JPH06182205A - Production of photocatalyst and the photocatalyst - Google Patents

Production of photocatalyst and the photocatalyst

Info

Publication number
JPH06182205A
JPH06182205A JP4357123A JP35712392A JPH06182205A JP H06182205 A JPH06182205 A JP H06182205A JP 4357123 A JP4357123 A JP 4357123A JP 35712392 A JP35712392 A JP 35712392A JP H06182205 A JPH06182205 A JP H06182205A
Authority
JP
Japan
Prior art keywords
photocatalyst
gold
titanium oxide
oxide
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4357123A
Other languages
Japanese (ja)
Other versions
JP3360333B2 (en
Inventor
Shigeyuki Sato
重幸 佐藤
Kenichiro Suzuki
賢一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP35712392A priority Critical patent/JP3360333B2/en
Publication of JPH06182205A publication Critical patent/JPH06182205A/en
Application granted granted Critical
Publication of JP3360333B2 publication Critical patent/JP3360333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To provide a photocatalyst having satisfactory activity at a practical intensity of light. CONSTITUTION:Gold and/or a transition metal and/or a rare earth element is carried on a metal oxide such as titanium oxide, treated with ammonia and fired to produce the objective photocatalyst. By the treatment with ammonia, the photocatalytic activity is remarkably enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光触媒の製造方法、及
びその光触媒に関し、さらに詳しくは、光の照射により
活性が向上して光化学反応を呈し、もって廃棄物の浄化
処理、水の分解による水素の合成、冷蔵庫や車室内等の
各種空間の脱臭等に利用される光触媒の製造方法、及び
その光触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a photocatalyst and its photocatalyst. More specifically, the photocatalyst is improved in its activity by irradiation of light and exhibits a photochemical reaction. The present invention relates to a method for producing a photocatalyst used for synthesizing hydrogen, deodorizing various spaces such as a refrigerator and a vehicle compartment, and the photocatalyst.

【0002】[0002]

【従来の技術】従来の光触媒は酸化チタンを主成分とし
たものが多い。また、この酸化チタンに金を担持させた
ものも提案されている。(化学工業日報 1992年1
0月5日号の記事)
2. Description of the Related Art Many conventional photocatalysts mainly contain titanium oxide. Further, a titanium oxide on which gold is supported is also proposed. (The Chemical Daily 1992 1
(October 5 issue)

【0003】[0003]

【発明が解決しようとする課題】しかし、これら従来の
光触媒は、数十W程度以下の実用的な光強度(例えば、
冷蔵庫等の殺菌灯は10W程度である)における光触媒
活性が十分ではない。その理由は、光を吸収して励起し
た酸化チタンにおいて生成する電子と正孔とが容易に再
結合することによるものと思われる。
However, these conventional photocatalysts have a practical light intensity of about several tens W or less (for example,
The photocatalytic activity in a germicidal lamp such as a refrigerator is about 10 W) is not sufficient. The reason seems to be that the electrons and holes generated in titanium oxide excited by absorbing light are easily recombined.

【0004】そこで本発明者は、上記のような不具合の
ない新規な光触媒を提供すべく、酸化チタンその他の金
属酸化物への一種又は二種以上の各種の触媒金属の担持
や、その触媒金属への各種の処理等を行ってその光触媒
活性の向上を試験・研究した結果、本発明に到達した。
Therefore, in order to provide a novel photocatalyst free from the above-mentioned problems, the present inventor carried one or more kinds of various catalytic metals on titanium oxide and other metal oxides, and the catalytic metals thereof. The present invention has been achieved as a result of conducting various treatments and the like to test and study the improvement of its photocatalytic activity.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本願第一発明(請求項1に記載した光触媒の製造方法
の発明)の構成は、金属酸化物に金及び/又は遷移金属
及び/又は希土類元素の微粒子を担持させ、これをアン
モニア処理した後、焼成する光触媒の製造方法である。
The structure of the first invention of the present application (the invention of the method for producing a photocatalyst according to claim 1) for solving the above-mentioned problems is that the metal oxide is gold and / or the transition metal and / or Alternatively, it is a method for producing a photocatalyst in which fine particles of a rare earth element are supported, and the fine particles are treated with ammonia and then calcined.

【0006】上記課題を解決するための本願第二発明
(請求項2に記載した光触媒の発明)の構成は、金属酸
化物と、これに担持されてアンモニア処理された金及び
/又は遷移金属及び/又は希土類元素の微粒子との焼成
体からなる光触媒である。
The second invention of the present application (the invention of the photocatalyst described in claim 2) for solving the above-mentioned problems is composed of a metal oxide and a gold and / or transition metal supported on the metal oxide and treated with ammonia. And / or a photocatalyst composed of a fired body with fine particles of a rare earth element.

