (en) Process for producing carbon fiber
US4574077A (en) Process for producing pitch based graphite fibers
RU2256013C2 (en) Carbonization of cellulose fibrous materials in presence of organosilicon compound
JPS61225325A (en) Carbonaceous fiber
JPH0737687B2 (en) Pitch-based carbon fiber manufacturing method
JPH06166913A (en) Production of carbon fiber
JPH06166911A (en) Production of carbon fiber
JP4022606B2 (en) Expanded graphite, method for producing the same, and oil absorbing material
JPH0310566B2 (en)
JP2930166B2 (en) Carbon fiber production method
RU2698744C1 (en) Method of producing activated carbon fabric
JPH0674528B2 (en) Method for producing carbon fiber and graphite fiber
JP2665118B2 (en) Method for producing fine pitch-based carbon fiber and spinning nozzle
JP3125062B2 (en) Carbon fiber production method
JPH0797281A (en) Production of silicon carbide material
JPH0617319A (en) Production of pitch-based carbon fiber
JPS62133121A (en) Production of pitch carbon fiber
JP2005126855A (en) Method for producing carbon fiber
JPS59150115A (en) Production of carbon fiber