JPH06183860A - Multifunctional material - Google Patents

Multifunctional material

Info

Publication number
JPH06183860A
JPH06183860A JP4334645A JP33464592A JPH06183860A JP H06183860 A JPH06183860 A JP H06183860A JP 4334645 A JP4334645 A JP 4334645A JP 33464592 A JP33464592 A JP 33464592A JP H06183860 A JPH06183860 A JP H06183860A
Authority
JP
Japan
Prior art keywords
porosity
sintered body
heat
ceramics
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4334645A
Other languages
Japanese (ja)
Inventor
Masahiro Asayama
雅弘 浅山
Tsuneji Kameda
常治 亀田
Shusuke Inada
周介 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4334645A priority Critical patent/JPH06183860A/en
Publication of JPH06183860A publication Critical patent/JPH06183860A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a multifunctional material composed of a ceramic exhibiting an excellent heat resistance in combination with respective properties such as high temperature strength, heat insulation and heat shock resistance. CONSTITUTION:A multifunctional material composed of a single ceramic sintered material 1 in which the porosity of one side 1a is different from that of the other side 1b opposite to the abovementioned side 1a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱構造材用材料に適し
た複合機能材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite functional material suitable for a heat resistant structural material.

【0002】[0002]

【従来の技術】近年、耐熱構造材用材料としてセラミッ
クスが用いられつつある。このことに伴い最近では、耐
熱構造材用材料として、耐熱性および高温強度に加え
て、断熱性および耐熱衝撃性を併せ持ったセラミックス
の出現が要望されてきている。従来、耐熱構造材用材料
のセラミックスとしてはZrO2 やSiCといった単一
のセラミックスが使用されている。
2. Description of the Related Art In recent years, ceramics have been used as a material for heat-resistant structural materials. Along with this, recently, as a material for a heat-resistant structural material, the emergence of ceramics having heat insulation and thermal shock resistance in addition to heat resistance and high temperature strength has been demanded. Conventionally, a single ceramic such as ZrO 2 or SiC has been used as the ceramic for the heat resistant structural material.

【0003】しかし、前者のZrO2 は断熱性には優れ
ているが耐熱衝撃性が不十分であり、また後者のSiC
は高温強度および耐熱性には優れているが断熱性が低い
という問題がある。
However, the former ZrO 2 is excellent in heat insulating property but insufficient in thermal shock resistance, and the latter SiC is
Has excellent high temperature strength and heat resistance, but has a problem of low heat insulation.

【0004】このように現状の耐熱構造材用材料として
用いる単一のセラミックスは夫々一長一短があり、高温
強度および耐熱性に加えて、断熱性および耐熱衝撃性と
を併せ持ったセラミックスは存在しなかった。
As described above, each of the current single ceramics used as a material for a heat-resistant structural material has advantages and disadvantages, and there has been no ceramic having both heat resistance and thermal shock resistance in addition to high temperature strength and heat resistance. .

【0005】そこで、このような要望に対して複合機能
を有するセラミックスの採用が検討されている。この複
合機能材料であるセラミックスは、単一的に優れたセラ
ミックス粉末を組合せて焼結して単一のセラミックス焼
結体を製造し、それぞれのセんラミックス材料の長所を
組み合わせて全体として複合した特性を有する材料であ
る。
Therefore, the adoption of ceramics having a composite function has been studied to meet such demands. Ceramics, which are composite functional materials, are manufactured by combining excellent ceramic powders and sintering them to produce a single ceramics sintered body. It is a material having the above characteristics.

【0006】[0006]

【発明が解決しようとする課題】しかし、耐熱性および
高温強度と、断熱性および耐熱衝撃性とを併せ持った複
合機能セラミックスを得るために、実際に断熱性に優れ
たZrO2 、高温強度および耐熱性高温強度に優れたS
iCなどの複数のセラミックスを種々組合せ、また製造
条件を種々組合せて製造を試みたが、上記の各特性を併
せ持ったセラミックスを得ることができなかった。
However, in order to obtain a composite functional ceramic having both heat resistance and high temperature strength, as well as heat insulation and thermal shock resistance, ZrO 2 , which is excellent in heat insulation, high temperature strength and heat resistance are actually used. S excellent in high temperature strength
Attempts were made to combine a plurality of ceramics such as iC and the like under various combinations of manufacturing conditions, but it was not possible to obtain a ceramic having all of the above characteristics.

