JPH06182393A - Fluidized bed type denitrification treating device - Google Patents

Fluidized bed type denitrification treating device

Info

Publication number
JPH06182393A
JPH06182393A JP4338632A JP33863292A JPH06182393A JP H06182393 A JPH06182393 A JP H06182393A JP 4338632 A JP4338632 A JP 4338632A JP 33863292 A JP33863292 A JP 33863292A JP H06182393 A JPH06182393 A JP H06182393A
Authority
JP
Japan
Prior art keywords
denitrification
reaction tank
sulfur
fluidized bed
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4338632A
Other languages
Japanese (ja)
Inventor
Tetsuro Fukase
哲朗 深瀬
Masahide Shibata
雅秀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4338632A priority Critical patent/JPH06182393A/en
Publication of JPH06182393A publication Critical patent/JPH06182393A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To decrease generation of excess sludge accompanying denitrification and to efficiently perform denitrification by equipping a fluidized bed type reaction tank in which granular sulfur is fluidized, an introduction means of raw water, the takeout means of treated water and gas and a circulation means for introducing a part of treated water taken out from the reaction tank thereinto. CONSTITUTION:In a fluidized bed type denitrification treating device, after activated sludge is added to the packed bed of sulfur granules 10 in accordance with necessity, raw water is introduced into a reaction tank 1 from an introduction pipe 2 of raw water to fluidize the sulfur granules 10. When operation is continued in the state, sulfur denitrification bacteria start to stick on the surfaces of the sulfur granules 10 and are furthermore propergated and good granules are formed. Denitrification reaction is performed with good efficiency, thereby. Denitrification treated water is drawn out from a takeout pipe 3 of treated water. A part thereof is circulated to the lower part of the reaction tank 1 from a pipeline 5 and the remainder is discharged to the outside of the system. Further a pH controller 6 is provided in the pipeline 5. Alkali. is added and pH is so regulated that it becomes the value suitable for denitrification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流動床式脱窒処理装置に
係り、特に、脱窒に伴なう余剰汚泥の生成量が少なく、
しかも、効率的な脱窒処理を行なうことができる流動床
式脱窒処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed denitrification treatment apparatus, and in particular, it produces a small amount of excess sludge due to denitrification,
Moreover, the present invention relates to a fluidized bed denitrification treatment device capable of performing efficient denitrification treatment.

【0002】[0002]

【従来の技術】脱窒処理装置の一つとして流動床式脱窒
処理装置がある。この流動床式脱窒処理装置は、良く知
られているように、反応槽内に担体を装填し、原水を上
向流にて導入して担体を流動化せしめるものであり、流
動化に必要な上向流速を得るために、通常、反応槽上部
から処理水の一部を該反応槽下部に循環することが行な
われている。
2. Description of the Related Art A fluidized bed denitrification treatment device is one of the denitrification treatment devices. As is well known, this fluidized bed denitrification device is a device for loading a carrier into a reaction tank and introducing raw water in an upward flow to fluidize the carrier. In order to obtain a high upward flow velocity, it is usual to circulate a part of the treated water from the upper part of the reaction tank to the lower part of the reaction tank.

【0003】流動床式脱窒処理装置においては、装置運
転開始時(始動時)には、担体表面には脱窒細菌は担持
されていないのであるが、有機性廃水の通水を行なうこ
とにより、該担体表面に脱窒細菌が付着増殖する。
In the fluidized bed denitrification treatment apparatus, denitrifying bacteria are not carried on the surface of the carrier at the time of starting the apparatus (at the time of start-up). The denitrifying bacteria adhere and grow on the surface of the carrier.

【0004】従来、このような担体粒子として活性炭等
を使用することが提案されている(特公昭52−451
38号)。
Conventionally, it has been proposed to use activated carbon or the like as such carrier particles (Japanese Patent Publication No. 52-451).
No. 38).

