JPH06182344A - Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution - Google Patents

Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution

Info

Publication number
JPH06182344A
JPH06182344A JP34826491A JP34826491A JPH06182344A JP H06182344 A JPH06182344 A JP H06182344A JP 34826491 A JP34826491 A JP 34826491A JP 34826491 A JP34826491 A JP 34826491A JP H06182344 A JPH06182344 A JP H06182344A
Authority
JP
Japan
Prior art keywords
tank
nitric acid
salt
nitrogen gas
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34826491A
Other languages
Japanese (ja)
Inventor
Fumio Nakamura
文雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP34826491A priority Critical patent/JPH06182344A/en
Publication of JPH06182344A publication Critical patent/JPH06182344A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To make harmless effectively waste water containing salt harmful to animals and vegetables and an inorganic nitrogen compound such as nitric acid and ammonia causing problems of the enrichmet of a water area by means of chemical and electrical method and also provide a method of recovering and reusing hypochlorite having sterlization force or the like. CONSTITUTION:Nitric acid or the like is formed by (a) electrolyzing water solution 1 containing salt and an inorganic nitrogen compound in a single electrolytic cell or (b) the electrolysis cell is divided by an ion exchange membrane or a diaphragm into two cells, and water solution is introduced into a first cell 7 provided with an anode 3 to electroytically oxidize ammonia and salt or the like to form nitric acid, and then introduced into a second cell 11 provided with a cathode 5 and nitric acid is electrolytically reduced to form a harmless nitrogen gas or the like. (c) Chlorine gas 10 formed in the first cell and caustic soda formed in the second cell are introduced into a reaction tank in which hypochlorite and chloramine with sterilization force are formed and recovered. (d) Chemical reduction is performed by using metal, and can be treated and recovered in the process of (a)-(c).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、塩分および/または
硝酸、亜硝酸、アンモニヤ等を含有する溶液に対し、単
一電解槽で電解するか、または、第1槽(及び第3槽)
の陽極で塩分及びアンモニヤを電解酸化して塩素ガス、
硝酸、クロラミン、窒素ガス等を生成させ、陰極を設置
した第2槽(及び第4槽)で硝酸を電解還元して窒素ガ
ス等とし、生成した塩素ガスとアルカリ性溶液とを第5
槽で混合して次亜塩素酸塩および/またはクロラミンを
生成させ、それを細菌類を滅菌するために利用しようと
する方法であるので、高濃度の塩分、硝酸やアンモニヤ
を含有する水溶液の処理に有効であり、特に、上水、下
水、産業用排水処理の分野に有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention electrolyzes a solution containing salt and / or nitric acid, nitrous acid, ammonia, etc., in a single electrolytic cell, or in the first tank (and third tank).
Chlorine gas by electrolytically oxidizing salt and ammonia at the anode of
Nitric acid, chloramine, nitrogen gas, etc. are generated, and nitric acid is electrolytically reduced to nitrogen gas etc. in the second tank (and the fourth tank) in which the cathode is installed, and the generated chlorine gas and alkaline solution are mixed in the fifth gas.
It is a method of mixing hypochlorite and / or chloramine by mixing in a tank and using it for sterilizing bacteria. Therefore, treatment of an aqueous solution containing a high concentration of salt, nitric acid or ammonia. It is particularly effective in the fields of clean water, sewage and industrial wastewater treatment.

【0002】[0002]

【従来の技術】従来、塩分を高濃度に含有する水溶液に
対しては有効な処理方法がなく、濃縮して固形物にする
とか、または、希釈して下水道や公共用水域に放流して
きた。一方、アンモニヤ含有溶液に対してはアンモニヤ
ストリッピング法があったが、硝酸含有溶液に対しては
適切な方法がなかった。
2. Description of the Related Art Conventionally, there is no effective treatment method for an aqueous solution containing a high concentration of salt, and it has been concentrated to a solid or diluted and then discharged into a sewer or a public water area. On the other hand, although there was an ammonium stripping method for the solution containing ammonium, there was no suitable method for the solution containing nitric acid.

【0003】近年、硝酸及びアンモニヤ含有水溶液に対
する生物学的脱窒素方法が開発され、各方面で応用され
るようになった。しかしながら、有機物を同時に含有し
ていない水溶液の場合適当な有機物添加を必要とする欠
点がある。また、塩分除去に対して、この方法は無効で
ある。従って、塩分および硝酸、亜硝酸、アンモニヤ等
を含有する無機性水溶液に対する適切な処理方法は未だ
ない。
In recent years, biological denitrification methods for nitric acid- and ammonium-containing aqueous solutions have been developed and applied in various fields. However, in the case of an aqueous solution that does not contain organic substances at the same time, there is a drawback that it is necessary to add appropriate organic substances. Moreover, this method is ineffective for salt removal. Therefore, there is still no suitable treatment method for an inorganic aqueous solution containing salt and nitric acid, nitrous acid, ammonia and the like.

【0004】[0004]

【発明が解決しようとする課題】高濃度に塩分を含有
し、更に、硝酸 または/及び アンモニヤを含有する
水溶液は用廃水処理分野の各所で発生している。高濃度
の塩分は動植物に対し有害であり、窒素成分は水域の冨
栄養化問題を発生させるので、いずれも適切に処理され
ねばならない。しかしながら、硝酸 または/及び ア
ンモニヤ含有の無機性水溶液に対する生物学的脱窒素方
法の運転には有機物添加を必要とするが、たとえば飲料
水のように、処理水の利用目的によっては使用有機物に
工夫が必要であり、更に、処理水中での残存有機物量や
生物処理過程での生成有機物の有害性の問題も発生す
る。また、塩分含有溶液に対する処理法は上述のように
未だない。また一方、中小規模の廃水処理施設では滅菌
処理が不十分で、大腸菌等バクテリヤを多量に含有する
排水を放流しているところが多く、殺菌剤の供給や滅菌
装置の維持管理に関わる問題点を解決する必要がある。
Aqueous solutions containing salt at a high concentration and further containing nitric acid and / or ammonium have been generated in various places in the field of wastewater treatment. High concentrations of salt are harmful to plants and animals, and nitrogen components cause the problem of nutrient eutrophication in water bodies, so both must be properly treated. However, the operation of the biological denitrification method for the inorganic aqueous solution containing nitric acid and / or ammonia requires the addition of organic matter, but the organic matter to be used may be devised depending on the intended use of the treated water, such as drinking water. In addition, the problem of the amount of residual organic matter in the treated water and the harmfulness of the produced organic matter in the biological treatment process occurs. Further, there is still no treatment method for the salt-containing solution as described above. On the other hand, in small and medium-sized wastewater treatment facilities, sterilization is insufficient, and there are many places that discharge wastewater containing a large amount of bacteria such as Escherichia coli, which solves problems related to supply of bactericides and maintenance of sterilizers. There is a need to.