【0007】この現象の原因の一つとしては、上記のよ
うに要求される特性を個別に有する複数種のセラミック
スを組合せて製造すると、逆に製造過程で各特性のいく
つかが犠牲になり、すべての特性を揃えることができな
いことが考えられる。
As one of the causes of this phenomenon, when a plurality of types of ceramics having the above-mentioned required characteristics are combined and manufactured, on the contrary, some of the characteristics are sacrificed in the manufacturing process. It is conceivable that not all characteristics can be matched.

【0008】例えばSiC粉末とC粉末とを組合せて焼
結体を製造すると、この焼結体におけるSiC層とC層
との間の中間層が緻密ではなくポーラスとなって高温強
度が得られないことがある。
For example, when a sintered body is manufactured by combining SiC powder and C powder, the intermediate layer between the SiC layer and the C layer in this sintered body is not dense and is porous, and high temperature strength cannot be obtained. Sometimes.

【0009】そこで、従来の耐熱構造材用材料は例えば
ZrO2 などからなる断熱性を有するセラミックス焼結
体と、SiCなどからなる高温強度および耐熱性高温強
度を有するセラミックス焼結体とを組合せて構成するこ
とが行われている。
Therefore, a conventional heat-resistant structural material is a combination of a ceramics sintered body having a heat insulating property such as ZrO 2 and a ceramics sintered body having a high temperature strength and a heat resistant high temperature strength such as SiC. Being configured is done.

【0010】しかし、この場合には耐熱構造材用材料に
構成が複雑となり、また前記の各セラミックス焼結体は
耐熱衝撃性が不十分であることが多く、すべての特性を
併せ持っていることにはならないので、熱衝撃による破
損を防止することが必要となる。
However, in this case, the structure of the heat-resistant structural material is complicated, and the above-mentioned ceramics sintered bodies often have insufficient thermal shock resistance, and therefore all of them have all the characteristics. Therefore, it is necessary to prevent damage due to thermal shock.

【0011】本願の発明は前記事情に基づいてなさたも
ので、耐熱性および高温強度に加えて、断熱性および耐
熱衝撃性を有するセラミックスを容易に得ることができ
る複合機能材料を提供することを目的とする。
The invention of the present application has been made in view of the above circumstances, and it is an object of the invention to provide a composite functional material capable of easily obtaining ceramics having heat insulation and thermal shock resistance in addition to heat resistance and high temperature strength. To aim.

【0012】[0012]

【課題を解決するための手段と作用】本願の第1の発明
の複合機能材料は、単一のセラミックス焼結体からな
り、このセラミックス焼結体の側部における気孔率と、
前記側部とは反対側の側部における気孔率とが異なって
いることを特徴とする。
The composite functional material of the first invention of the present application is composed of a single ceramic sintered body, and the porosity at the side portion of the ceramic sintered body,
The porosity is different on the side opposite to the side.

【0013】本願の第2の発明の複合機能材料は、単一
のセラミックス焼結体からなり、このセラミックス焼結
体の表面部における気孔率と、内部における気孔率とが
異なっていることを特徴とする。
The composite functional material of the second invention of the present application is characterized in that it is made of a single ceramic sintered body, and the porosity at the surface portion of this ceramic sintered body is different from the porosity inside. And

【0014】第1の発明および第2の発明の複合機能材
料に採用されるセラミックスは、Al2 3 、ZrO2
などの酸化物系セラミックス、Si3 4 、SiCなど
の非酸化物系セラミックスが挙げられる。
Ceramics used in the composite functional material of the first and second inventions are Al 2 O 3 and ZrO 2
And oxide-based ceramics such as Si 3 N 4 , and non-oxide-based ceramics such as SiC.

【0015】第1の発明および第2の発明の複合機能材
料は、単一のセラミックス焼結体からなることと、この
単一のセラミックス焼結体に気孔率が異なる2つの部分
が存在していこと、すなわち気孔率が大きな部分とこの
部分に比較して気孔率が小さい部分が存在していること
を大きな特徴としている。
The composite functional material of the first invention and the second invention is composed of a single ceramic sintered body, and the single ceramic sintered body has two portions having different porosities. That is, the major feature is that there is a portion having a large porosity and a portion having a smaller porosity than this portion.

【0016】第1の発明および第2の発明の複合機能材
料を形成するセラミックス焼結体において気孔率が大き
な部分は、多くの気孔が存在するので、この多くの気孔
に含まれる空気層により断熱効果が高くなり、良好な断
熱特性を有している。
In the ceramic sintered body forming the composite functional material of the first invention and the second invention, a large porosity exists in a portion having a large porosity. Therefore, heat insulation is provided by an air layer contained in the large number of pores. It is highly effective and has good heat insulation properties.