【0005】また、このような活性汚泥法による脱窒処
理における水素供与体として、イオウ粒子を用いる方法
が提案されている(橋本 奨著「バイオテクノロジー活
用の高機能型活性汚泥法」1989年技報堂出版)。
Further, a method using sulfur particles as a hydrogen donor in the denitrification treatment by such an activated sludge method has been proposed (Hashimoto Sho, "High-performance activated sludge method utilizing biotechnology", 1989, Gihodo. Publishing).

【0006】更に、流動床式脱窒処理装置の脱窒効率を
高めるために、上向流汚泥床にメタノール、グルコー
ス、酢酸等の有機物を添加し、脱窒細菌のグラニュール
を形成させて菌濃度を高め、脱窒を効率的に行なうよう
にしたものもある(「用水と廃水」vol.30,N
o.2,1988年「上向流汚泥床(USB)法による
脱窒の基礎的検討」(江本ふで子、明賀泰樹))。
Further, in order to enhance the denitrification efficiency of the fluidized bed denitrification treatment apparatus, organic substances such as methanol, glucose, acetic acid and the like are added to the upward flow sludge bed to form granules of denitrifying bacteria. There is also one that increases the concentration and performs denitrification efficiently (“Water and Wastewater”, vol. 30, N.
o. 2, 1988 "Basic examination of denitrification by the upflow sludge bed (USB) method" (Fudeko Emoto, Yasuki Aga)).

【0007】[0007]

【発明が解決しようとする課題】水素供与体としてイオ
ウ粒子を添加する方法では、添加したイオウ粒子の一部
が脱窒に使われず、処理水中に流出することがある。更
に、脱窒速度が遅く、脱窒槽容量が大きくなるという欠
点もある。充填型の反応器を用いることにより、イオウ
脱窒細菌を安定して充填材中に保持することができるこ
とから、菌濃度が高まり脱窒速度が向上する旨の記載も
なされているが、具体的な反応器形状については何ら示
されていない。
In the method of adding sulfur particles as a hydrogen donor, some of the added sulfur particles are not used for denitrification and may flow out into the treated water. Further, there is a drawback that the denitrification speed is slow and the denitrification tank capacity becomes large. By using a packed-type reactor, sulfur denitrifying bacteria can be stably retained in the packing material, and it is also described that the bacterial concentration is increased and the denitrification rate is improved. No specific reactor geometry is shown.

【0008】有機物を添加する方法では、汚泥濃度が高
くなることから脱窒速度は速くなるが、水素供与体とし
て有機物を添加する必要があることから、脱窒に伴なう
余剰汚泥の生成量が多いという欠点がある。
In the method of adding the organic matter, the denitrification rate becomes faster because the sludge concentration becomes higher, but since it is necessary to add the organic matter as a hydrogen donor, the amount of surplus sludge produced by the denitrification is increased. There is a drawback that there are many.

【0009】本発明は上記従来の実情に鑑みてなされた
ものであり、水素供与体としての有機物を添加する必要
がなく、従って、脱窒に伴なう余剰汚泥の生成量が少な
く、しかも、効率的な脱窒処理を行なうことができる流
動床式脱窒処理装置を提供することを目的とする。
The present invention has been made in view of the above conventional circumstances, and it is not necessary to add an organic substance as a hydrogen donor, and therefore, the amount of excess sludge produced by denitrification is small, and An object of the present invention is to provide a fluidized bed denitrification treatment device capable of performing efficient denitrification treatment.

【0010】[0010]

【課題を解決するための手段】本発明の流動床式脱窒処
理装置は、内部でイオウ粉粒体が流動される流動床式反
応槽と、該反応槽の下部に設けられた原水導入手段と、
該反応槽の上部に設けられた処理水取出手段及びガス取
出手段と、該反応槽の上部から取り出した処理水の一部
を該反応槽下部へ循環して導入する循環手段とを備えた
ことを特徴とする。
A fluidized bed type denitrification treatment apparatus of the present invention comprises a fluidized bed type reaction tank in which sulfur powder particles are fluidized, and a raw water introducing means provided in the lower portion of the reaction tank. When,
A treatment water take-out means and a gas take-out means provided at the upper part of the reaction tank, and a circulation means for circulating and introducing a part of the treated water taken out from the upper part of the reaction tank to the lower part of the reaction tank. Is characterized by.