【0005】従って、用廃水中に含有される窒素成分を
無害な窒素ガスにして水系から除去すると共に、共存す
る塩分から殺菌力のある次亜塩素酸塩を生成させ回収利
用する方法と装置を提供することを目的としている。
Therefore, there is provided a method and apparatus for removing nitrogen components contained in wastewater into harmless nitrogen gas from an aqueous system and producing hypochlorite having a bactericidal activity from the coexisting salt to recover and utilize it. It is intended to be provided.

【0006】[0006]

【課題を解決するための手段】前記の問題点を解決する
ための本発明の手段は (a)陽極および陰極を設置した1つの電解水槽に、塩
分および/または無機窒素化合物塩分を含有する水、ま
たは、アンモニヤを含有する水溶液に、電導度と分解性
を高めるため必要に応じて、炭酸塩、硫酸塩、塩分など
の電解質を添加した水を導き、pH=1〜14の条件で
電解酸化および電 解還元を行なって、クロラミン、次
亜塩素酸ソーダ、窒素ガスなどを生成させるか、また
は、 (b)第1槽と第2槽との間をイオン交換膜または隔膜
で隔て、第1槽に陽極を設置し、ここに連続的に塩分お
よび/または無機窒素化合物を含有する水、または、ア
ンモニヤを含有する水溶液に、電導度と分解性を高める
ため、必要に応じて、炭酸塩、硫酸塩、塩分などの電解
質を添加した水を導き、pH=1〜14の条件でアンモ
ニヤや塩分を電解酸化して、クロラミン、 硝酸、窒素
ガス、塩素ガスなどを生成させる第1の段階と (c)第1段階を経た溶液を加熱水槽に導き、一部生成
されている硝酸アンモニウムや亜硝酸アンモニウムを熱
分解して窒素ガスにする第2の段階と (d)第1または第2の段階を経た溶液を陰極を設置し
た第2槽に導き、電解の結果生成されるOHイオンに
よりアルカリ性となっている水溶液中で、または、PH
=1〜14の条件下で、硝酸を電解還元して窒素ガスと
する第3の段階と (e)第3の段階で、アンモニヤなどが残留している場
合は、再び第1槽に還流させ酸化して硝酸などとし、再
び第2槽に導き、生成した硝酸を電解還元して窒素ガス
などとするか、または、第3槽と第4槽の間を同様にイ
オン交換膜または隔膜で隔て、陽極を設置した第3槽に
第2槽からのアンモニヤ含有溶液を導いて電解酸化し、
陰極を設置した第4槽で電解還元して窒素ガスとする第
4の段階と (f)第1槽(または第1槽と第4槽)で生成した塩素
ガスと第2槽(叉は第2槽と第4槽)で生成したアルカ
リ性溶液を第5槽で混合して、次亜塩素酸塩などを形成
させる第5の段階と (g)第5の段階で生成した次亜塩素酸塩および/また
はクロラミンを含有する水溶液を貯留するか、または、
隣接する処理施設の処理水に注入して、細菌類を滅菌す
るために利用する第6の段階と、必要に応じて各段階に
設置される撹拌など反応促進装置を具備することを特徴
とする塩分および硝酸、亜硝酸、アンモニヤ等を含有す
る溶液の分解方法とその装置である。
Means for Solving the Problems The means of the present invention for solving the above-mentioned problems are as follows: (a) Water containing salt and / or inorganic nitrogen compound salt in one electrolytic water tank provided with an anode and a cathode. Or, to the aqueous solution containing ammonium, introduce water containing an electrolyte such as carbonate, sulfate, or salt as necessary to enhance the conductivity and decomposability, and perform electrolytic oxidation under the condition of pH = 1 to 14. And electrolytic reduction to produce chloramine, sodium hypochlorite, nitrogen gas or the like, or (b) the first tank and the second tank are separated by an ion exchange membrane or a diaphragm. An anode is installed in the tank, and water containing a salt and / or an inorganic nitrogen compound is continuously added thereto, or an aqueous solution containing an ammonia is added, if necessary, to improve the conductivity and decomposability, carbonate, Sulfate, salt, etc. The first step (c) and the first step in which water with an electrolyte added is introduced, and ammonia and salt are electrolytically oxidized under the condition of pH = 1 to 14 to generate chloramine, nitric acid, nitrogen gas, chlorine gas, etc. The resulting solution is introduced into a heated water tank, and the solution is subjected to the second step and (d) the first or second step, in which the partially generated ammonium nitrate or ammonium nitrite is thermally decomposed into nitrogen gas, and the cathode is installed. In an aqueous solution that is made alkaline by the OH ions generated as a result of electrolysis, or by introducing PH into the second tank.
= 1 to 14, in the third step in which nitric acid is electrolytically reduced to nitrogen gas and (e) the third step, if ammonia or the like remains, it is refluxed again to the first tank. Oxidize it to nitric acid, etc. and lead it to the second tank again, and electrolytically reduce the generated nitric acid to nitrogen gas, or separate the third tank and the fourth tank with an ion exchange membrane or diaphragm. , The ammonia-containing solution from the second tank is introduced into the third tank in which the anode is installed for electrolytic oxidation,
The fourth step of electrolytically reducing to nitrogen gas in the fourth tank equipped with a cathode, and (f) the chlorine gas generated in the first tank (or the first tank and the fourth tank) and the second tank (or the second tank). 2nd and 4th tanks) The fifth step of mixing the alkaline solutions formed in the 5th tank to form hypochlorite, and (g) the hypochlorite formed in the 5th step. And / or pooling an aqueous solution containing chloramine, or
It is characterized by being equipped with a sixth stage used for sterilizing bacteria by injecting it into the treated water of an adjacent treatment facility, and a reaction accelerating device such as stirring installed in each stage if necessary. A method and apparatus for decomposing a solution containing salt, nitric acid, nitrous acid, ammonia and the like.