【0017】また、セラミックス焼結体において気孔率
が小さな部分は、存在する気孔の数が少ないので、セラ
ミックスの特性を活かして耐熱性すなわち耐酸化性と高
温下でも充分な強度を確保することができる。
Since the number of pores existing in the ceramic sintered body having a small porosity is small, heat resistance, that is, oxidation resistance and sufficient strength even at high temperature can be ensured by utilizing the characteristics of ceramics. it can.

【0018】第1の発明および第2の発明の複合機能材
料を形成するセラミックス焼結体における気孔率が高い
部分は、縦弾性係数Eが低いために、熱応力σ=縦弾性
係数E×熱応力ε×温度変化tの式から熱応力の発生が
小さく、この結果高い耐熱衝撃性を得ることができる。
In the ceramic sintered body forming the composite functional material of the first invention and the second invention, the portion having a high porosity has a low longitudinal elastic modulus E, so that thermal stress σ = longitudinal elastic modulus E × heat. From the equation of stress ε × temperature change t, the generation of thermal stress is small, and as a result, high thermal shock resistance can be obtained.

【0019】また、熱衝撃を受けたセラミックス焼結体
にクラックが発生した場合には、クラックの進行が各気
孔で寸断されて阻害される。この意味でも高い耐熱衝撃
性を得ることができる。
Further, when cracks occur in the ceramics sintered body that has been subjected to thermal shock, the progress of the cracks is interrupted by being broken by each pore. Also in this sense, high thermal shock resistance can be obtained.

【0020】なお、第1の発明および第2の発明の複合
機能材料を形成するセラミックス焼結体において、気孔
率が大きい部分と気孔率が小さい部分との間の部分は、
前記気孔率が大きい部分から気孔率が小さい部分に向け
て気孔率が順次減少した形態とすることが好ましい。こ
れは熱が加わった時の発生熱応力を低減させたり、応力
下での応力集中を防止するという理由によるものであ
る。
In the ceramic sintered body forming the composite functional material of the first invention and the second invention, the portion between the portion having high porosity and the portion having low porosity is
It is preferable that the porosity is gradually reduced from the portion having a large porosity to the portion having a small porosity. This is because the thermal stress generated when heat is applied is reduced or stress concentration under stress is prevented.

【0021】第1の発明の複合機能材料においてセラミ
ックス焼結体に気孔率が異なる部分が存在する形態は、
図1に示すようにセラミックス焼結体1の一方の側部1
aに多くの数の気孔2が存在してこの側部の気孔率が大
きく、この側部1aとは反対側に位置する側部1bに存
在する気孔2の数が小さくこの側部の気孔率が小さいも
のである。
In the composite functional material of the first invention, the ceramic sintered body has a portion having different porosity.
As shown in FIG. 1, one side portion 1 of the ceramic sintered body 1
a has a large number of pores 2 and has a large porosity on this side portion, and the number of pores 2 on the side portion 1b opposite to this side portion 1a is small and the porosity of this side portion is small. Is a small one.

【0022】この第1の発明の形態は、高断熱性であ
り、且つ高温強度という効果を持ち、焼結用部品などの
用途に適している。なお、セラミックス焼結体の側部と
反対側の側部とは、例えばセラミックス焼結体の前面と
後面、左面と右面などの組合せを選択できる。
The first aspect of the present invention has a high heat insulating property and an effect of high temperature strength, and is suitable for applications such as sintering parts. For the side portion opposite to the side portion of the ceramic sintered body, for example, a combination of the front surface and the rear surface, the left surface and the right surface of the ceramic sintered body can be selected.

【0023】第2の発明の複合機能材料においてセラミ
ックス焼結体に気孔率が異なる部分が存在する形態は、
図2に示すようにセラミックス焼結体3の表面部3aに
存在する気孔2の数や気孔率と、内部3bに存在する気
孔2の数や気孔率とが異なっているものである。
In the composite functional material of the second invention, the ceramic sintered body has a portion having different porosity.
As shown in FIG. 2, the number and the porosity of the pores 2 existing in the surface portion 3a of the ceramic sintered body 3 are different from the number and the porosity of the pores 2 existing in the inside 3b.