【0011】なお、従来において、流動床式脱窒処理装
置にイオウ粉粒体を流動担体として用いることは提案さ
れていない。特公平4−9119号には、脱窒槽底部に
粒状イオウを敷設することが開示されているが、流動担
体として用いるものではない。
In the past, it has not been proposed to use sulfur powder particles as a fluid carrier in a fluidized bed denitrification treatment apparatus. Japanese Examined Patent Publication No. 4-9119 discloses that granular sulfur is laid at the bottom of the denitrification tank, but it is not used as a fluid carrier.

【0012】[0012]

【作用】本発明の流動床式脱窒処理装置においては、イ
オウ粉粒体を流動担体として用い、このイオウ粉粒体を
核として粒状汚泥を生成させる。即ち、イオウ粉粒体を
内蔵する流動床式反応槽に、硝酸性窒素(NO3 -),亜
硝酸性窒素(NO2 -)を含む原水を通水して流動床を形
成すると、イオウ脱窒細菌が優先的にイオウ粉粒体に付
着して増殖し、良好なグラニュールが形成される。
In the fluidized bed denitrification treatment apparatus of the present invention, the sulfur powder granules are used as a fluid carrier, and the sulfur powder granules are used as nuclei to produce granular sludge. That is, the fluidized bed reactor incorporating a sulfur powder granules, nitrate nitrogen (NO 3 -), nitrite nitrogen (NO 2 -) When you passed through the raw water containing the to form a fluidized bed, the sulfur removal The nitrifying bacteria preferentially attach to and grow on the sulfur granules to form good granules.

【0013】従来において、イオウ粉粒体を担体として
脱窒細菌のグラニュールを生成させたことが報告された
例はなく、本発明の流動床式脱窒処理装置は、イオウを
流動床の担体とする新規知見に基いてなされたものであ
る。
Conventionally, there has been no report that granules of denitrifying bacteria were produced using sulfur powder granules as a carrier, and the fluidized bed denitrification treatment apparatus of the present invention uses sulfur as a carrier in a fluidized bed. It was made based on the new knowledge.

【0014】なお、イオウ粉粒体による固定床式脱窒処
理装置も考え得る。しかしながら、固定床を形成するた
めには、粒径2〜3mmといった大きなイオウ粒子を用
いる必要があり、このような大径のイオウ粒子はその表
面積が小さいため、脱窒速度が遅くなり、脱窒効率の面
で好ましくない。
A fixed bed type denitrification treatment device using sulfur powder and granules can be considered. However, in order to form a fixed bed, it is necessary to use large sulfur particles having a particle size of 2 to 3 mm. Since such large-sized sulfur particles have a small surface area, the denitrification rate becomes slow and the denitrification speed decreases. It is not preferable in terms of efficiency.

【0015】[0015]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0016】図1は本発明の流動床式脱窒処理装置の一
実施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a fluidized bed denitrification treatment apparatus of the present invention.

【0017】図1において、反応槽1は、下部に原水の
導入管2が接続され、上部に処理水の抜出管3とガス抜
管4とが接続されている。また、処理水の一部を反応槽
下部へ循環するための配管5が抜出管3から分岐して設
けられており、その途中にはpHコントローラ6が設け
られている。このpHコントローラ6には、NaOH等
のアルカリの供給配管7が接続されている。
In FIG. 1, a reaction vessel 1 has a lower portion to which a raw water inlet pipe 2 is connected, and an upper portion to which a treated water outlet pipe 3 and a gas outlet pipe 4 are connected. A pipe 5 for circulating a part of the treated water to the lower part of the reaction tank is provided so as to branch from the extraction pipe 3, and a pH controller 6 is provided in the middle thereof. A supply pipe 7 for supplying alkali such as NaOH is connected to the pH controller 6.