【0007】[0007]

【作用】本願第一発明の還元処理ないし焼成のプロセス
において金属酸化物や金等の微粒子に起こる変化は必ず
しも解明されていないが、推定として、アンモニア処理
によって金属酸化物に担持した金及び/又は遷移金属及
び/又は希土類元素の塩がアンモニウム塩(又は水酸化
物)に変化し、これが金属酸化物と特殊な錯塩を形成し
ているのではないか、と考えている。
The change occurring in the fine particles such as metal oxides and gold in the reduction or calcination process of the first invention of the present application has not always been clarified, but it is presumed that gold and / or metal supported on the metal oxides by the ammonia treatment is estimated. It is considered that the salt of the transition metal and / or the rare earth element is changed to an ammonium salt (or hydroxide), which may form a special complex salt with the metal oxide.

【0008】本願第二発明の光触媒の作用についても必
ずしも解明されていないが、推定として、光を吸収して
励起した金属酸化物が生成する電子と、その正孔との再
結合を、金属酸化物と錯塩を形成した金及び/又は遷移
金属及び/又は希土類元素が阻止し、従って電子の活性
状態が維持されて、光エネルギーを有効に酸化還元反応
に関与させているのではないか、と考えている。
Although the action of the photocatalyst of the second invention of the present application has not always been elucidated, it is presumed that the recombination between the electron and the hole produced by the metal oxide excited by absorbing light and the hole thereof is prevented by the metal oxidation. The gold and / or transition metal and / or the rare earth element forming a complex salt with the substance may be blocked, and thus the active state of the electron may be maintained, and the light energy may be effectively involved in the redox reaction. thinking.

【0009】[0009]

【効果】本願第一発明の光触媒の製造方法により本願発
明の光触媒が有効に製造され、また、こうして製造され
た本願第二発明の光触媒は、数十W以下の実用的な光強
度においても十分な光触媒活性を示す。
[Effect] The photocatalyst of the present invention is effectively produced by the method for producing a photocatalyst of the first invention of the present application, and the photocatalyst of the second invention of the present application produced in this manner is sufficient even at a practical light intensity of several tens of W or less. It exhibits excellent photocatalytic activity.

【0010】[0010]

【実施態様】次に本願第一、第二発明の実施態様につい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the first and second inventions of the present application will be described.

【0011】金属酸化物とは、その代表的なものが酸化
チタンTiO2 であるが、これに限定されるものではな
い。その他の金属酸化物として、例えば、酸化タングス
テンWO3 、酸化鉄Fe2 3 、酸化ビスマスBi2
3 、酸化スズSnO2 、酸化ウランU3 8 、酸化カド
ミウムCdO、酸化インジウムInO3 、酸化ニオブN
2 3 ,NbO、酸化亜鉛ZnO、酸化ニッケルNi
O、酸化銅Cu2 O、チタン酸ストロンチウムSrTi
3 、チタン酸バリウムBaTiO3 、チタン酸マンガ
ンMnTiO3 、チタン酸鉄FeTiO3 、チタン酸カ
ルシウムCaTiO3 、ニオブ酸ストロンチウムSrN
2 6 、スズ酸カドミウムCdSnO4 、タンタル酸
鉄FeTa2 6 ,FeTaO4 、タンタル酸カリウム
KTaO3 等を用いることができる。
A typical example of the metal oxide is titanium oxide TiO 2 , but the metal oxide is not limited to this. Other metal oxides include, for example, tungsten oxide WO 3 , iron oxide Fe 2 O 3 , bismuth oxide Bi 2 O.
3 , tin oxide SnO 2 , uranium oxide U 3 O 8 , cadmium oxide CdO, indium oxide InO 3 , niobium oxide N
b 2 O 3 , NbO, zinc oxide ZnO, nickel oxide Ni
O, copper oxide Cu 2 O, strontium titanate SrTi
O 3 , barium titanate BaTiO 3 , manganese titanate MnTiO 3 , iron titanate FeTiO 3 , calcium titanate CaTiO 3 , strontium niobate SrN
b 2 O 6, cadmium stannate CdSnO 4, tantalum iron FeTa 2 O 6, FeTaO 4, it is possible to use potassium tantalate KTaO 3 or the like.

【0012】金属酸化物に担持させる金、遷移金属、希
土類元素については、それらのうちの一種類のみを担持
させても良く、二種類以上を適宜組み合わせて担持させ
ても良い。上記のうち一種類のみを担持させる場合は金
が最も良い。上記のうち二種類を組み合わせて担持させ
る場合は、特段の制約はないが、一般的には、金と、遷
移金属あるいは希土類元素のうちの一種類との組み合わ
せが良く、特に金とニッケルとの組み合わせが望まし
い。
With respect to gold, transition metals, and rare earth elements to be carried on the metal oxide, only one kind of them may be carried, or two or more kinds may be appropriately combined and carried. Gold is best when only one of the above is supported. In the case of supporting two kinds of the above in combination, there is no particular limitation, but in general, a combination of gold and one kind of a transition metal or a rare earth element is good, and particularly gold and nickel. A combination is desirable.