【0024】一般的にはセラミックス焼結体3の表面部
3aは、気孔2の数が少なく、気孔率が小さくて、耐熱
性および高温強度が大であり、セラミックス焼結体3の
内部3bは、気孔2の数が多く、気孔率が大きくて断熱
性および耐熱衝撃性が高いものとすることが好ましい。
この第2の発明の形態は、高断熱性であり且つ高温強
度、さらには比較的等方性があるという効果を持ち、焼
結用タイル部品などの用途に適している。
Generally, the surface portion 3a of the ceramics sintered body 3 has a small number of pores 2, a small porosity, high heat resistance and high temperature strength, and the inside 3b of the ceramics sintered body 3 is It is preferable that the number of the pores 2 is large, the porosity is large, and the heat insulation and thermal shock resistance are high.
The second aspect of the invention has the effects of high heat insulation, high temperature strength, and relatively isotropic properties, and is suitable for applications such as a tile part for sintering.

【0025】第1の発明および第2の発明の複合機能材
料を形成するセラミックス焼結体において、気孔率が大
きい部分の気孔率は10〜60%、好ましくは30〜4
0%、気孔率が小さい部分の気孔率は0〜10%、好ま
しくは0〜5%とする。
In the ceramic sintered body forming the composite functional material of the first invention and the second invention, the porosity of a portion having a large porosity is 10 to 60%, preferably 30 to 4
0%, the porosity of the portion having a small porosity is 0 to 10%, preferably 0 to 5%.

【0026】第1の発明および第2の発明の複合機能材
料を製造する方法としては、例えば材料粉末の中に樹脂
ビーズを分散密度を変えて分散して入れ粉末成形体を成
形し、この粉末成形体を脱脂処理して樹脂ビーズを分解
させることにより成形体に気孔を形成する方法が挙げら
れる。
As a method for producing the composite functional material of the first and second inventions, for example, resin beads are dispersed in material powder at different dispersion densities to form a powder compact, and this powder is powdered. A method of forming pores in the molded product by degreasing the molded product to decompose the resin beads can be mentioned.

【0027】この製造方法の一例について図3を参照し
て説明する。図3はプレス装置により図1に示す第1の
発明に形態の粉末成形体を成形する過程を示している。
図中11はダイ、12は下パンチ、13は上パンチであ
る。
An example of this manufacturing method will be described with reference to FIG. FIG. 3 shows a process of molding the powder compact according to the first aspect of the invention shown in FIG. 1 by a press machine.
In the figure, 11 is a die, 12 is a lower punch, and 13 is an upper punch.

【0028】まず、図3(a)に示すようにダイ11と
下パンチ12とで形成される空間部に多数の樹脂ビーズ
14を投入する。樹脂ビーズ14は次の条件を有してい
る。第一に、成形体の品質に悪影響を与えることなく脱
脂処理により分解する樹脂、例えばPVAからなること
である。
First, as shown in FIG. 3A, a large number of resin beads 14 are put into the space formed by the die 11 and the lower punch 12. The resin beads 14 have the following conditions. First, it is composed of a resin, such as PVA, which is decomposed by a degreasing treatment without adversely affecting the quality of the molded product.

【0029】第二に、直径が、脱脂処理により樹脂ビー
ズが分解した後に粉末成形体に形成される気孔により粉
末成形体が大きく収縮することがなく、且つセラミック
ス焼結体に適切な断熱性を持たせることができる大きさ
であることである。この樹脂ビーズ14の大きさは約5
0〜500μm である。次に図3(b)に示すようにダ
イ11と下パンチ12とで形成される空間部に材料粉末
15を投入する。
Secondly, the diameter of the powder compact does not significantly shrink due to the pores formed in the powder compact after the resin beads are decomposed by the degreasing treatment, and the ceramic sintered body has an appropriate heat insulating property. It is a size that can be held. The size of the resin beads 14 is about 5
It is from 0 to 500 μm. Next, as shown in FIG. 3B, the material powder 15 is put into the space formed by the die 11 and the lower punch 12.

【0030】その後、プレス装置に例えば超音波振動を
加えて図3(c)に示すように樹脂ビーズ14と材料粉
末15とを混合し、粉末成形体の一側部における分散密
度が大きく、他側部に向かうに従い分散密度が小さくな
るように粉末15中に樹脂ビーズ14を分散させる。
Thereafter, for example, ultrasonic vibration is applied to the pressing device to mix the resin beads 14 and the material powder 15 as shown in FIG. 3 (c), so that the dispersion density on one side of the powder compact is large and The resin beads 14 are dispersed in the powder 15 so that the dispersion density becomes smaller toward the sides.

【0031】そして、図3(c)に示すように上パンチ
13で材料粉末15を加圧して図1に示すように樹脂ビ
ーズ14が分散して埋設された粉末成形体を成形する。
さらに、粉末成形体に脱脂処理を施して成形体中に埋設
されている樹脂ビーズ14を分解させる。
Then, as shown in FIG. 3 (c), the material powder 15 is pressed by the upper punch 13 to form a powder compact in which the resin beads 14 are dispersed and embedded as shown in FIG.
Further, the powder compact is degreased to decompose the resin beads 14 embedded in the compact.

【0032】これにより粉末成形体において樹脂ビーズ
14が埋設されていた部分が気孔となる。この結果、図
1に示す形態のセラミックス焼結体が形成される。この
製造方法は量産性に富むという利点がある。
As a result, the portions where the resin beads 14 are embedded in the powder compact become pores. As a result, a ceramic sintered body having the form shown in FIG. 1 is formed. This manufacturing method has the advantage of being highly producible.

【0033】他の製造方法としては、粉末成形体を焼結
する時に、粉末成形体に対して焼結温度を部分的に異な
らせて加熱し、焼結密度すなわち気孔率が部分的に異な
る焼結体を製造する方法がある。この場合、粉末成形体
を焼結する炉に設ける電気ヒータの出力および配列位置
を、粉末成形体に対して焼結温度を部分的に異ならせて
加熱できるように設定する。
As another manufacturing method, when the powder compact is sintered, the powder compact is heated while partially changing the sintering temperature, and the sintering density, that is, the porosity is partially different. There is a method of producing a tie. In this case, the output and arrangement position of the electric heater provided in the furnace for sintering the powder compact are set so that the powder compact can be heated by partially changing the sintering temperature.

【0034】第1の発明および第2の発明の複合機能材
料を製造するに際しては、単一のセラミックス焼結体に
おける各部の焼結密度を異ならせて、そのセラミックス
焼結体に高温強度、断熱性および耐熱衝撃性を持たせる
のであるから、従来のように複数のセラミックスの特性
を得るために複数の製造条件を組合せてセラミックスの
製造を行う場合に比較して、簡単な方法で、しかも確実
にセラミックス焼結体に耐熱性および高温強度、断熱性
および耐熱衝撃性を持たせることができる。
When manufacturing the composite functional material of the first and second inventions, the sintered densities of the respective parts in a single ceramic sintered body are made different so that the ceramic sintered body has high temperature strength and heat insulation. Since it has heat resistance and thermal shock resistance, it is simpler and more reliable than the conventional method of manufacturing ceramics by combining multiple manufacturing conditions to obtain the characteristics of multiple ceramics. In addition, the ceramic sintered body can have heat resistance, high temperature strength, heat insulation and thermal shock resistance.

【0035】[0035]

【実施例】 第1の発明の実施例:Embodiments of the first invention:

【0036】平均粒径0.2μm のAl2 3 粉末と平
均粒径100μm の樹脂ビーズとを出発材料として用意
する。縦50mm×横50mmの金型中に10gの樹脂ビー
ズを投入し、その後20gのAl2 3 粉末を投入し、
金型に超音波振動を2分間加えて粉末と樹脂ビーズとを
混合する。
Al 2 O 3 powder having an average particle size of 0.2 μm and resin beads having an average particle size of 100 μm are prepared as starting materials. 10 g of resin beads are put into a mold of 50 mm length × 50 mm width, and then 20 g of Al 2 O 3 powder is put therein,
Ultrasonic vibration is applied to the mold for 2 minutes to mix the powder and the resin beads.

【0037】次いで、1トン/cm2 の圧力で一軸成形を
行い成形体を成形した。この成形体に対してN2 気流
中、温度700℃、2時間の条件で脱脂処理を施し、樹
脂ビーズを分解除去した。この脱脂体を大気雰囲気中、
温度1700℃、4時間の条件で焼結して図1に示す形
態の焼結体を得た。
Next, 1 ton / cm 2 A uniaxial molding was performed under the pressure of 1 to mold a molded body. This molded body was subjected to a degreasing treatment in a N 2 gas stream at a temperature of 700 ° C. for 2 hours to decompose and remove the resin beads. In this atmosphere,
Sintering was carried out at a temperature of 1700 ° C. for 4 hours to obtain a sintered body having the form shown in FIG.

【0038】この製造方法により次の条件の気孔率を有
する2種類のAl2 3 焼結体を製造した。(1)一側
部の気孔率5%、他側部の気孔率20%。(2)一側部
の気孔率8%、他側部の気孔率60%。
By this manufacturing method, two kinds of Al 2 O 3 sintered bodies having the porosities under the following conditions were manufactured. (1) Porosity of 5% on one side and porosity of 20% on the other side. (2) Porosity of 8% on one side and 60% on the other side.