【0007】また、上記以外の手段は、 (a)「請求項1」記載の(a)および(b)の段階の
前段において、アルミニウム、鉄、亜鉛、マンガン、バ
ナジウム、パラジウム、その他の金属の粉末、金属塩、
金属酸化物を所定のpH条件下(pH1〜9)で添加
し、1〜120分間撹拌し、原水中の硝酸を還元して、
窒素ガス、亜硝酸、アンモニヤ等とする第1段階と (b)第1段階の混合液を瀘過して未反応の金属を回収
する第2段階と (c)第2段階の瀘過液を単一電解槽で電解するか、ま
たは、第1槽に導き、陽極でアンモニヤ、亜硝酸および
/または塩分を電解酸化・分解してクロラミン、次亜塩
素酸塩、窒素ガス、硝酸などとし、更に、溶出している
金属を酸化して(1部金属に対しては更にpH調節を行
なって)不溶化し、瀘過して回収する第3の段階と (d)第3段階の瀘過液を陰極を設置した第2槽に導
き、残余の硝酸を電解還元して窒素ガス等とする第4の
段階と (e)第2および第3段階で回収された金属を第1段階
の硝酸還元に利用する第5の段階とを具備することを特
徴とする請求項1及び請求項2記載の塩分および/また
は硝酸、亜硝酸、アンモニヤ等を含有する溶液の分解方
法とその装置である。
Further, means other than the above are as follows: (a) In the preceding stage of the steps (a) and (b) described in "Claim 1", aluminum, iron, zinc, manganese, vanadium, palladium and other metals are used. Powder, metal salt,
A metal oxide is added under a predetermined pH condition (pH 1 to 9) and stirred for 1 to 120 minutes to reduce nitric acid in raw water,
The first stage such as nitrogen gas, nitrous acid, ammonia, etc., (b) the second stage for filtering unreacted metal by filtering the mixed liquid of the first stage, and (c) the second stage of filtering liquid Electrolyze in a single electrolysis tank or lead to the first tank and electrolytically oxidize and decompose ammonia, nitrous acid and / or salt at the anode to produce chloramine, hypochlorite, nitrogen gas, nitric acid, etc. , The third step of oxidizing the eluted metal to insolubilize it by oxidizing the metal (partially by further adjusting the pH), (d) filtering the third step Lead to the second tank with the cathode installed, and electrolytically reduce the remaining nitric acid to produce nitrogen gas in the fourth step (e) The metals recovered in the second and third steps are converted into the nitric acid in the first step. And a fifth step of utilizing the salt and / or the glass according to claim 1 or 2, characterized in that A method and apparatus for decomposing a solution containing acid, nitrous acid, ammonia, etc.

【0008】[0008]

【作用】窒素は、+5〜−3価の化合物を形成する。従
って理論的には、通常の条件下で存在するN(5
+)やN(3+)を電気的に還元すれば、N
(0)NH(3−)等になり、NH(3−)を酸
化すればN(5+)、N(3+)やN
(0)などを形成することになる。
Function Nitrogen forms a +5 to -3 valent compound. Therefore, theoretically, N 2 O 5 (5
+) Or N 2 O 3 (3+) can be electrically reduced to give N
2 (0) NH 3 (3-), etc., and if NH 3 (3-) is oxidized, N 2 O 5 (5+), N 2 O 3 (3+), N
2 (0) will be formed.

【0009】ここで、硝酸濃度を化学的および電気化学
的方法により減少させ得ることは公知のことである。
(例えば、W.Heilgeist“Reductio
n des Mittelakiven abfall
es durch Salzfreie Verfah
renshritte” Kernforschung
s zentrum Karlsruhe Gmbh,
第2940号、1980年3月) ただし、本発明者の電気化学的実験によると、pH=1
〜14でも可能であるが、pH=8〜14、温度=30
〜100℃の範囲で、出来るだけアルカリ性条件、高温
下で実施すると効率のよいことが認められた。 また、
本発見者はアルミニウム、鉄、亜鉛、マンガン、その他
の金属の粉末やその塩や酸化物は硝酸を還元して、亜硝
酸、アンモニヤを生成することを発見・確認した。一
方、硝酸の電解還元過程で形成される硝酸アンモニウム
や亜硝酸アンモニウムは、70℃近傍で加熱すると化1
〜3により分解することも公知のことである。(津田
栄;無機化学通論、石川総雄;詳解無機化学など)
It is known here that the nitric acid concentration can be reduced by chemical and electrochemical methods.
(For example, W. Heilgeist "Reduction"
n des Mittelakiven abfall
es durch Salzfree Verfah
renshrite ”Kernforschung
s zentrum Karlsruhe Gmbh,
No. 2940, March 1980) However, according to an electrochemical experiment of the present inventor, pH = 1.
~ 14 is possible, but pH = 8-14, temperature = 30
It was confirmed that the efficiency was high when the treatment was carried out in the range of -100 ° C under alkaline conditions and high temperature as much as possible. Also,
The present discoverer found and confirmed that powders of aluminum, iron, zinc, manganese, and other metals and salts and oxides thereof reduce nitric acid to form nitrous acid and ammonium. On the other hand, ammonium nitrate and ammonium nitrite formed in the electrolytic reduction process of nitric acid are converted into
It is also known to decompose by ~ 3. (Sakae Tsuda; general theory of inorganic chemistry, Soo Ishikawa; detailed explanation of inorganic chemistry, etc.)

【0010】[0010]

【化1】[Chemical 1]

【0011】[0011]

【化2】[Chemical 2]

【0012】[0012]

【化3】また一方、本発明者はアンモニヤと塩分が共存
する水溶液を電解酸化するとき、アンモニヤ濃度が減少
し、N,NHCl、その他を形成することを発見・
確認している。更に、塩分以外にも、天然水や各種用廃
水中に存在する硝酸イオン、重炭酸イオン、硫酸イオン
等が共存してもアンモニヤの電解酸化が促進されること
を発見・確認している。一方、食塩水を電解すると、化
4〜5のように陽極で塩素ガス、陰極でアルカリ(Na
OH)を生成することも公知のことであり、すでに諸産
業に応用されている(吉田四郎;電気化学実験法、昭和
54年4月)。
On the other hand, the present inventor has discovered that when electrolytically oxidizing an aqueous solution in which ammonium and salt coexist, the ammonia concentration decreases and forms N 2 , NH 2 Cl, etc.
I'm confirming. Furthermore, it has been discovered and confirmed that the electrolytic oxidation of ammonia is promoted even in the presence of nitrate ions, bicarbonate ions, sulfate ions, etc. existing in natural water and waste water for various uses in addition to salinity. On the other hand, when salt water is electrolyzed, chlorine gas is used at the anode and alkali (Na
It is also known to produce OH) and has already been applied to various industries (Yoshida Shiro; Electrochemical Experimental Method, April 1979).

【0013】[0013]

【化4】[Chemical 4]

【0014】[0014]

【化5】また、生成した塩素ガスと苛性ソーダを反応さ
せると、化6の様に次亜塩素酸ナトリウムを形成し、そ
れが殺菌作用を有することも公知のことであり、すでに
各分野で応用されている(津田栄;無機化学通論、昭和
29年5月)。
It is also known that when the generated chlorine gas is reacted with caustic soda, sodium hypochlorite is formed as shown in Chemical formula 6 and it has a bactericidal action, which has already been applied in various fields. (Sakae Tsuda; General Theory of Inorganic Chemistry, May 1964).

【0015】[0015]

【化6】また一方、次亜塩素酸塩または塩素ガスとアン
モニウムイオンが反応すると、化7〜9のようにクロラ
ミンを形成すること、およびこのクロラミンは殺菌作用
を有することも公知のことである(F.Wilson
& D.Barnes;Chemistry and
Unit Operations in Water
treatment,1983年)。
On the other hand, it is also known that when hypochlorite or chlorine gas reacts with ammonium ion, chloramine is formed as shown in Chemical formulas 7 to 9 and that this chloramine has a bactericidal action. (F. Wilson
& D. Barnes; Chemistry and
Unit Operations in Water
treatment, 1983).