【0013】金属酸化物に対する金の担持量については
特段の制約はないが、好適な担持量としては0.005
〜0.5重量%程度、最適の担持量としては0.1重量
%前後の担持量である。
The amount of gold supported on the metal oxide is not particularly limited, but a preferable amount is 0.005.
Approximately 0.5% by weight, and the optimum supported amount is about 0.1% by weight.

【0014】遷移金属としては、例えばニッケル、クロ
ム、銅、コバルトを用いることができ、特にニッケルが
望ましい。
As the transition metal, for example, nickel, chromium, copper or cobalt can be used, and nickel is particularly desirable.

【0015】希土類元素としては、例えば、ランタン、
セリウム、プラセオジウム、ネオジウム、ジスプロシウ
ム、ホルミウム、エルビウム、ルテチウム等を用いるこ
とができる。
Examples of rare earth elements include lanthanum and
Cerium, praseodymium, neodymium, dysprosium, holmium, erbium, lutetium and the like can be used.

【0016】金属酸化物に対する遷移金属又は希土類元
素の担持量について特段の制約はないが、例えば0.1
重量%程度を担持させることができる。
There is no particular limitation on the amount of the transition metal or rare earth element supported on the metal oxide, but, for example, 0.1.
It is possible to support about wt%.

【0017】本発明の光触媒は、例えば粉状、粒状で用
いても良く、また、コージェライト、活性炭、シリカ等
の所定形状(例えば、ハニカム形状)の担体に担持させ
て用いても良い。
The photocatalyst of the present invention may be used, for example, in the form of powder or particles, or may be used by being supported on a carrier having a predetermined shape (for example, honeycomb shape) such as cordierite, activated carbon or silica.

【0018】担体に金属酸化物を担持させ、また金属酸
化物に金、遷移金属、希土類元素を担持させる手段は特
に限定しない。通常は、担持させたい金属酸化物の水溶
液や担持させたい金属の硝酸塩水溶液等を用いたいわゆ
るウオッシュ・コート法により、まず担体に金属酸化物
を担持させ、ついで、この金属酸化物に金、遷移金属、
希土類元素を担持させる。
The means for supporting the metal oxide on the carrier and for supporting the metal oxide on gold, transition metal or rare earth element is not particularly limited. Usually, by a so-called wash-coat method using an aqueous solution of a metal oxide to be supported or an aqueous solution of a nitrate of a metal to be supported, the metal oxide is first supported on the carrier, and then gold, transition metal,
Support rare earth elements.

【0019】アンモニア処理は、上記の担持処理を終え
た担体をアンモニア水(NH4 OH)に浸漬して行う。
この際のアンモニア水の濃度や浸漬時間等の処理条件は
特に制約がない。
The ammonia treatment is carried out by immersing the carrier, which has been subjected to the above supporting treatment, in ammonia water (NH 4 OH).
At this time, the treatment conditions such as the concentration of the ammonia water and the immersion time are not particularly limited.

【0020】焼成温度は、コージェライト等のセラミッ
ク質の担体を用いる場合、400〜600°C程度が良
い。400°Cを下回る温度で焼成しても前記した錯塩
の形成が不十分に終わる可能性があり、また、600°
Cを上回る温度で焼成すると、金属酸化物の結晶形が崩
れたり、変化したりする可能性がある。特に望ましい焼
成温度は400〜500°C前後である。一方、活性炭
を担体に用いる場合の焼成温度は150〜200°C程
度が良い。150°Cを下回る温度で焼成しても金が分
解し難く、200°Cを上回る温度で焼成すると活性炭
が燃えてしまうからである。焼成時間は、数時間程度、
例えば2時間程度で足りるが、本発明の光触媒は耐熱性
が優れているため、500°C前後の温度で8時間にも
及ぶ焼成を行っても、その活性はあまり低下しない。
The firing temperature is preferably about 400 to 600 ° C. when a ceramic carrier such as cordierite is used. The formation of the above-mentioned complex salt may be insufficiently completed even if the temperature is lower than 400 ° C.
If the temperature is higher than C, the crystal form of the metal oxide may be broken or changed. A particularly desirable firing temperature is around 400 to 500 ° C. On the other hand, when activated carbon is used as the carrier, the firing temperature is preferably about 150 to 200 ° C. This is because gold is difficult to decompose even if fired at a temperature lower than 150 ° C, and activated carbon burns when fired at a temperature higher than 200 ° C. The firing time is about several hours,
For example, about 2 hours is sufficient, but since the photocatalyst of the present invention has excellent heat resistance, its activity does not decrease so much even if it is fired at a temperature of about 500 ° C. for 8 hours.

【0021】担体に担持させた本発明の光触媒を得る場
合、まず担体に金属酸化物を担持させた後に一度焼成
し、さらに金属酸化物に金、遷移金属、希土類元素を担
持させた後に再度焼成しても良い。
In order to obtain the photocatalyst of the present invention supported on a carrier, first, a metal oxide is supported on a carrier and then calcined once, and then gold, a transition metal and a rare earth element are further supported on the metal oxide and then calcined again. You may.