【0039】前記の製造方法により次の条件の気孔率を
有する2種類のZrO2 焼結体を製造した。(1)一側
部の気孔率5%、他側部の気孔率20%。(2)一側部
の気孔率8%、他側部の気孔率55%。
Two types of ZrO 2 sintered bodies having porosities under the following conditions were manufactured by the above manufacturing method. (1) Porosity of 5% on one side and porosity of 20% on the other side. (2) Porosity of 8% on one side and 55% on the other side.

【0040】前記の製造方法により次の条件の気孔率を
有する2種類のSi3 4 焼結体を製造した。(1)一
側部の気孔率3%、他側部の気孔率10%。(2)一側
部の気孔率6%、他側部の気孔率35%。そして、これ
らの各本発明例焼結体に対して、耐熱性、高温強度、断
熱性および耐熱衝撃性について調べる試験を行った。そ
の結果を表1に示す。
Two types of Si 3 N 4 sintered bodies having the porosities under the following conditions were manufactured by the above manufacturing method. (1) Porosity of one side is 3% and porosity of the other side is 10%. (2) Porosity of 6% on one side and porosity of 35% on the other side. Then, a test for examining heat resistance, high temperature strength, heat insulation and thermal shock resistance was conducted on each of the sintered bodies of the present invention. The results are shown in Table 1.

【0041】なお、耐熱性は、焼結体を1400℃の温
度で100時間加熱した後における焼結体表面の酸化層
の増量、すなわち耐酸化性で示している。高温強度は緻
密な面を引っ張り面と1200℃の3点曲げ試験で示し
ている。断熱性は100%緻密化した焼結体の熱伝導率
で規格化している。耐熱衝撃性は水中投下法による温度
差ΔTで示している。 比較例:
The heat resistance is indicated by an increase in the amount of the oxide layer on the surface of the sintered body after heating the sintered body at a temperature of 1400 ° C. for 100 hours, that is, oxidation resistance. The high temperature strength is shown by a three-point bending test at 1200 ° C. with a dense surface as a tensile surface. The heat insulating property is standardized by the thermal conductivity of a 100% densified sintered body. The thermal shock resistance is indicated by the temperature difference ΔT obtained by the underwater dropping method. Comparative example:

【0042】比較例として100%緻密化したAl2
3 焼結体、ZrO2 焼結体、Si34 焼結体を夫々製
造し、耐酸化性、耐熱衝撃性および断熱性について調べ
る試験を行った。その結果を表1に示す。
As a comparative example, 100% densified Al 2 O
A 3 sintered body, a ZrO 2 sintered body, and a Si 3 N 4 sintered body were manufactured, and tests were conducted to examine the oxidation resistance, thermal shock resistance, and heat insulation. The results are shown in Table 1.

【0043】[0043]

【表1】 表1によれば、本発明例の各焼結体は耐熱性(耐酸化
性)、高温強度、断熱性および耐熱衝撃性の各面で優れ
ていることが分かる。 第2の発明の実施例:
[Table 1] Table 1 shows that each of the sintered bodies of the examples of the present invention is excellent in heat resistance (oxidation resistance), high temperature strength, heat insulation and thermal shock resistance. Embodiment of the second invention:

【0044】平均粒径0.2μm のAl2 3 粉末と平
均粒径100μm の樹脂ビーズとを出発材料として用意
する。縦50mm×横50mmのプレス金型中に20gのA
23 粉末を投入し、その後10gの樹脂ビーズを投
入する。その後Al2 3 粉末を10gの樹脂ビーズの
上に投入し、金型に超音波振動を2分間加えて粉末と樹
脂ビーズとを混合する。
Al 2 O 3 powder having an average particle size of 0.2 μm and resin beads having an average particle size of 100 μm are prepared as starting materials. 20g of A in a 50mm x 50mm press die
1 2 O 3 powder is added, followed by 10 g of resin beads. After that, Al 2 O 3 powder is put on 10 g of the resin beads, and ultrasonic vibration is applied to the mold for 2 minutes to mix the powder and the resin beads.

【0045】次いで、1トン/cm2 の圧力で一軸成形を
行い成形体を成形した。この成形体に対してN2 気流
中、温度700℃、2時間の条件で脱脂処理を施し、樹
脂ビーズを分解除去した。この脱脂体を大気雰囲気中、
温度1700℃、4時間の条件で焼結して図2に示す形
態の焼結体を得た。
Next, 1 ton / cm 2 A uniaxial molding was performed under the pressure of 1 to mold a molded body. This molded body was subjected to a degreasing treatment in a N 2 gas stream at a temperature of 700 ° C. for 2 hours to decompose and remove the resin beads. In this atmosphere,
Sintering was performed at a temperature of 1700 ° C. for 4 hours to obtain a sintered body having the form shown in FIG.