【0016】[0016]

【化7】[Chemical 7]

【0017】[0017]

【化8】[Chemical 8]

【0018】[0018]

【化9】また、クロラミンを含有する水溶液に塩素ガス
や次亜塩素酸塩を注入すると、化10〜13のように反
応してクロラミンが分解して窒素ガスを生成することも
公知のことである(F.wilson & D.Bar
nes;Chemistryand Unit Ope
rations in Water treatmen
t,1983年)。
It is also known that when chlorine gas or hypochlorite is injected into an aqueous solution containing chloramine, the reaction as shown in Chemical formulas 10 to 13 causes chloramine to decompose and generate nitrogen gas. There is (F. Wilson & D. Bar
nes; Chemistry and Unit Ope
relations in Water treatmen
t, 1983).

【0019】[0019]

【化10】[Chemical 10]

【0020】[0020]

【化11】[Chemical 11]

【0021】[0021]

【化12】[Chemical 12]

【0022】[0022]

【化13】[Chemical 13]

【0023】この様に、(a)硝酸の電解還元により無
害な窒素ガス等にすること、(b)塩分を電解すれば塩
素ガスおよび苛性ソーダを形成すること、(c)生成し
た塩素ガス及び苛性ソーダを反応させれば、殺菌作用を
有する次亜塩素酸ソーダを形成すること、(d)原水や
電解処理液中にアンモニヤが存在しても塩素ガスや次亜
塩素酸ソーダと反応して、殺菌作用を有するクロラミン
を形成すること、(e)クロラミンは塩素ガスや次亜塩
素酸ソーダと反応して窒素ガスを形成することなどは公
知のことである。なお本発明者は、電解質として炭酸イ
オン、硫酸イオンが含まれる系にアンモニヤを共存させ
て電解すると、アンモニヤが酸化されてその濃度が減少
し、硝酸、亜硝酸を形成すること、および、塩素イオン
が共存する系を電解処理するとクロラミンも形成される
ことを発見している。
Thus, (a) electroless reduction of nitric acid into harmless nitrogen gas or the like, (b) electrolysis of salt to form chlorine gas and caustic soda, (c) generated chlorine gas and caustic soda To form sodium hypochlorite having a bactericidal action, and (d) reacts with chlorine gas or sodium hypochlorite even if ammonium is present in the raw water or the electrolytically treated liquid to sterilize. It is known that chloramine having an action is formed, and that (e) chloramine reacts with chlorine gas or sodium hypochlorite to form nitrogen gas. Note that the present inventor, when carbonate is coexisted in a system containing a sulfate ion as an electrolyte and electrolyzed in the presence of ammonium, the ammonium is oxidized to reduce its concentration, forming nitric acid and nitrous acid, and chlorine ion. It has been discovered that chloramine is also formed when a system coexisting with is electrolyzed.

【0024】しかしながら、これらの反応は個別に利用
されているものである。従って、塩分および/または硝
酸および/または アンモニヤを含有する用廃水を処理
し、生成される有効成分を利用するためには、これ等公
知の事実および本発明者の発見・確認したアンモニヤの
電解酸化現象を効果的に組み合わせる必要がある。本発
明者は、上記公知の方法と発見現象を工学的に有利に行
なうための改良方法を提供すべく検討の結果、
However, these reactions are individually utilized. Therefore, in order to treat the wastewater containing salt and / or nitric acid and / or ammonia, and utilize the produced active ingredient, these known facts and the electrolytic oxidation of the ammonia found and confirmed by the present inventor are required. The phenomena need to be combined effectively. The present inventor, as a result of studies to provide an improved method for engineeringly performing the above-mentioned known method and discovery phenomenon,

【0025】(a)陽極および陰極を設置した単一の電
解水槽に、塩分および/または無機窒素化合物塩分を含
有する水を導き、pH=1〜14の条件で電解酸化およ
び電解還元を行なって、クロラミン、次亜塩素酸ソー
ダ、窒素ガスなどを生成させるか、または、塩分、硝
酸、アンモニヤなどを含有する水溶液にアルミニウム、
鉄、亜鉛、マンガン、その他の金属の粉末、金属塩、金
属酸化物を所定のpH条件下(pH1〜9)で添加、撹
拌し、原水中の硝酸を還元して、窒素ガス、亜硝酸、ア
ンモニヤ等として後電解酸化・還元するか、または、
(A) Water containing salt and / or inorganic nitrogen compound salt is introduced into a single electrolytic water tank provided with an anode and a cathode, and electrolytic oxidation and electrolytic reduction are carried out under the condition of pH = 1 to 14. , Chloramine, sodium hypochlorite, nitrogen gas, etc., or aluminum in an aqueous solution containing salt, nitric acid, ammonia, etc.,
Powders of iron, zinc, manganese, other metals, metal salts, and metal oxides are added under predetermined pH conditions (pH 1 to 9) and stirred to reduce nitric acid in raw water to obtain nitrogen gas, nitrous acid, Post-electrolytic oxidation / reduction as ammonia, or

【0026】(b)第1槽と第2槽との間をイオン交換
膜または隔膜で隔て、第1槽に陽極を設置し、ここに連
続的に塩分および/または無機窒素化合物を含有する水
を導き、pH=1〜14の条件でアンモニヤや塩分を電
解酸化して、クロラミン、硝酸、窒素ガス、塩素ガスな
どを生成させる第1の段階と
(B) The first tank and the second tank are separated by an ion exchange membrane or a diaphragm, and an anode is installed in the first tank, and water containing salt and / or an inorganic nitrogen compound is continuously added thereto. And a first step in which chloramine, nitric acid, nitrogen gas, chlorine gas, etc. are generated by electrolytically oxidizing ammonia and salt under the condition of pH = 1 to 14.

【0027】(c)第1段階を経た溶液を加熱水槽に導
き、一部生成されている硝酸アンモニウムや亜硝酸アン
モニウムを熱分解して窒素ガスにする第2の段階と (d)第1または第2の段階を経た溶液を陰極を設置し
た第2槽に導き、電解の結果生成されるOHイオンに
よりアルカリ性となっている水溶液中で、または、pH
=1〜14の条件下で、硝酸を電解還元して窒素ガスと
する第3の 段階と
(C) The solution which has passed through the first step is introduced into a heated water tank, and the second step in which the ammonium nitrate or ammonium nitrite partially produced is pyrolyzed to nitrogen gas, and (d) the first or second The solution that has undergone the step of is introduced into a second tank in which a cathode is installed, and in an aqueous solution that is alkaline due to OH ions generated as a result of electrolysis, or
= 1 to 14 and a third step of electrolytically reducing nitric acid to nitrogen gas,