【0022】本発明の光触媒は他種多様な対象物質を光
化学反応により分解するが、特に極性物質に対する活性
が高い。非極性物質、例えばトルエン等に対しても有効
な活性を示す。
The photocatalyst of the present invention decomposes various kinds of target substances by photochemical reaction, and has particularly high activity for polar substances. It also shows effective activity against non-polar substances such as toluene.

【0023】[0023]

【実施例】次に本発明の実施例について述べる。なお、
以下の各実施例において担持のプロセスは全てウオッシ
ュ・コート法によった。
EXAMPLES Next, examples of the present invention will be described. In addition,
In each of the following examples, the loading process was all performed by the wash coat method.

【0024】(実施例1)No. 1〜No. 4のコージェラ
イト製のハニカム担体にそれぞれ同量の酸化チタンを担
持させた後、No. 1とNo. 2の試料体には希土類元素で
あるジスプロシウムを、No. 3とNo. 4の試料体にはや
はり希土類元素であるエルビウムを、それぞれ酸化チタ
ンに対して0.1重量%になるように担持させ、さらに
No. 2とNo. 4の試料体は1%のアンモニア水に30分
間浸漬した。そして各試料体を空気気流中、500°C
で2時間焼成した。
Example 1 No. 1 to No. 4 cordierite honeycomb carriers were loaded with the same amount of titanium oxide, and the No. 1 and No. 2 sample bodies were treated with rare earth elements. A certain amount of dysprosium was loaded on the sample bodies of No. 3 and No. 4 such that erbium, which is also a rare earth element, was loaded to the titanium oxide in an amount of 0.1% by weight.
The sample bodies of No. 2 and No. 4 were immersed in 1% ammonia water for 30 minutes. Then, each sample body is placed in an air stream at 500 ° C.
It was baked for 2 hours.

【0025】こうして得たNo. 1〜No. 4の試料体を用
い、5Wの集光した光照射のもとに240分間、アセト
アルデヒドの浄化試験(図8に示す閉鎖循環系評価装置
1を用い、50〜200ppmのアルデヒドを含む空気
を5l/min.で光触媒層2に通じて一定時間毎にサ
ンプリングし、ガスクロマトグラフ3でアセトアルデヒ
ドの残存率を求めた。)を行ったところ、240分後の
浄化率はNo. 1が63.5%、No. 2が81.4%、N
o. 3が62.3%、No. 4が74.3%であった。な
お、ハニカム担体に酸化チタンのみを担持させ、アンモ
ニア処理した標準試料体についても同様の浄化試験を行
ったところ、浄化率は73.5 %であった。
Using the No. 1 to No. 4 sample bodies thus obtained, an acetaldehyde purification test (using the closed circulation system evaluation apparatus 1 shown in FIG. 8) for 240 minutes under the irradiation of 5 W of condensed light. , Air containing 50 to 200 ppm of aldehyde was passed through the photocatalyst layer 2 at a rate of 5 l / min and sampled at regular intervals, and the residual rate of acetaldehyde was determined by the gas chromatograph 3.) After 240 minutes The purification rate is 63.5% for No. 1, 81.4% for No. 2, N
o.3 was 62.3% and No. 4 was 74.3%. When a similar purification test was performed on a standard sample body obtained by supporting only titanium oxide on a honeycomb carrier and treating with ammonia, the purification rate was 73.5%.

【0026】(実施例1の評価)以上の結果より、酸化
チタンへの希土類元素の担持は、アンモニア処理を伴な
った場合には、光触媒活性の向上が見られる。
(Evaluation of Example 1) From the above results, it can be seen that the loading of the rare earth element on the titanium oxide improves the photocatalytic activity when accompanied by the ammonia treatment.

【0027】(実施例2)No. 5〜No. 8のコージェラ
イト製のハニカム担体にそれぞれ同量の酸化チタンを担
持させ、ついでこれらに、それぞれ酸化チタンに対して
0.1重量%になるように金を担持させた。そして、N
o. 5は1%のアンモニア水に、No. 6は1%のカ性ソ
ーダ水溶液に、No. 7は1%のカ性カリ水溶液に、No.
8は1%の炭酸ソーダ水溶液に、それぞれ30分間浸漬
した後、いずれも500°Cで2時間焼成した。
Example 2 No. 5 to No. 8 cordierite honeycomb carriers were each loaded with the same amount of titanium oxide, and then 0.1% by weight of titanium oxide was added to each of them. Thus, gold was supported. And N
o.5 to 1% aqueous ammonia, No. 6 to 1% caustic soda solution, No. 7 to 1% caustic potash solution, No.
Sample No. 8 was immersed in a 1% sodium carbonate aqueous solution for 30 minutes, and then baked at 500 ° C. for 2 hours.

【0028】こうして得たNo. 4〜No. 8の試料体を用
い、実施例1と同様の浄化試験を行ったところ、図1の
結果を得た。
Using the No. 4 to No. 8 sample bodies thus obtained, the same purification test as in Example 1 was carried out, and the results shown in FIG. 1 were obtained.