【0018】なお、この循環用の配管5は原水導入管2
に接続されているが、反応槽1の下部に直に接続しても
良い。また、この循環用配管5は、抜出管3から分岐さ
せる代わりに反応槽1の上部に直に接続しても良い。
The pipe 5 for circulation is the raw water introduction pipe 2
However, it may be directly connected to the lower part of the reaction tank 1. The circulation pipe 5 may be directly connected to the upper part of the reaction tank 1 instead of being branched from the extraction pipe 3.

【0019】反応槽1内の上方部位には、コーン形状の
ガス収集部材8が設けられており、反応槽1内で発生し
たガスを集めてガス抜管4より排出するように構成され
ている。
A cone-shaped gas collecting member 8 is provided at an upper portion in the reaction tank 1 so that the gas generated in the reaction tank 1 is collected and discharged from the gas vent pipe 4.

【0020】この反応槽1内にイオウ粉粒体10を入れ
ておく。なお、必要に応じ、反応槽1内の下部に分散板
を設ける。
Sulfur powder particles 10 are placed in the reaction tank 1. If necessary, a dispersion plate is provided in the lower part of the reaction tank 1.

【0021】このような流動床式脱窒処理装置において
は、必要に応じてイオウ粉粒体10の充填層に活性汚泥
を添加した後、原水導入管2から反応槽1内に原水を導
入してイオウ粉粒体10を流動させる。この状態で運転
を継続すると、イオウ粉粒体10の表面にイオウ脱窒細
菌が付着し始め、これが更に増殖して、良好なグラニュ
ールを形成する。このようなグラニュールの形成に伴な
って、脱窒反応を高効率にて行なうことが可能とされ
る。
In such a fluidized bed denitrification treatment apparatus, after adding activated sludge to the packed bed of the sulfur powder particles 10 as necessary, raw water is introduced into the reaction tank 1 through the raw water introduction pipe 2. To make the sulfur powder particles 10 flow. If the operation is continued in this state, the sulfur denitrifying bacteria will start to adhere to the surface of the sulfur powder granules 10, which will further grow to form good granules. With the formation of such granules, the denitrification reaction can be performed with high efficiency.

【0022】脱窒処理水は、処理水取出管3より抜き出
され、一部は配管5より反応槽1下部に循環され、残部
は系外へ排出される。
The denitrification treated water is withdrawn from the treated water withdrawing pipe 3, a part is circulated through the pipe 5 to the lower part of the reaction tank 1, and the rest is discharged out of the system.

【0023】なお、配管5に設けられたpHコントロー
ラは、処理水にNaOH等のアルカリを添加して、pH
を脱窒に好適な6.0〜8.5に調整するためのもので
ある。即ち、脱窒処理により処理水は通常の場合酸性域
となっているため、pH調整を行なう。pH調整の方法
としては、このほかに予めイオウ粉粒体とともに炭酸カ
ルシウムの粉粒体を反応槽1内に入れることもできる。
また、配管5の途中に炭酸カルシウムの粉粒体を充填し
たpH調整槽を設けることもできる。
The pH controller provided in the pipe 5 adds an alkali such as NaOH to the treated water to adjust the pH.
Is adjusted to 6.0-8.5, which is suitable for denitrification. That is, since the treated water is usually in the acidic region due to the denitrification treatment, the pH is adjusted. As a method of adjusting the pH, in addition to this, it is also possible to previously put the powdery particles of calcium carbonate into the reaction tank 1 together with the powdery particles of sulfur.
A pH adjusting tank filled with calcium carbonate powder or granules may be provided in the middle of the pipe 5.

【0024】本発明の流動床式脱窒処理装置において、
用いるイオウ粉粒体の粒径は大き過ぎると表面積が小さ
くなり脱窒反応速度が低下する。逆に小さ過ぎると沈降
性が悪くなり、生成グラニュールの反応槽外への流出を
十分に防止し得ない。
In the fluidized bed denitrification treatment apparatus of the present invention,
If the particle size of the sulfur powder used is too large, the surface area becomes small and the denitrification reaction rate decreases. On the other hand, if it is too small, the settling property deteriorates, and it is not possible to sufficiently prevent the generated granules from flowing out of the reaction tank.