【0028】(e)第3の段階で、アンモニヤなどが残
留している場合は、再び第1槽に還流させ酸化して硝酸
などとし、再び第2槽に導き、生成した硝酸を電解還元
して窒素ガスなどとするか、または、第3槽と第4槽の
間を同様にイオン交換膜または隔膜で隔て、陽極を設置
した第3槽に第2槽からのアンモニヤ含有溶液を導いて
電解酸化し、陰極を設置した第4槽で電解還元して窒素
ガスとする第4の段階とにより、硝酸等の窒素化合物が
効果的に無害な窒素ガスなどに分解できることを見出し
た。また、
(E) In the third step, if ammonia or the like remains, it is refluxed again in the first tank to be oxidized to nitric acid and the like, and then introduced into the second tank to electrolytically reduce the produced nitric acid. Or nitrogen gas or the like, or the third and fourth tanks are similarly separated by an ion exchange membrane or a diaphragm, and the ammonia-containing solution from the second tank is introduced into the third tank with an anode for electrolysis. It was found that a nitrogen compound such as nitric acid can be effectively decomposed into harmless nitrogen gas or the like by the fourth step of oxidizing and electrolytically reducing in a fourth tank equipped with a cathode to nitrogen gas. Also,

【0029】(f)第1槽(または第1槽と第4槽)で
生成した塩素ガスと第2槽(叉は第2槽と第4槽)で生
成したアルカリ性溶液を第5槽で混合して、次亜塩素酸
塩などを形成させる第5の段階と
(F) The chlorine gas produced in the first tank (or the first tank and the fourth tank) and the alkaline solution produced in the second tank (or the second tank and the fourth tank) are mixed in the fifth tank. And a fifth step to form hypochlorite etc.

【0030】(g)第5の段階で生成した次亜塩素酸塩
および/またはクロラミンを含有する水溶液を貯留する
か、または、隣接する処理施設の処理水に注入して、細
菌類を滅菌するために利用する第6の段階により、窒素
化合物や塩分の電解処理コストの低減を計り、資源の有
効利用を計り得ることを見出した。
(G) The aqueous solution containing hypochlorite and / or chloramine produced in the fifth step is stored or injected into the treated water of the adjacent treatment facility to sterilize the bacteria. It has been found that the sixth step used for this purpose can reduce the cost of electrolytic treatment of nitrogen compounds and salts and measure effective use of resources.

【0031】[0031]

【実施例】次に、本発明について添付図面を参照しつつ
説明するが、本発明はこれ等図面および実施例に限定さ
れるものではない。
The present invention will now be described with reference to the accompanying drawings, but the present invention is not limited to these drawings and embodiments.

【0032】図1は、本発明の「塩分、無機窒素化合物
含有溶液の分解・利用方法と装置」の概念図である。装
置は、基本的には、(a)陽極および陰極を設置した1
つの電解水槽、または、陽イオン交換膜または隔膜
(8)により、陽極(3)を設置した第1槽(7)と陰
極(5)を設置した第2槽(11)とに隔てられた電解
水槽、 (b)第1槽からの電解液の加熱部(9)、
(c)第2槽からの電解液と第1槽で発生した塩素
ガス(15)とを 混和して次亜塩素酸ソーダおよび/
またはクロラミンを形成させる反応槽(13)の3部分
からなる。
FIG. 1 is a conceptual diagram of "a method and apparatus for decomposing / utilizing a solution containing a salt and an inorganic nitrogen compound" of the present invention. The device is basically (a) equipped with an anode and a cathode 1
Electrolysis separated by two electrolyzed water tanks or a cation exchange membrane or diaphragm (8) into a first tank (7) with an anode (3) and a second tank (11) with a cathode (5). A water tank, (b) heating section (9) for the electrolytic solution from the first tank,
(C) The electrolytic solution from the second tank is mixed with chlorine gas (15) generated in the first tank to mix sodium hypochlorite and / or
Alternatively, it comprises three parts of the reaction tank (13) for forming chloramine.

【0033】塩分および/または無機窒素化合物含有溶
液(1)を第1槽(7)に導き、ここでアンモニヤや塩
分を電解酸化して硝酸や窒素ガス(アンモニヤの一部は
クロラミンとなり、更に、一部は窒素ガスに酸化され
る)など、および、塩素ガスを生成させる。
The salt and / or inorganic nitrogen compound-containing solution (1) is introduced into the first tank (7), where ammonia and salt are electrolytically oxidized to nitric acid and nitrogen gas (a part of the ammonia becomes chloramine. Part is oxidized to nitrogen gas), and chlorine gas is generated.

【0034】ついで、第1槽の電解液を加熱部(9)に
導き、一部形成されている亜硝酸アンモニウムなどを熱
分解して窒素ガスとした後、第2槽(11)に導く。た
だし、電解条件の設定方法により亜硝酸アンモニウムな
どの生成量が少ない時は、第1槽の電解液を第2槽に直
接導く。
Next, the electrolytic solution in the first tank is introduced into the heating section (9), and the partially formed ammonium nitrite or the like is thermally decomposed into nitrogen gas, and then introduced into the second tank (11). However, when the amount of ammonium nitrite produced is small due to the method of setting the electrolysis conditions, the electrolytic solution in the first tank is directly introduced into the second tank.

【0035】陰極を設置した第2槽(11)では、電解
の結果生成されるOHイオンによりアルカリ性となって
いる水溶液中で、第1槽からの硝酸を電解還元して窒素
ガス等とする。ついで反応槽(第5槽)(13)に導
く。ここで第1槽で生成した塩素ガスと、第2槽で生成
したアルカリとを混合、反応させて次亜塩素酸塩および
/またはクロラミンを形成させる。ただし第2槽(1
1)の電解液中に看過しえない濃度のアンモニヤ等が残
留している場合は、再び第1槽に還流させ酸化して硝酸
等とし、再び第2槽に導き、生成した硝酸を電解還元し
て窒素ガス等とするか、または、第1、2槽と同様な第
3、4槽を設置し、第2槽の電解液を第3槽に導き、ア
ンモニヤや塩分を電解酸化し、第4槽で電解還元して窒
素ガス等とすることもできる。
In the second tank (11) provided with a cathode, the nitric acid from the first tank is electrolytically reduced into nitrogen gas or the like in an aqueous solution which is alkaline due to OH ions generated as a result of electrolysis. Then, it is led to the reaction tank (fifth tank) (13). Here, the chlorine gas generated in the first tank and the alkali generated in the second tank are mixed and reacted to form hypochlorite and / or chloramine. However, the second tank (1
If there is a concentration of ammonia that cannot be overlooked in the electrolyte of 1), it is refluxed again in the first tank to oxidize it to nitric acid, etc., and then introduced again into the second tank to electrolytically reduce the generated nitric acid. Or use nitrogen gas or the like, or install the third and fourth tanks similar to the first and second tanks, introduce the electrolytic solution in the second tank into the third tank, and electrolytically oxidize ammonia and salt, It is also possible to perform electrolytic reduction in four tanks to produce nitrogen gas or the like.

【0036】図2は、塩分を含有しないpH=14,硝
酸ソーダ=0.04Mの系を電解した時の硝酸イオン変
化(19)と電流量(A)の関係を示す。アルカリ性条
件下において、電流を高めると硝酸イオンは電解還元さ
れて、その濃度は低下してくる。しかし、設定条件によ
っては、アンモニウム塩(21)および/または亜硝酸
塩(23)が形成される。
FIG. 2 shows the relationship between the change in nitrate ion (19) and the amount of current (A) when a system containing no salt and having a pH of 14 and sodium nitrate of 0.04 M was electrolyzed. Under alkaline conditions, when the current is increased, nitrate ions are electrolytically reduced, and the concentration thereof decreases. However, depending on the set conditions, ammonium salt (21) and / or nitrite (23) are formed.

【0037】図3は、食塩(NaCl)=10%,硝酸
ソーダ(NaNO)=0.04Mの水溶液をpH=7
の条件下において、隔膜のある電解槽で電解した時、第
1槽(陽極)および2槽(陰極)でのpH、および第1
槽(陽極)での塩素イオン量の経時変化を示す。第1槽
(陽極)では塩素イオン(29)の電解酸化が行なわれ
て塩素ガスおよび次亜塩素酸塩(31)が生成され、結
果として塩素イオン濃度(29)とpH(27)の低下
が起こる。 一方、陰極での電解還元の結果、pHはア
ルカリ性(25)となり、基本的には、図2に示す傾向
と同様な硝酸の還元が起こる。
FIG. 3 shows an aqueous solution of sodium chloride (NaCl) = 10% and sodium nitrate (NaNO 3 ) = 0.04 M, pH = 7.
When electrolyzing in an electrolytic cell with a diaphragm under the conditions of 1), the pH in the first cell (anode) and the second cell (cathode), and the first cell
The time-dependent change of the chlorine ion amount in a tank (anode) is shown. In the first tank (anode), chlorine ions (29) are electrolytically oxidized to generate chlorine gas and hypochlorite (31), and as a result, the chloride ion concentration (29) and pH (27) are lowered. Occur. On the other hand, as a result of electrolytic reduction at the cathode, the pH becomes alkaline (25), and basically, the reduction of nitric acid similar to the tendency shown in FIG. 2 occurs.

【0038】図4は、アンモニヤ(NHOH)=0.
03M、炭酸ソーダ=0.25Mを含有する系を隔膜の
ある電解槽で電解した時の、第1槽(陽極)でのアンモ
ニウイオンの経時変化を示す。陽極での電解酸化の結
果、アンモニウムイオン(33)は酸化されて硝酸塩
(35)になることが示されている。なお、酸化の程度
は設定条件により変化する。
FIG. 4 shows that ammonia (NH 4 OH) = 0.
The time course of ammonium ions in the first tank (anode) when a system containing 03M and sodium carbonate = 0.25M is electrolyzed in an electrolytic tank having a diaphragm is shown. It has been shown that as a result of electrolytic oxidation at the anode, ammonium ions (33) are oxidized to nitrates (35). The degree of oxidation changes depending on the set conditions.

【0039】図5は、pH=5、硝酸ナトリウム100
mg/lを含有する系に、マンガン(41)、亜塩(3
9)、アルミニウム(37)の金属粉末を添加、撹拌し
た時の硝酸イオンの経時変化を示す。この図に示される
ように、マンガン添加の場合には15分間程度の接触
で、硝酸塩のほぼ100%が還元されるが、アルミニウ
ムの硝酸還元率は低い。このように同一条件でも金属に
より硝酸還元率が異なる。また、図示はしないが、硝酸
還元の結果生成される窒素ガス、亜硝酸、アンモニヤの
濃度も金属により異なるので、処理目的により、金属お
よびpH,接触時間などの条件設定をする必要が有る。
いずれにしても金属およびその塩等は硝酸を還元して窒
素ガス、亜硝酸、アンモニヤ等にするので、電解処理と
併用して、窒素ガスやクロラミンなどを形成させること
が可能である。
FIG. 5 shows that pH = 5 and sodium nitrate 100
In a system containing mg / l, manganese (41), subsalt (3
9) shows the change with time of nitrate ion when metal powder of aluminum (37) was added and stirred. As shown in this figure, in the case of adding manganese, almost 100% of nitrate is reduced by contact for about 15 minutes, but the nitrate reduction rate of aluminum is low. Thus, the nitric acid reduction rate differs depending on the metal even under the same conditions. Although not shown, the concentrations of nitrogen gas, nitrous acid, and ammonia produced as a result of nitric acid reduction also differ depending on the metal, so it is necessary to set conditions such as the metal, pH, and contact time depending on the purpose of treatment.
In any case, the metal and its salt reduce nitric acid to nitrogen gas, nitrous acid, ammonia, etc., so that it is possible to form nitrogen gas, chloramine, etc. in combination with the electrolytic treatment.

【0040】以上のように電解酸化・還元により、陽極
では塩素イオンやアンモニヤの酸化が、陰極ではアルカ
リ条件下で硝酸の還元が起こり、塩素ガス、クロラミ
ン、窒素ガス等が生成されるので、これ等反応を処理お
よび再利用目的にに利用できることになる。
As described above, the electrolytic oxidation / reduction causes the oxidation of chlorine ions and ammonia at the anode and the reduction of nitric acid at the cathode under alkaline conditions to generate chlorine gas, chloramine, nitrogen gas, etc. Iso-reactions will be available for processing and recycling purposes.

【0041】[0041]

【発明の効果】本発明の「塩分、無機窒素化合物含有溶
液の分解・利用方法と装置」は、上述のような作用を持
っているので、(1)塩分および/または硝酸、アンモ
ニヤなどを同時に、かつ、短時間に無害な窒素ガスなど
に分解する作用を有し、(2)電解の結果、殺菌作用を
有する次亜塩素酸塩やクロラミンを生成させ、これを殺
菌剤として利用し得る効果を有し、(3)電解反応であ
ることから、処理の自動化、省力化が可能となる効果を
有する。
The "method and apparatus for decomposing / utilizing a solution containing a salt and an inorganic nitrogen compound" of the present invention has the above-described effects, and therefore (1) salt and / or nitric acid, ammonia and the like are simultaneously added. And, it has a function of decomposing into harmless nitrogen gas etc. in a short time, and (2) as a result of electrolysis, hypochlorite or chloramine having a bactericidal effect is produced, and this can be used as a bactericide Since (3) is an electrolytic reaction, it has an effect of enabling automation of processing and labor saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の「塩分、無機窒素化合物含有溶液の分
解・利用方法と装置」の概念図である。
FIG. 1 is a conceptual diagram of “a method and apparatus for decomposing / utilizing a solution containing salt and an inorganic nitrogen compound” of the present invention.

【図2】単一電解槽で電解した時の硝酸イオン濃度変化
と電流量(A)との関係である。
FIG. 2 shows the relationship between the change in nitrate ion concentration and the amount of current (A) when electrolyzing in a single electrolytic cell.

【図3】隔膜のある電解槽で電解した時、第1槽(陽
極)および第2槽(陰極)でのpHの経時変化と、第1
槽(陽極)での塩素イオン量の経時変化である。
FIG. 3 shows the changes with time of pH in the first tank (anode) and the second tank (cathode) when electrolyzing in an electrolytic cell having a diaphragm.
It is a change over time in the amount of chlorine ions in the tank (anode).