【0029】(実施例2の評価)図1の結果より、酸化
チタンへの金の担持は、アンモニア処理を伴なった場合
には、光触媒活性の著しい向上が見られる。
(Evaluation of Example 2) From the results shown in FIG. 1, when gold is supported on titanium oxide, the photocatalytic activity is remarkably improved when the treatment with ammonia is accompanied.

【0030】(実施例3)No. 9〜No. 13のコージェ
ライト製のハニカム担体にそれぞれ同量の酸化チタンを
担持させ、ついでこれらに、それぞれ酸化チタンに対し
て0.1重量%(No. 9)、0.01重量%(No. 1
0)、0.001重量%(No. 11)、0.005重量
%(No. 12)、0.2重量%(No. 13)になるよう
に金を担持させた。ついで、いずれの試料体についても
前記No. 5と同じアンモニア処理及び焼成を行った。
Example 3 No. 9 to No. 13 cordierite honeycomb carriers were loaded with the same amount of titanium oxide, and then 0.1 wt% (No. .9), 0.01% by weight (No. 1
0), 0.001 wt% (No. 11), 0.005 wt% (No. 12) and 0.2 wt% (No. 13) were loaded with gold. Then, the same ammonia treatment and firing as those in No. 5 were performed on all the sample bodies.

【0031】こうして得たNo. 9〜No. 13の試料体を
用い、実施例1と同様の浄化試験を行ったところ、図2
の結果を得た。
Using the No. 9 to No. 13 sample bodies thus obtained, the same purification test as in Example 1 was conducted.
Got the result.

【0032】(実施例3の評価)図2の結果より、酸化
チタンに金を担持させ、かつアンモニア処理を行った光
触媒においては、金の担持量は酸化チタンに対して0.
005〜0.2重量%程度が望ましく、最適の担持量と
しては0.1重量%前後の担持量であることが分かっ
た。
(Evaluation of Example 3) From the results shown in FIG. 2, in the photocatalyst in which titanium oxide was supported with gold and the ammonia treatment was performed, the supported amount of gold was 0.
It was found that about 005 to 0.2% by weight is desirable, and the optimum supported amount is about 0.1% by weight.

【0033】(実施例4)No. 14〜No. 18のコージ
ェライト製のハニカム担体にそれぞれ同量の酸化チタン
を担持させ、ついでこれらに、それぞれ酸化チタンに対
して0.1重量%になるように金を担持させて前記No.
5と同じアンモニア処理を行い、No. 14は150°
C、No. 15は300°C、No. 16は400°C、N
o. 17は600°C、No. 18は500°Cでそれぞ
れ2時間、前記No. 5と同じ焼成を行った。
(Example 4) No. 14 to No. 18 cordierite honeycomb carriers were loaded with the same amount of titanium oxide, respectively, and then 0.1% by weight relative to titanium oxide. No.
Same ammonia treatment as No.5, No.14 is 150 °
C, No. 15 is 300 ° C, No. 16 is 400 ° C, N
The same firing as No. 5 was performed for 2 hours at 600 ° C. for o. 17 and 500 ° C. for No. 18.

【0034】こうして得たNo. 14〜No. 18の試料体
を用い、実施例1と同様の浄化試験を行ったところ、図
3の結果を得た。
Using the samples No. 14 to No. 18 thus obtained, the same purification test as in Example 1 was carried out, and the results shown in FIG. 3 were obtained.

【0035】(実施例4の評価)図3の結果より、酸化
チタンに金を担持させ、かつアンモニア処理を行って焼
成した光触媒においては、その焼成温度は400,50
0,600°Cのものが良く、特に良い焼成温度は50
0°Cであった。
(Evaluation of Example 4) From the results of FIG. 3, in the photocatalyst in which titanium oxide was supported with gold and which was subjected to ammonia treatment and fired, the firing temperature was 400, 50.
0,600 ° C is preferable, and particularly good firing temperature is 50
It was 0 ° C.

【0036】(実施例5)No. 19,20のコージェラ
イト製のハニカム担体にそれぞれ同量の酸化チタンを担
持させ、ついでこれらに、それぞれ酸化チタンに対して
0.1重量%になるように金を担持させて前記No. 5と
同じアンモニア処理を行い、いずれも500°Cで、N
o. 19は2時間、No. 20は8時間にわたり、前記No.
5と同じ焼成を行った。
(Embodiment 5) The same amount of titanium oxide was carried on each of the honeycomb carriers made of cordierite of Nos. 19 and 20, and then 0.1% by weight of titanium oxide was added to each of them. The same ammonia treatment as No. 5 above was carried with gold supported, and at 500 ° C, N
o. 19 was for 2 hours and No. 20 was for 8 hours.
The same firing as 5 was performed.

【0037】こうして得たNo. 19,No. 20の試料体
を用い、実施例1と同様の浄化試験を行ったところ、図
4の結果を得た。
Using the samples No. 19 and No. 20 thus obtained, the same purification test as in Example 1 was carried out, and the results shown in FIG. 4 were obtained.