【0046】この製造方法により次の条件の気孔率を有
する2種類のAl2 3 焼結体を製造した。(1)表面
部の気孔率6%、内部の気孔率20%。(2)表面部の
気孔率3%、内部の気孔率50%。
By this manufacturing method, two kinds of Al 2 O 3 sintered bodies having the porosities under the following conditions were manufactured. (1) Porosity 6% on the surface and porosity 20% on the inside. (2) 3% porosity on the surface and 50% on the inside.

【0047】前記の製造方法により次の条件の気孔率を
有する2種類のZrO2 焼結体を製造した。(1)表面
部の気孔率4%、内部の気孔率30%。(2)表面部の
気孔率8%、内部の気孔率50%。
Two kinds of ZrO 2 sintered bodies having the porosities under the following conditions were manufactured by the above manufacturing method. (1) Porosity of the surface part is 4%, porosity of the inside is 30%. (2) Porosity of the surface portion is 8% and porosity of the inside is 50%.

【0048】前記の製造方法により次の条件の気孔率を
有する2種類のSi3 4 焼結体を製造した。(1)表
面部の気孔率8%、内部の気孔率20%。(2)表面部
の気孔率3%、内部の気孔率40%。
Two kinds of Si 3 N 4 sintered bodies having the porosities under the following conditions were manufactured by the above manufacturing method. (1) Porosity of the surface part is 8% and porosity of the inside is 20%. (2) 3% porosity on the surface and 40% on the inside.

【0049】そして、これらの各本発明例の焼結体に対
して、前述の第1の発明の実施例と同様に耐酸化性、高
温強度、断熱性および耐熱衝撃性について調べる試験を
行った、その結果を表2に示す。 比較例:
Then, with respect to each of the sintered bodies of the examples of the present invention, a test for examining the oxidation resistance, the high temperature strength, the heat insulating property and the thermal shock resistance was conducted in the same manner as in the above-mentioned first embodiment of the invention. The results are shown in Table 2. Comparative example:

【0050】比較例として100%緻密化したAl2
3 焼結体、ZrO2 焼結体、Si34 焼結体を夫々製
造し、耐酸化性、高温強度、断熱性および耐熱衝撃性に
ついて調べる試験を行った、その結果を表2に示す。
As a comparative example, 100% densified Al 2 O
3 sintered bodies, ZrO 2 sintered bodies, and Si 3 N 4 sintered bodies were manufactured, respectively, and tests were conducted to examine oxidation resistance, high temperature strength, heat insulation and thermal shock resistance. The results are shown in Table 2. .

【0051】[0051]

【表2】 表2によれば、本発明例の各焼結体は耐酸化性、高温強
度、断熱性および耐熱衝撃性の各面で優れていることが
分かる。
[Table 2] Table 2 shows that each of the sintered bodies of the examples of the present invention is excellent in terms of oxidation resistance, high temperature strength, heat insulation and thermal shock resistance.

【0052】[0052]

【発明の効果】以上説明したように第1の発明および第
2の発明の複合機能材料によれば、優れた耐熱性および
高温強度と、断熱性および耐熱衝撃性の各特性を併せ持
ち耐熱構造材用に適したセラミックスを容易に得ること
ができる。
As described above, according to the composite functional material of the first invention and the second invention, the heat resistant structural material having both excellent heat resistance and high temperature strength and heat insulation and thermal shock resistance characteristics. Ceramics suitable for use can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の複合機能材料の構成を示す模式
図。
FIG. 1 is a schematic diagram showing a configuration of a composite functional material of the first invention.

【図2】第2の発明の複合機能材料の構成を示す模式
図。
FIG. 2 is a schematic diagram showing a configuration of a composite functional material of the second invention.

【図3】第1の発明の複合機能材料の製造工程を示す
図。
FIG. 3 is a diagram showing a manufacturing process of the composite functional material of the first invention.