【0025】従って、脱窒反応速度の面からは、イオウ
粉粒体の粒径は小さい方が好ましく、沈降性の面からは
大きい方が好ましいことが言える。しかしながら、一旦
イオウ粉粒体の表面にイオウ脱窒細菌のグラニュールが
生成すると、イオウ脱窒細菌のグラニュールは密度が高
く、LV2〜3m/hrでも通水可能となるため、実用
上、沈降性は殆ど問題となることはない。
Therefore, from the viewpoint of the denitrification reaction rate, it can be said that the particle size of the sulfur powder granules is preferably small, and from the viewpoint of sedimentation property, the larger particle size is preferable. However, once the granules of sulfur denitrifying bacteria are formed on the surface of the sulfur powder granules, the granules of sulfur denitrifying bacteria have a high density and can pass water even at LV 2-3 m / hr. Sex is hardly a problem.

【0026】本発明において、イオウ粉粒体の粒径は1
mm以下、特に、50〜500μm程度とするのが好ま
しい。
In the present invention, the particle size of the sulfur powder is 1
It is preferably not more than mm, and particularly preferably about 50 to 500 μm.

【0027】このようなイオウ粉粒体は脱窒の進行に伴
なって脱窒反応に消費されて減少してゆくため、本発明
においては、この消費量に見合うイオウ粉粒体を随時反
応槽に添加する。
Since such sulfur powder and granules are consumed in the denitrification reaction and decrease as the denitrification progresses, in the present invention, the sulfur powder and granules corresponding to the consumed amount are always used in the reaction tank. Added to.

【0028】なお、このようなイオウ粉粒体に付着して
増殖するイオウ脱窒細菌としては、チオバシラス、デナ
トリフィカンス等が知られている。
As sulfur denitrifying bacteria that adhere to and grow on such sulfur powder and granules, Thiobacillus, Denatrificans and the like are known.

【0029】以下に具体的な実施例を挙げて、本発明を
より詳細に説明する。
The present invention will be described in more detail with reference to specific examples.

【0030】実施例1 図1に示す本発明の流動床式脱窒処理装置により合成排
水の処理を行なった。即ち、内径10cm,高さ50c
mの塩化ビニル製カラムに、粒径200μm以下のイオ
ウ粒子を400ml装填し、都市下水の活性汚泥を30
00mg/lとなるように添加して、下記水質の合成排
水を通水した。
Example 1 Synthetic wastewater was treated by the fluidized bed denitrification treatment apparatus of the present invention shown in FIG. That is, inner diameter 10 cm, height 50 c
m vinyl chloride column was loaded with 400 ml of sulfur particles with a particle size of 200 μm or less and activated sludge of municipal sewage was 30
It was added so that it became 00 mg / l, and synthetic wastewater of the following water quality was passed through.

【0031】合成排水水質 NaNO3 :1200mg/l NH4 Cl : 120mg/l MgSO4 ・7H2 O: 20mg/l KH2 PO4 : 100mg/l NaHCO3 :1000mg/l FeSO4 ・7H2 O: 5mg/l 滞留時間は12時間とし、処理水の一部はNaOHを添
加してpHを7.5に調整した後循環させ、原水の合成
排水と混合してカラム下部から導入した。
Synthetic wastewater quality NaNO 3 : 1200 mg / l NH 4 Cl: 120 mg / l MgSO 4 .7H 2 O: 20 mg / l KH 2 PO 4 : 100 mg / l NaHCO 3 : 1000 mg / l FeSO 4 .7H 2 O: 5 mg / l The residence time was 12 hours, and part of the treated water was circulated after adding NaOH to adjust the pH to 7.5, mixed with the raw water synthetic wastewater, and introduced from the lower part of the column.

【0032】その結果、運転開始後約2週間経過した時
点より、イオウ粒子表面への菌の付着が観察され、徐々
に脱窒が起こり始めた。
As a result, from about 2 weeks after the start of the operation, adherence of bacteria to the surface of the sulfur particles was observed, and denitrification gradually started.