【0038】(実施例5の評価)図4の結果より、酸化
チタンに金を担持させ、かつアンモニア処理を行って焼
成した光触媒においては、その焼成温度が500°Cで
ある場合、焼成時間は2時間もあれば十分であり、一
方、8時間も焼成しても光触媒活性が余り落ちていない
ことから、本実施例の光触媒の耐熱性が優れていること
が分かった。
(Evaluation of Example 5) From the results shown in FIG. 4, in the case of a photocatalyst in which titanium oxide was supported with gold and subjected to ammonia treatment and fired, when the firing temperature was 500 ° C., the firing time was It was found that 2 hours is enough, while the photocatalyst activity did not deteriorate much even after firing for 8 hours. Therefore, it was found that the photocatalyst of this example has excellent heat resistance.

【0039】(実施例6)No. 21のコージェライト製
のハニカム担体に酸化チタンを担持させ、ついでこれ
に、酸化チタンに対して金とニッケルとを、それぞれ
0.1重量%、0.1重量%になるように担持させて前
記No. 5と同じアンモニア処理を行い、かつ前記No. 5
と同じ焼成を行った。
Example 6 Titanium oxide was supported on a No. 21 cordierite honeycomb carrier, and then 0.1 wt% and 0.1% by weight of gold and nickel were added to the titanium oxide, respectively. The same ammonia treatment as that of No. 5 was carried out by supporting so as to become the weight%, and No. 5
The same firing was performed.

【0040】このNo. 21の試料体を用い、前記したア
ルデヒド浄化試験と同じ要領で、トルエン濃度20pp
mでトルエン浄化試験を行ったところ、図5の結果を得
た。
Using this No. 21 sample body, the toluene concentration was 20 pp in the same manner as in the aldehyde purification test described above.
When a toluene purification test was conducted at m, the results shown in FIG. 5 were obtained.

【0041】(実施例6の評価)図5の結果より、酸化
チタンに金とニッケルとを担持させ、かつアンモニア処
理を行って焼成した光触媒は、アルデヒドの場合程では
ないが、浄化活性を示すことが分かった。
(Evaluation of Example 6) From the results shown in FIG. 5, the photocatalyst obtained by supporting titanium and titanium oxide with gold and nickel, and treating with ammonia and calcining shows a purifying activity, though not so much as in the case of aldehyde. I found out.

【0042】(実施例7)No. 22〜No. 24のコージ
ェライト製のハニカム担体にそれぞれ同量の酸化チタン
を担持させ、ついでこれらに、それぞれ酸化チタンに対
して0.1重量%になるように、No. 22には銅、No.
23にはコバルト、No. 24にはニッケルをそれぞれ担
持させて前記No. 5と同じアンモニア処理と焼成とを行
った。
(Example 7) No. 22 to No. 24 cordierite honeycomb carriers were loaded with the same amount of titanium oxide, and then these were each added to 0.1 wt% with respect to titanium oxide. So, No. 22 is copper, No.
Cobalt was carried on No. 23 and nickel on No. 24, respectively, and the same ammonia treatment and baking as those in No. 5 were carried out.

【0043】これらのNo. 22〜No. 24の試料体を用
い、実施例1と同様の浄化試験を行ったところ、図6の
結果を得た。
Using these No. 22 to No. 24 sample bodies, the same purification test as in Example 1 was conducted, and the results shown in FIG. 6 were obtained.

【0044】(実施例7の評価)図6の結果より、酸化
チタンに遷移金属を担持させ、かつアンモニア処理を行
って焼成した光触媒は、金を担持させた場合程ではない
が、一定の浄化活性を示すことが分かった。
(Evaluation of Example 7) From the results shown in FIG. 6, the photocatalyst obtained by supporting transition metal on titanium oxide and treating with ammonia and calcining was not purified to a certain degree, but was purified to a certain degree. It was found to show activity.

【0045】(実施例8)No. 25〜No. 27のコージ
ェライト製のハニカム担体にそれぞれ同量の酸化チタン
を担持させ、ついでこれらに、それぞれ酸化チタンに対
して0.1重量%になるように金を担持させ、かつNo.
25については更に酸化チタンに対して0.1重量%に
なるように銅を担持させ、No. 26については更に酸化
チタンに対して0.1重量%になるようにニッケルを担
持させた後、前記No. 5と同じアンモニア処理と焼成と
を行った。
(Embodiment 8) No. 25 to No. 27 cordierite honeycomb carriers were loaded with the same amount of titanium oxide, and then these were each added to 0.1% by weight with respect to titanium oxide. No.
For No. 25, copper was further loaded to 0.1% by weight of titanium oxide, and for No. 26, nickel was further loaded to 0.1% by weight of titanium oxide. The same ammonia treatment and firing as in No. 5 were performed.

【0046】これらのNo. 25〜No. 27の試料体を用
い、実施例1と同様の浄化試験を行ったところ、図7の
結果を得た。
Using these No. 25 to No. 27 sample bodies, the same purification test as in Example 1 was conducted, and the results shown in FIG. 7 were obtained.