【符号の説明】[Explanation of symbols]

1…セラミックス焼結体、2…気孔、3…セラミックス
焼結体。
1 ... Ceramics sintered body, 2 ... Porosity, 3 ... Ceramics sintered body.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単一のセラミックス焼結体からなり、こ
のセラミックス焼結体の側部における気孔率と、前記側
部とは反対側の側部における気孔率とが異なっているこ
とを特徴とする複合機能材料。
1. A single ceramic sintered body, characterized in that the porosity of a side portion of the ceramic sintered body and the porosity of a side portion opposite to the side portion are different. Multi-functional material to do.
【請求項2】 単一のセラミックス焼結体からなり、こ
のセラミックス焼結体の表面部における気孔率と、内部
における気孔率とが異なっていることを特徴とする複合
機能材料。
2. A composite functional material comprising a single ceramic sintered body, wherein the porosity at the surface portion of this ceramic sintered body is different from the porosity inside.
JP4334645A 1992-12-15 1992-12-15 Multifunctional material Pending JPH06183860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4334645A JPH06183860A (en) 1992-12-15 1992-12-15 Multifunctional material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4334645A JPH06183860A (en) 1992-12-15 1992-12-15 Multifunctional material

Publications (1)

Publication Number Publication Date
JPH06183860A true JPH06183860A (en) 1994-07-05

Family

ID=18279686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4334645A Pending JPH06183860A (en) 1992-12-15 1992-12-15 Multifunctional material

Country Status (1)

Country Link
JP (1) JPH06183860A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006635A (en) * 2008-06-26 2010-01-14 Kyocera Corp Silicon nitride sintered body
JP2013157533A (en) * 2012-01-31 2013-08-15 Kyocera Corp Ceramic wiring board, semiconductor element mounting substrate, and semiconductor device
JP2014122156A (en) * 2014-02-03 2014-07-03 Kyocera Corp Silicon nitride-based sintered compact
JP2019212584A (en) * 2018-06-08 2019-12-12 京セラ株式会社 Container for ev relay
JPWO2020175459A1 (en) * 2019-02-26 2020-09-03

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006635A (en) * 2008-06-26 2010-01-14 Kyocera Corp Silicon nitride sintered body
JP2013157533A (en) * 2012-01-31 2013-08-15 Kyocera Corp Ceramic wiring board, semiconductor element mounting substrate, and semiconductor device
JP2014122156A (en) * 2014-02-03 2014-07-03 Kyocera Corp Silicon nitride-based sintered compact
JP2019212584A (en) * 2018-06-08 2019-12-12 京セラ株式会社 Container for ev relay
JPWO2020175459A1 (en) * 2019-02-26 2020-09-03
WO2020175459A1 (en) * 2019-02-26 2020-09-03 京セラ株式会社 Insert and cutting tool equipped therewith
CN113507995A (en) * 2019-02-26 2021-10-15 京瓷株式会社 Insert and cutting tool provided with same
CN113507995B (en) * 2019-02-26 2023-12-19 京瓷株式会社 Insert and cutting tool provided with same

Similar Documents

Publication Publication Date Title
US8956482B2 (en) Ceramics composite member and method of producing the same
JPH1112040A (en) Ceramic heater, its production, and ceramic glow plug
US7338723B2 (en) Aluminum nitride substrate and production method
JPS63185864A (en) Composite ceramics and manufacture
KR100648850B1 (en) Method for producing a pin heater
JPH06183860A (en) Multifunctional material
JP5549314B2 (en) INORGANIC FIBER CERAMIC CERAMIC BODY, COMPOSITE THEREOF, AND METHOD FOR PRODUCING THEM
JP3983362B2 (en) Porous composite ceramics and method for producing the same
JPH02296771A (en) Composite ceramic and its production
JPS5891061A (en) Silicon carbide ceramics
JP3981482B2 (en) Method for producing silicon nitride sintered body and method for producing ceramic heater
JP2521690B2 (en) Ceramic heater and method for producing the same
JPS5918165A (en) Manufacture of silicon nitride sintered body
JP4259647B2 (en) Ceramic firing jig and manufacturing method thereof
JP7508804B2 (en) Thermal shock resistant porous body and method for producing thermal shock resistant porous body
JP7512608B2 (en) Thermal shock resistant porous body and method for producing same
JPH07231121A (en) Thermoelectric conversion element and manufacture thereof
JP3604128B2 (en) Displacement control type pressure sintering apparatus and pressure sintering method using the same
JPH10189226A (en) Ceramic heater and manufacture thereof
JPH11217270A (en) Honeycomb structure
JP2021143084A (en) Bonded body, method of producing the same, electrode embedding member, and method of producing the same
JPH04233187A (en) Ceramic heater and its manufacture
JP2013203610A (en) Method for producing inorganic fibrous ceramic porous body
JPH06247776A (en) Porous ceramic joined body and its production
JP2009179509A (en) Porous silicon carbide and heat insulating material using the same