【0033】この運転を2ケ月継続した結果、処理水の
NO3 −Nは10mg/l以下になった。なお、この
間、一週間に5gずつのイオウ粒子をカラム内に追加し
た。カラム下部には直径1mm程度のグラニュールが生
成した。
As a result of continuing this operation for two months, NO 3 -N in the treated water was 10 mg / l or less. During this period, 5 g of sulfur particles were added to the column each week. Granules with a diameter of about 1 mm were generated in the lower part of the column.

【0034】その後、合成排水の滞留時間を6時間にし
て運転を継続したところ、処理水のNO3 −N濃度は1
0mg/l以下で安定していた。
After that, when the operation was continued with the residence time of the synthetic waste water being 6 hours, the NO 3 -N concentration of the treated water was 1
It was stable at 0 mg / l or less.

【0035】[0035]

【発明の効果】以上詳述した通り、本発明の流動床式脱
窒処理装置によれば、有機物の添加を必要とすることな
く、従って、脱窒に伴なう余剰汚泥の生成量を極めて少
なく抑えて、安定かつ効率的な脱窒処理を行なうことが
可能とされる。
As described in detail above, according to the fluidized bed denitrification treatment apparatus of the present invention, the addition of organic matter is not required, and therefore the amount of surplus sludge produced due to denitrification is extremely reduced. It is possible to carry out stable and efficient denitrification treatment with a small amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の流動床式脱窒処理装置の一実施例を示
す断面図である。
FIG. 1 is a sectional view showing an embodiment of a fluidized bed denitrification treatment apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 原水導入管 3 処理水取出管 5 循環用配管 10 イオウ粉粒体 1 Reaction Tank 2 Raw Water Introducing Pipe 3 Treated Water Extracting Pipe 5 Circulation Pipe 10 Sulfur Granule

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部でイオウ粉粒体が流動される流動床
式反応槽と、 該反応槽の下部に設けられた原水導入手段と、 該反応槽の上部に設けられた処理水取出手段及びガス取
出手段と、 該反応槽の上部から取り出した処理水の一部を該反応槽
下部へ循環して導入する循環手段とを備えたことを特徴
とする流動床式脱窒処理装置。
1. A fluidized bed type reaction tank in which sulfur powder and granules are fluidized, raw water introducing means provided in the lower part of the reaction tank, treated water removing means provided in the upper part of the reaction tank, and A fluidized bed denitrification treatment apparatus comprising: a gas extraction means and a circulation means for circulating and introducing a part of the treated water taken out from the upper portion of the reaction tank to the lower portion of the reaction tank.
JP4338632A 1992-12-18 1992-12-18 Fluidized bed type denitrification treating device Pending JPH06182393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4338632A JPH06182393A (en) 1992-12-18 1992-12-18 Fluidized bed type denitrification treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4338632A JPH06182393A (en) 1992-12-18 1992-12-18 Fluidized bed type denitrification treating device

Publications (1)

Publication Number Publication Date
JPH06182393A true JPH06182393A (en) 1994-07-05

Family

ID=18320007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4338632A Pending JPH06182393A (en) 1992-12-18 1992-12-18 Fluidized bed type denitrification treating device

Country Status (1)

Country Link
JP (1) JPH06182393A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020002451A (en) * 2001-11-22 2002-01-09 황용우 Manufature and Method of using the Media Sulfur-utilizing Autotrophic denitrification Reactor
KR100331943B1 (en) * 1999-06-21 2002-04-10 김재모 Water treatment system and water treatment method using the same
JP2002159993A (en) * 2000-11-27 2002-06-04 Nitchitsu Co Ltd Nitric acid removal treatment equipment
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
WO2003093180A1 (en) * 2002-05-02 2003-11-13 Korea Institute Of Science And Technology Biological denitrification apparatus and method using fluidized-bed reactor filled with elemental sulfur
EP1419996A1 (en) * 2002-11-05 2004-05-19 Nippon Steel Chemical Co., Ltd. Nitrate nitrogen denitrifying treatment material, method of producing the same, and method of removing nitrate nitrogen
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method
KR100503134B1 (en) * 2003-01-20 2005-07-21 (주)전테크 A wastewater treatment methods
US7109022B1 (en) 1998-09-25 2006-09-19 Nitchitsu Co., Ltd Composition containing calcium carbonate particles dispersed in sulfur for removing nitrate nitrogen
US20110174709A1 (en) * 2010-01-20 2011-07-21 Hitachi Plant Technologies, Ltd. Wastewater treatment system and wastewater treatment process
JP2014517700A (en) * 2011-05-27 2014-07-24 バイオシグマ ソシエダッド アノニマ System and method for bioadaptation of sulfur in the form of a stable dispersion for supply to an industrial bioreactor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109022B1 (en) 1998-09-25 2006-09-19 Nitchitsu Co., Ltd Composition containing calcium carbonate particles dispersed in sulfur for removing nitrate nitrogen
KR100331943B1 (en) * 1999-06-21 2002-04-10 김재모 Water treatment system and water treatment method using the same
JP4560810B2 (en) * 2000-11-27 2010-10-13 株式会社ニッチツ Nitrate ion removal equipment
JP2002159993A (en) * 2000-11-27 2002-06-04 Nitchitsu Co Ltd Nitric acid removal treatment equipment
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
KR20020002451A (en) * 2001-11-22 2002-01-09 황용우 Manufature and Method of using the Media Sulfur-utilizing Autotrophic denitrification Reactor
WO2003093180A1 (en) * 2002-05-02 2003-11-13 Korea Institute Of Science And Technology Biological denitrification apparatus and method using fluidized-bed reactor filled with elemental sulfur
EP1419996A1 (en) * 2002-11-05 2004-05-19 Nippon Steel Chemical Co., Ltd. Nitrate nitrogen denitrifying treatment material, method of producing the same, and method of removing nitrate nitrogen
KR100503134B1 (en) * 2003-01-20 2005-07-21 (주)전테크 A wastewater treatment methods
JP2004322023A (en) * 2003-04-28 2004-11-18 Nippon Steel Chem Co Ltd Nitrate nitrogen treatment material and nitrate nitrogen treatment method
JP4493927B2 (en) * 2003-04-28 2010-06-30 新日鐵化学株式会社 Nitrate nitrogen treatment material and nitrate nitrogen treatment method
US20110174709A1 (en) * 2010-01-20 2011-07-21 Hitachi Plant Technologies, Ltd. Wastewater treatment system and wastewater treatment process
JP2014517700A (en) * 2011-05-27 2014-07-24 バイオシグマ ソシエダッド アノニマ System and method for bioadaptation of sulfur in the form of a stable dispersion for supply to an industrial bioreactor

Similar Documents

Publication Publication Date Title
JP4681297B2 (en) Method of treating wastewater with sludge granules
JPS5867395A (en) Method and apparatus for biologically purifying waste water
JPH0133235B2 (en)
JP2002346593A (en) Method and apparatus for denitrification
JP2002224688A (en) Denitrifying method and denitrifying apparatus
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
JPH06182393A (en) Fluidized bed type denitrification treating device
JPH04110097A (en) Treatment of waste beer liquid
JP2003039093A (en) Denitrification method and denitrification apparatus
US4490258A (en) Sludgeless oxidative biological purification process
JP2576679B2 (en) Dephosphorization device
WO2003093180A1 (en) Biological denitrification apparatus and method using fluidized-bed reactor filled with elemental sulfur
JPH07290088A (en) Method for biologically denitrifying organic waste water
JPH06142682A (en) Anaerobic water treatment device
JP2002177986A (en) Biological denitrification equipment
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP2947684B2 (en) Nitrogen removal equipment
JPS63158194A (en) Biological treatment of organic sewage
JPS5990690A (en) Treatment of water containing organic substance and phosphate
JPS6010798B2 (en) Sewage treatment method
JPH0667511B2 (en) Anaerobic water treatment method
JP4385560B2 (en) Crystallization dephosphorization method and crystallization dephosphorization apparatus
JPS5827696A (en) Removal of nitrogen and phosphorus in waste water
JPH0133238B2 (en)
JPWO2003045853A1 (en) Biofilm filtration apparatus and method