【0047】(実施例8の評価)図7の結果より、酸化
チタンに金又は金と遷移金属とを担持させ、かつアンモ
ニア処理を行って焼成した光触媒においては、金とニッ
ケルとを担持させた場合に特に優れた浄化活性を示すこ
とが分かった。
(Evaluation of Example 8) From the results shown in FIG. 7, in the photocatalyst in which titanium oxide was supported with gold or gold and a transition metal, and ammonia treatment was performed, gold and nickel were supported. It has been found that in this case it exhibits a particularly good cleaning activity.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2の試験結果を示すグラフである。FIG. 1 is a graph showing the test results of Example 2.

【図2】実施例3の試験結果を示すグラフである。FIG. 2 is a graph showing the test results of Example 3.

【図3】実施例4の試験結果を示すグラフである。FIG. 3 is a graph showing the test results of Example 4.

【図4】実施例5の試験結果を示すグラフである。FIG. 4 is a graph showing the test results of Example 5.

【図5】実施例6の試験結果を示すグラフである。FIG. 5 is a graph showing the test results of Example 6.

【図6】実施例7の試験結果を示すグラフである。FIG. 6 is a graph showing the test results of Example 7.

【図7】実施例8の試験結果を示すグラフである。FIG. 7 is a graph showing the test results of Example 8.

【図8】本発明の浄化試験に用いた装置の概略図であ
る。
FIG. 8 is a schematic view of an apparatus used for the purification test of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/89 ZAB A 8017−4G 35/02 J 7821−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B01J 23/89 ZAB A 8017-4G 35/02 J 7821-4G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物に金及び/又は遷移金属及び
/又は希土類元素の微粒子を担持させ、これをアンモニ
ア処理した後、焼成することを特徴とする光触媒の製造
方法。
1. A method for producing a photocatalyst, which comprises supporting fine particles of gold and / or a transition metal and / or a rare earth element on a metal oxide, subjecting the fine particles to an ammonia treatment, and then firing.
【請求項2】 金属酸化物と、これに担持されてアンモ
ニア処理された金及び/又は遷移金属及び/又は希土類
元素の微粒子との焼成体からなることを特徴とする光触
媒。
2. A photocatalyst comprising a calcined body of metal oxide and fine particles of gold and / or transition metal and / or rare earth element supported on the metal oxide and treated with ammonia.
JP35712392A 1992-12-22 1992-12-22 Method for producing photocatalyst and photocatalyst thereof Expired - Fee Related JP3360333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35712392A JP3360333B2 (en) 1992-12-22 1992-12-22 Method for producing photocatalyst and photocatalyst thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35712392A JP3360333B2 (en) 1992-12-22 1992-12-22 Method for producing photocatalyst and photocatalyst thereof

Publications (2)

Publication Number Publication Date
JPH06182205A true JPH06182205A (en) 1994-07-05
JP3360333B2 JP3360333B2 (en) 2002-12-24

Family

ID=18452502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35712392A Expired - Fee Related JP3360333B2 (en) 1992-12-22 1992-12-22 Method for producing photocatalyst and photocatalyst thereof

Country Status (1)

Country Link
JP (1) JP3360333B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174881A (en) * 1996-10-18 1998-06-30 Ishihara Sangyo Kaisha Ltd Photocatalyst body and its production
WO1999016548A1 (en) * 1997-10-01 1999-04-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Photocatalysts for the degradation of organic pollutants
JP2001207082A (en) * 2000-01-26 2001-07-31 Toyota Central Res & Dev Lab Inc Hydrophilic material
WO2002051546A1 (en) * 2000-12-22 2002-07-04 Studiengesellschaft Kohle Mbh Novel photocatalists and method for the detection thereof
WO2002074060A1 (en) * 2001-03-21 2002-09-26 Ecodevice Laboratory Co., Ltd. Method of promoting germination
US7153808B2 (en) 2004-07-07 2006-12-26 Kyoto University Ultraviolet and visible-light-sensitive titania-based photocatalyst
CN1305560C (en) * 2004-11-06 2007-03-21 重庆工学院 Process for preparing highly efficient titania photocatalyst
WO2011102353A1 (en) 2010-02-16 2011-08-25 昭和電工株式会社 Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
CN104324721A (en) * 2014-11-25 2015-02-04 黑龙江大学 Preparation method of FeTiO3 photo-catalyst with hollow spiny ball structure
CN104888744A (en) * 2015-05-26 2015-09-09 景德镇陶瓷学院 CaFexTi(2-x)O4(OH)2 photocatalyst material and preparation method thereof
CN106000384A (en) * 2016-05-13 2016-10-12 淮北师范大学 Preparation method of tin-based oxide with controllable components and photocatalytic application of tin-based oxide
CN106268857A (en) * 2015-06-12 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 Metal/Red copper oxide composite photocatalyst material and preparation method thereof
CN109012667A (en) * 2018-08-07 2018-12-18 景德镇陶瓷大学 A kind of highlight catalytic active Ag doping CaTi2O5The preparation method of nano material and its product obtained
CN109225271A (en) * 2018-11-08 2019-01-18 常州大学 A kind of SrTiO3/SnCoS4The preparation method and applications of high efficiency photocatalyst
CN110937627A (en) * 2019-12-12 2020-03-31 吉林师范大学 Preparation method of defective calcium titanate nanoparticles