【図4】隔膜のある電解槽で電解した時の、第1槽(陽
極)でのアンモニヤの経時変化である。
FIG. 4 is a time-dependent change of ammonia in the first tank (anode) when electrolyzing in an electrolytic cell having a diaphragm.

【図5】マンガン、亜塩、アルミニウムの金属粉末を添
加、撹拌した時の硝酸イオンの経時変化である。
FIG. 5 is a change with time of nitrate ions when metal powders of manganese, subsalt, and aluminum are added and stirred.

【符号の説明】[Explanation of symbols]

1 塩分および/または無機窒素化合物含有水溶液 3 陽極 5 陰極 7 第1槽 9 加熱水槽 11 第2槽 13 混合水槽(反応槽) 15 塩素ガス 17 水素ガス等 19 硝酸イオン 21 アンモニヤ 23 亜硝酸イオン 25 陰極のpH 27 陽極のpH 29 塩素イオン 31 クロラミン 33 アンモニヤ 35 硝酸イオン 37 アルミニウムによる還元 39 亜塩による還元 41 マンガンによる還元 1 Salt and / or Inorganic Nitrogen Compound-Containing Aqueous Solution 3 Anode 5 Cathode 7 First Tank 9 Heating Water Tank 11 Second Tank 13 Mixing Water Tank (Reaction Tank) 15 Chlorine Gas 17 Hydrogen Gas 19 Nitrate Ion 21 Ammonium 23 Nitrite Ion 25 Cathode PH 27 Anode pH 29 Chlorine ion 31 Chloramine 33 Ammonia 35 Nitrate ion 37 Reduction with aluminum 39 Reduction with subsulfite 41 Reduction with manganese

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)陽極および陰極を設置した1つの電
解水槽に、塩分および/または無機窒素化合物を含有す
る水を導き、pH=1〜14の条件で電解酸化および電
解還元を行なって、クロラミン、次亜塩素酸ソーダ、窒
素ガスなどを生成させるか、または 、(b)第1槽と
第2槽との間をイオン交換膜または隔膜で隔てた電解槽
において、第1槽に陽極を設置し、ここに連続的に塩分
および/または無機窒素化合物を含有する水を導き、p
H=1〜14の条件でアンモニヤや塩分を電解酸化し
て、クロラミン、硝酸、窒素ガス、塩素ガスなどを生成
させる第1の段階と(c)第1段階を経た溶液を加熱水
槽に導き、一部生成されている硝酸アンモニウムや亜硝
酸アンモニウムを熱分解して窒素ガスにする第2の段階
と(d)第1または第2の段階を経た溶液を陰極を設置
した第2槽に導き、電解の結果生成されるOH-イオン
によりアルカリ性となっている水溶液中で、または、p
H=1〜14の条件下で、硝酸を電解還元して窒素ガス
とする第3の段階と(e)第3の段階で、アンモニヤな
どが残留している場合は、再び第1槽に還流させ酸化し
て硝酸などとし、再び第2槽に導き、生成した硝酸を電
解還元して窒素ガスなどとするか、または、第3槽と第
4槽の間を同様にイオン交換膜または隔膜で隔て、陽極
を設置した第3槽に第2槽からのアンモニヤ含有溶液を
導いて電解酸化し、陰極を設置した第4槽で電解還元し
て窒素ガスとする第4の段階と(f)第1槽(または第
1槽と第4槽)で生成した塩素ガスと第2槽(叉は第2
槽と第4槽)で生成したアルカリ性溶液を第5槽で混合
して、次亜塩素酸塩などを形成させる第5の段階と
(g)第5の段階で生成した次亜塩素酸塩および/また
はクロラミンを含有する (2) 水溶液を貯留するか、または、隣接する処理施設の処理
水に注入して、細菌類を滅菌するために利用する第6の
段階と、必要に応じて、各段階に設置される攪拌など反
応促進装置とを具備することを特徴とする塩分および硝
酸、亜硝酸、アンモニヤ等を含有する溶液の分解方法と
その装置
1. (a) Introducing water containing salt and / or an inorganic nitrogen compound into one electrolytic water tank provided with an anode and a cathode, and performing electrolytic oxidation and electrolytic reduction under conditions of pH = 1 to 14. , Chloramine, sodium hypochlorite, nitrogen gas or the like, or (b) in the electrolytic cell in which the first tank and the second tank are separated by an ion exchange membrane or a diaphragm, the first tank has an anode. Is installed, and water containing salt and / or inorganic nitrogen compound is continuously introduced therein, and p
Under the condition of H = 1 to 14, electrolytically oxidize ammonia and salt to produce chloramine, nitric acid, nitrogen gas, chlorine gas, etc. The first step and (c) the solution that has passed through the first step is introduced to a heating water tank, The solution that has undergone the second step of (d) the first or second step of thermally decomposing ammonium nitrate or ammonium nitrite that has been partially formed into nitrogen gas is introduced into a second tank equipped with a cathode, and electrolysis is performed. In an aqueous solution that is alkaline due to the resulting OH - ions, or p
Under conditions of H = 1 to 14, in the third step of electrolytically reducing nitric acid to nitrogen gas and (e) the third step, if ammonia or the like remains, it is returned to the first tank again. And oxidize it to form nitric acid, and then lead it to the second tank again, and electrolytically reduce the generated nitric acid into nitrogen gas, or use an ion exchange membrane or a diaphragm between the third tank and the fourth tank in the same manner. Separately, the ammonia-containing solution from the second tank is introduced into a third tank with an anode for electrolytic oxidation, and a fourth tank with a cathode is electrolytically reduced to produce nitrogen gas. Chlorine gas produced in one tank (or first tank and fourth tank) and second tank (or second tank)
Tank and fourth tank) to mix the alkaline solution in the fifth tank to form hypochlorite, and (g) hypochlorite formed in the fifth step and (g) And / or containing chloramine (2) A sixth step of storing an aqueous solution or injecting it into treated water of an adjacent treatment facility to sterilize bacteria, and if necessary, And a device for decomposing a solution containing salt and nitric acid, nitrous acid, ammonia, etc., characterized by comprising a reaction promoting device such as stirring installed in stages
【請求項2】アンモニヤを含有する水溶液に、電導度と
分解性を高めるため、必要に応じて、炭酸塩、硫酸塩、
塩分などの電解質を添加し、「請求項1」記載の方法に
より電解酸化および電解還元して、窒素ガス等とするこ
とを特徴とする特許請求項1記載の塩分および/または
硝酸、亜硝酸、アンモニヤ等を含有する溶液の分解方法
とその装置
2. An aqueous solution containing ammonium, if necessary, in order to improve the conductivity and decomposability, carbonate, sulfate,
A salt and / or nitric acid, nitrous acid, or the like according to claim 1, wherein an electrolyte such as salt is added, and electrolytically oxidized and electrolytically reduced by the method according to "claim 1" to produce nitrogen gas or the like. Method and apparatus for decomposing solution containing ammonia etc.
【請求項3】(a)「請求項1」記載の(a)および
(b)の段階の前段において、アルミニウム、鉄、亜
鉛、マンガン、バナジュウム、パラジウム、その他の金
属の粉末、金属塩、金属酸化物を所定のpH条件下(p
H1〜9)で添加し、1〜120分間攪拌し、原水中の
硝酸を還元して、窒素ガス、亜硝酸、アンモニヤ等とす
る第1段階と(b)第1段階の混合液を瀘過等で分離し
て未反応の金属を回収する第2段階と(c)第2段階の
瀘過液を単一電解槽で電解するか、または、第1槽に導
き、陽極でアンモニヤ、亜硝酸および/または塩分を電
解酸化・分解してクロラミン、次亜塩素酸塩、窒素ガ
ス、硝酸などとし、更に、溶出している金属を酸化して
(1部金属に対しては更にpH調節を行なって)不溶化
し、瀘過等の固液分離方法で回収する第3の段階と
(d)第3段階の瀘過液を陰極を設置した第2槽に導
き、残余の硝酸を電解還元して窒素ガス等とする第4の
段階と(e)第2および第3段階で回収された金属を第
1段階の硝酸還元に利用する第5の段階とを具備するこ
とを特徴とする請求項1及び請求項2記載の塩分および
/または (3) 硝酸、亜硝酸、アンモニヤ等を含有する溶液の分解方法
とその装置
3. (a) In the preceding stage of the steps (a) and (b) of claim 1, aluminum, iron, zinc, manganese, vanadium, palladium, powders of other metals, metal salts and metals. Oxide is added under the specified pH condition (p
H1-9), stir for 1-120 minutes, reduce nitric acid in raw water, and pass through the mixed solution of the first step (b) the first step such as nitrogen gas, nitrous acid, ammonia, etc. Etc. to separate unreacted metals and electrolyze the filtered solution of the second step and (c) second step in a single electrolysis tank, or lead to the first tank and ammonia, nitrous acid at the anode And / or salt is electrolyzed and decomposed into chloramine, hypochlorite, nitrogen gas, nitric acid, etc., and the eluted metal is further oxidized (partial metal, pH is adjusted further. ) Insolubilize and introduce the filtered liquid of the third step (d) the third step, which is recovered by solid-liquid separation method such as filtration, into the second tank equipped with a cathode, and electrolytically reduce the remaining nitric acid. The metal recovered in the fourth step (e) the second and third steps using nitrogen gas or the like is used for the nitric acid reduction in the first step. Fifth claims 1 and 2 salt and / or (3) according to; and a step of nitric acid, nitrous acid decomposition method and apparatus of the solution containing the Anmoniya like
JP34826491A 1991-12-04 1991-12-04 Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution Pending JPH06182344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34826491A JPH06182344A (en) 1991-12-04 1991-12-04 Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34826491A JPH06182344A (en) 1991-12-04 1991-12-04 Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution

Publications (1)

Publication Number Publication Date
JPH06182344A true JPH06182344A (en) 1994-07-05

Family

ID=18395866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34826491A Pending JPH06182344A (en) 1991-12-04 1991-12-04 Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution

Country Status (1)

Country Link
JP (1) JPH06182344A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030941A1 (en) * 1996-02-22 1997-08-28 Enpar Technologies Inc. Electrochemical treatment of water contaminated with nitrogenous compounds
WO1999007641A1 (en) * 1997-08-11 1999-02-18 Ebara Corporation Hydrothermal electolysis method and apparatus
WO2003066529A1 (en) * 2002-02-04 2003-08-14 Sanyo Electric Co., Ltd. Water treatment device
JP2010099581A (en) * 2008-10-23 2010-05-06 Omega:Kk Wastewater treatment method
JP2011235229A (en) * 2010-05-10 2011-11-24 Omega:Kk Remote management method for treated water purification
JP5238899B1 (en) * 2012-07-13 2013-07-17 稔 菅野 Disinfecting water generating apparatus and disinfecting cleaning method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030941A1 (en) * 1996-02-22 1997-08-28 Enpar Technologies Inc. Electrochemical treatment of water contaminated with nitrogenous compounds
WO1999007641A1 (en) * 1997-08-11 1999-02-18 Ebara Corporation Hydrothermal electolysis method and apparatus
US6348143B1 (en) 1997-08-11 2002-02-19 Ebara Corporation Hydrothermal electrolysis method and apparatus
WO2003066529A1 (en) * 2002-02-04 2003-08-14 Sanyo Electric Co., Ltd. Water treatment device
JP2010099581A (en) * 2008-10-23 2010-05-06 Omega:Kk Wastewater treatment method
JP2011235229A (en) * 2010-05-10 2011-11-24 Omega:Kk Remote management method for treated water purification
JP5238899B1 (en) * 2012-07-13 2013-07-17 稔 菅野 Disinfecting water generating apparatus and disinfecting cleaning method

Similar Documents

Publication Publication Date Title
Cotillas et al. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation
JP4121368B2 (en) Method for producing ferrate ion
JP4003016B2 (en) Nitrogen compound-containing water treatment method
CN105858818B (en) A kind of method that the more metal nano electrodes of Zn/Cu/Ti efficiently remove nitrate in groundwater
KR102119234B1 (en) How to treat cyanide-containing wastewater
JP4382556B2 (en) Treatment method of wastewater containing cyanide
JP5945682B2 (en) Treatment method of wastewater containing cyanide
KR20170099616A (en) Electrodialysis coupled with electrochemical nitrogen removal Process for contaminated groundwater treatment, and Apparatus therefor
JPH06182344A (en) Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution
US4029557A (en) Treatment of water containing cyanide
JPH07100466A (en) Method for treating waste water
JP2021053620A (en) Treatment method for cyanide-containing wastewater
RU2550189C1 (en) Method for deactivating cyano-containing solutions and pulps
TWM577423U (en) Device for nitrogen wastewater treatment
US6436275B1 (en) Electrochemical reduction of nitrate in the presence of an amide
TW200306954A (en) Methods and apparatuses for treating wastewater containing organic compounds
JP4639309B2 (en) Treatment method of wastewater containing cyanide
KR20060046358A (en) The method for electrochemical wastewater treatment using boron doped diamond electrodes
KR20170099615A (en) Electrochemical Process for high concentration of nitrate containing wastewater treatment, and Apparatus therefor
KR100545306B1 (en) Electrochemical process for wastewater containing nitric acid
JPH09276881A (en) Treatment of nitrogen compound-containing water
JP2009028629A (en) Treatment method of waste water containing nitrate nitrogen and calcium ion
JP2001038348A (en) Water cleaning method and device
JP2001300553A (en) Method for treating cyanide-containing wastewater
Gomelya et al. Estimation of the efficiency of ammonia oxidation in anolyte of two-chamber electrolyzer