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174881A (en) * 1996-10-18 1998-06-30 Ishihara Sangyo Kaisha Ltd Photocatalyst body and its production
WO1999016548A1 (en) * 1997-10-01 1999-04-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Photocatalysts for the degradation of organic pollutants
US6365007B1 (en) 1997-10-01 2002-04-02 Yissum Research Development Company Of The Hebrew University Of Jerusalem Photocatalysts for the degradation of organic pollutants
JP2001207082A (en) * 2000-01-26 2001-07-31 Toyota Central Res & Dev Lab Inc Hydrophilic material
WO2002051546A1 (en) * 2000-12-22 2002-07-04 Studiengesellschaft Kohle Mbh Novel photocatalists and method for the detection thereof
WO2002074060A1 (en) * 2001-03-21 2002-09-26 Ecodevice Laboratory Co., Ltd. Method of promoting germination
US7153808B2 (en) 2004-07-07 2006-12-26 Kyoto University Ultraviolet and visible-light-sensitive titania-based photocatalyst
CN1305560C (en) * 2004-11-06 2007-03-21 重庆工学院 Process for preparing highly efficient titania photocatalyst
WO2011102353A1 (en) 2010-02-16 2011-08-25 昭和電工株式会社 Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
KR101375677B1 (en) * 2010-02-16 2014-03-19 쇼와 덴코 가부시키가이샤 Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
CN104324721A (en) * 2014-11-25 2015-02-04 黑龙江大学 Preparation method of FeTiO3 photo-catalyst with hollow spiny ball structure
CN104888744A (en) * 2015-05-26 2015-09-09 景德镇陶瓷学院 CaFexTi(2-x)O4(OH)2 photocatalyst material and preparation method thereof
CN106268857A (en) * 2015-06-12 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 Metal/Red copper oxide composite photocatalyst material and preparation method thereof
CN106268857B (en) * 2015-06-12 2018-07-03 中国科学院苏州纳米技术与纳米仿生研究所 Metal/cuprous oxide composite photocatalyst material and preparation method thereof
CN106000384A (en) * 2016-05-13 2016-10-12 淮北师范大学 Preparation method of tin-based oxide with controllable components and photocatalytic application of tin-based oxide
CN109012667A (en) * 2018-08-07 2018-12-18 景德镇陶瓷大学 A kind of highlight catalytic active Ag doping CaTi2O5The preparation method of nano material and its product obtained
CN109012667B (en) * 2018-08-07 2021-07-20 景德镇陶瓷大学 Ag-doped CaTi with high photocatalytic activity2O5Preparation method of nano material and product prepared by preparation method
CN109225271A (en) * 2018-11-08 2019-01-18 常州大学 A kind of SrTiO3/SnCoS4The preparation method and applications of high efficiency photocatalyst
CN109225271B (en) * 2018-11-08 2019-10-01 常州大学 A kind of SrTiO3/SnCoS4The preparation method and applications of high efficiency photocatalyst
CN110937627A (en) * 2019-12-12 2020-03-31 吉林师范大学 Preparation method of defective calcium titanate nanoparticles

Also Published As

Publication number Publication date
JP3360333B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP3360333B2 (en) Method for producing photocatalyst and photocatalyst thereof
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
KR101892342B1 (en) The catalyst for decomposing ozone and air pollutants and preparation therof
EP0407210B1 (en) Method of decomposing chlorofluorocarbons
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
KR102161131B1 (en) Antimony / titania carrier and its production method, catalyst for removal of harmful gaseous substances using the carrier, and production method thereof
JP2000312830A (en) Photocatalyst composite material and production thereof
US5206003A (en) Method of decomposing flow
JP3932335B2 (en) Integrated catalyst and method for producing the same
JP2849177B2 (en) Photocatalyst manufacturing method
JPH0857323A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof
JPH09155364A (en) Treatment of waste water
JP4427357B2 (en) Ammonia purification catalyst, and ammonia purification method and ammonia purification apparatus using the same
JPH07313887A (en) Fibrous catalyst and its production
JPH045485B2 (en)
JP2000015110A (en) Photocatalytic particles
JPH08252461A (en) Preparation of photocatalyst
JPH08332388A (en) Ammonia decomposing agent
JPH08131832A (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP3427422B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2002273208A (en) Discharge electrode formed by supporting photocatalyst, discharge reaction apparatus using the same and gas decomposition method using discharge reaction apparatus
JP3357255B2 (en) CFC decomposition catalyst
JPH0957097A (en) Ammonia decomposing agent
JP2002210366A (en) PLASMA-ASSIST CATALYST FOR CLEANING NOx
JPS5926341B2 (en) Denitration catalyst with porous film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees