JPH06181930A - Organismic light measuring device - Google Patents

Organismic light measuring device

Info

Publication number
JPH06181930A
JPH06181930A JP4339980A JP33998092A JPH06181930A JP H06181930 A JPH06181930 A JP H06181930A JP 4339980 A JP4339980 A JP 4339980A JP 33998092 A JP33998092 A JP 33998092A JP H06181930 A JPH06181930 A JP H06181930A
Authority
JP
Japan
Prior art keywords
light
living body
subject
optical fiber
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4339980A
Other languages
Japanese (ja)
Inventor
Yuichi Yamashita
優一 山下
Fumio Kawaguchi
文男 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4339980A priority Critical patent/JPH06181930A/en
Publication of JPH06181930A publication Critical patent/JPH06181930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To reduce the loss of the incidence light quantity due to the reflection of the light from the surface of an organism. CONSTITUTION:The light from a light source section 1 containing multiple wavelengths is fed to a testee 6 via an incident optical fiber 4-1, and the reflected light on the surface of the testee 6 is again fed to the testee 6 by a mirror 5-1. The light passing through the testee 6 is captured by detecting optical fibers 7-1 through 7-m from multiple portions and guided into a multi- channel light detection section 8. The light quantity passing through an organism is increased, and the S/N ratio of measurement can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生体内部の情報を光を用
いて計測する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring information inside a living body using light.

【0002】[0002]

【従来の技術】生体機能を簡便に、かつ、生体に害を与
えることなく、すなわち、非侵襲に計測する装置が望ま
れている。これらの条件を考慮すると、計測に光を用い
る装置が有効である。その理由は、光は近年の光ファイ
バの開発などによりその扱いが簡便となっており、また
安全基準の範囲で用いると非侵襲だからである。そこ
で、光、特に可視から近赤外の波長の光を用いて生体を
計測することにより、生体機能を反映する生体内酸素分
圧値を血液中のヘモグロビンもしくは細胞内のチトクロ
ームaa3 もしくは筋肉中のミオグロビンなどによるそ
れら固有の光吸収量から求める装置が特開昭57−115232
号公報に記載されている。
2. Description of the Related Art There is a demand for an apparatus for measuring biological functions simply and without harming the living body, that is, non-invasively. Considering these conditions, an apparatus that uses light for measurement is effective. The reason is that light is easy to handle due to the recent development of optical fibers and is non-invasive when used within the range of safety standards. Therefore, by measuring the living body using light, particularly light having a wavelength from visible to near-infrared, the partial pressure of oxygen in the living body, which reflects the biological function, is determined to be hemoglobin in blood or cytochrome aa 3 in cells or in muscle. Japanese Patent Application Laid-Open No. 57-115232
It is described in Japanese Patent Publication No.

【0003】さらに、光を用いて生体機能を計測し画像
化する光CT装置が、例えば、特開昭60−72542 号公報
もしくは特開昭62−231625号公報に記載されている。
Further, an optical CT device for measuring a living body function by using light and forming an image thereof is described in, for example, JP-A-60-72542 or JP-A-62-231625.

【0004】[0004]

【発明が解決しようとする課題】ところが、可視から近
赤外の波長の光は数cmから十数cmの生体を通過すると光
強度が著しく低下する。このように光強度の低下した微
弱光では、その測定のS/N比は劣化する。この光強度
の低下の原因は、生体物質による光吸収によって光が減
衰する以外に次の二点、第一に、生体の強い光散乱特性
により生体中で光が広がってしまう、第二に、生体表
面、すなわち、皮膚で入射光の大部分が反射されて、生
体中に入り込む光量自体が減少する、が考えられる。
However, the light intensity of visible to near-infrared wavelengths remarkably decreases when passing through a living body of several cm to several tens of cm. The weak S / N ratio of the light thus deteriorates the S / N ratio of the measurement. The cause of this decrease in light intensity is the following two points in addition to the light being attenuated by the light absorption by the biological material, first, the light spreads in the living body due to the strong light scattering property of the living body, secondly, It is conceivable that most of the incident light is reflected by the surface of the living body, that is, the skin, and the amount of light entering the living body itself decreases.

【0005】皮膚による光の反射率については、日本国
のメディカルプラニング社による昭和58年11月20
日発行の、渥美和彦監修による「レーザの臨床」の第6
0頁に次のように報告されている。そこでは、白人の健
常皮膚の反射率として700nm付近の波長の光では6
0%と述べられている。従って、入射光の60%が皮膚
により反射されてしまうために、残りの40%しか生体
内に入り込まないことになる。
Regarding the reflectance of light by the skin, November 20, 1983 by Medical Planning Co., Ltd. of Japan
The 6th issue of "Laser Clinics" published by Kazuhiko Atsumi
The following is reported on page 0: There, as a reflectance of Caucasian healthy skin, light with a wavelength near 700 nm is 6
It is said to be 0%. Therefore, since 60% of the incident light is reflected by the skin, only the remaining 40% enters the living body.

【0006】このことから、生体を通過する光の強度を
増加させて測定のS/N比を向上させるためには、光強
度の低下の原因を考慮し、その対策を施した計測装置が
必要となる。ところが第一の原因に対しては、生体内で
の光の広がりを制限できないために、その対策を施すこ
とは困難である。
Therefore, in order to increase the intensity of the light passing through the living body and improve the S / N ratio of the measurement, a measuring device that takes measures against the cause of the decrease in the light intensity is necessary. Becomes However, it is difficult to take measures against the first cause because the spread of light in the living body cannot be limited.

【0007】本発明の目的は、第二の原因である皮膚に
よる光反射の問題を考慮して、反射により生体外に放出
される光を減少させ、これより生体内部により多くの光
を導入することで生体を通過する光の強度を増加させ
て、S/N比の高い生体光計測装置を提供することにあ
る。
The object of the present invention is to consider the problem of light reflection by the skin, which is the second cause, to reduce the light emitted outside the living body by reflection, and thereby introduce more light inside the living body. Thus, the intensity of light passing through the living body is increased to provide a living body optical measurement device having a high S / N ratio.

【0008】[0008]

【課題を解決するための手段】生体、すなわち、被検体
表面での皮膚などによる光反射によって被検体外部に放
出される光を減少させて被検体内部により多くの光を導
入するために、以下に示すように被検体の光照射位置の
周辺部に鏡を配置する。図4に被検体表面からの反射に
よる光の放出を減少させる手段を示す。ここでは、入射
用光ファイバ4−1の被検体接触側近傍に鏡5−1をそ
の鏡面を被検体6に向けて配置する。
[Means for Solving the Problems] In order to reduce the light emitted to the outside of the subject due to light reflection from the living body, that is, the skin on the surface of the subject, and introduce more light into the inside of the subject, As shown in, a mirror is placed around the light irradiation position of the subject. FIG. 4 shows a means for reducing the emission of light due to reflection from the surface of the subject. Here, the mirror 5-1 is arranged near the subject contact side of the incident optical fiber 4-1 with its mirror surface facing the subject 6.

【0009】[0009]

【作用】図3に光反射による被検体外への光の放出に対
して改善を行っていない従来の計測手段の例を示す。こ
こでは、入射用光ファイバ4−1によって被検体6に光
が照射され、被検体を通過した光を検出用光ファイバ7
−1で検出する。このとき、大部分の光は被検体表面で
反射してしまい被検体を通過した光は微弱となる。本発
明では、被検体の光入射位置近傍に配置した鏡によっ
て、被検体表面で反射した光をこの鏡によって再び被検
体内に導入することが可能となる。従って、従来は反射
により被検体外に放出されていた光を再び被検体内部に
導入し、その結果、被検体内部に導入される光量が増加
するに伴い被検体を通過する光量も増加する。被検体表
面での反射光を再び被検体内部に導入することで、従
来、微弱である被検体通過光量を増加させて測定のS/
N比を向上させることができる。
FIG. 3 shows an example of a conventional measuring means that does not improve the emission of light to the outside of the subject due to light reflection. Here, the incident optical fiber 4-1 irradiates the subject 6 with light, and the light passing through the subject is detected by the detecting optical fiber 7.
Detect with -1. At this time, most of the light is reflected by the surface of the subject, and the light passing through the subject becomes weak. In the present invention, a mirror arranged near the light incident position of the subject makes it possible to introduce the light reflected on the surface of the subject again into the subject. Therefore, the light conventionally emitted outside the subject by reflection is again introduced into the subject, and as a result, as the amount of light introduced into the subject increases, the amount of light passing through the subject also increases. By introducing the light reflected from the surface of the subject into the inside of the subject again, the amount of light passing through the subject, which has been weak in the past, is increased to measure S /
The N ratio can be improved.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図1は本発明による生体光計測装置の第一
の実施例のブロック図である。光源部1は波長500n
mから1500nm間の複数の波長の光で構成してお
り、それぞれの波長の光を順に放射する。ここから放射
された光を光源用光ファイバ2によって、一入力・多出
力光スイッチ3に導入し、被検体6の周囲の複数部位に
配置している入射用光ファイバ4−1から4−nの中の
任意の一つの光ファイバに接続する。これら入射用光フ
ァイバ4−1から4−nの一端の周囲にはおのおの鏡5
−1から5−nが入射用光ファイバ4−1から4−nと
一対一に取り付けており、すべての鏡はその鏡面を被検
体6に向けて配置する。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram of a first embodiment of a biological optical measurement device according to the present invention. Light source unit 1 has a wavelength of 500n
It is composed of light of a plurality of wavelengths between m and 1500 nm, and emits light of each wavelength in order. The light emitted from here is introduced into the one-input / multi-output optical switch 3 by the light source optical fiber 2, and the incident optical fibers 4-1 to 4-n are arranged at a plurality of sites around the subject 6. Connect to any one of the optical fibers. A mirror 5 is provided around one end of each of the incident optical fibers 4-1 to 4-n.
-1 to 5-n are attached to the incident optical fibers 4-1 to 4-n in a one-to-one relationship, and all mirrors are arranged with their mirror surfaces facing the subject 6.

【0011】ここでまず、光源用光ファイバ2と接続し
ている入射用光ファイバを仮に4−1とする。そうする
と、この光ファイバ4−1によって被検体6に光が照射
される。このとき被検体6の表面による光反射によって
被検体6の外部に放出される光は鏡5−1によって、再
び、被検体6に照射される。そしてこの被検体6の中を
通過した光は、被検体6の周囲の複数部位に配置してい
る検出用光ファイバ7−1から7−mでそれぞれ捕えら
れる。
First, the incident optical fiber connected to the light source optical fiber 2 is assumed to be 4-1. Then, the subject 6 is irradiated with light by the optical fiber 4-1. At this time, the light emitted to the outside of the subject 6 by the light reflection on the surface of the subject 6 is irradiated again on the subject 6 by the mirror 5-1. The light that has passed through the subject 6 is captured by the detection optical fibers 7-1 to 7-m arranged at a plurality of sites around the subject 6, respectively.

【0012】これら検出用光ファイバ7−1から7−m
の他の一端はマルチチャンネル光検出部8に導入し、そ
れぞれの光ファイバについて独立に光強度を計測する。
これらの光検出強度はデ−タ記憶部9で記憶する。
These detection optical fibers 7-1 to 7-m
The other end is introduced into the multi-channel photodetector 8, and the light intensity is measured independently for each optical fiber.
These light detection intensities are stored in the data storage unit 9.

【0013】この一連の測定が一つの波長の光で終了す
ると、コンピュータ10によって光源部1を制御して測
定波長を順次変化させ、全ての波長に対して同様に測定
する。次に、コンピュータ10によって一入力・多出力
光スイッチ3を制御して、光源部1から一入力・多出力
光スイッチ3に導入している光源用光ファイバ2を、た
とえば入射用光ファイバ4−2に接続して、被検体6へ
の光照射を前回とは異なった位置から行う。このように
して順次被検体6への光照射位置を変化させながら、同
時におのおのの光照射位置において波長を変化させた測
定を繰返す。そして最終的にコンピュータ10で測定結
果の演算処理もしくは画像処理(たとえば米国,アカデ
ミック プレス(ACADEMIC PRESS)社刊,1980年発
行の、ジー.テイー.ハーマン(G.T.HERMAN)著,イメ
ージ リコンストラクション フロム プロジェクショ
ンズ(IMAGE RECONSTRUCTION FROM PROJECTIONS))を行
い、生体の形態もしくは生体機能に関する画像として表
示部11で表示する。
When this series of measurements is completed with light of one wavelength, the computer 10 controls the light source unit 1 to sequentially change the measurement wavelengths and perform similar measurements for all wavelengths. Next, the computer 10 controls the one-input / multi-output optical switch 3 so that the light-source optical fiber 2 introduced from the light source unit 1 to the one-input / multi-output optical switch 3, for example, the incident optical fiber 4-. 2 and the light irradiation to the subject 6 is performed from a position different from the previous time. In this way, while sequentially changing the light irradiation position on the subject 6, the measurement is repeated while changing the wavelength at each light irradiation position. Finally, the computer 10 performs calculation processing or image processing of measurement results (for example, published by ACADEMIC PRESS in the US, published in 1980 by GT HERMAN, Image Reconstruction From Projections ( IMAGE RECONSTRUCTION FROM PROJECTIONS)), and is displayed on the display unit 11 as an image relating to the morphology or function of the living body.

【0014】次に本発明による生体光計測装置の第二の
実施例を示す。この第二の実施例では、生体の形態もし
くは生体機能に関する画像計測を行う生体光計測装置に
おいて、画像の空間分解能を向上させる一つの方法であ
る時間ゲート法を本発明に適用した場合を示す。この時
間ゲート法では、画像の空間分解能の劣化を引き起こ
す、散乱により生体中で光路が広った光を検出時間にあ
る時間幅のゲートを設けることにより除去し、生体中を
直進的に通過した光のみを選択的に抽出する。このよう
な方法は、特開昭63−206655号公報に記載されている。
Next, a second embodiment of the biological light measuring device according to the present invention will be described. The second embodiment shows a case where a time gating method, which is one of the methods for improving the spatial resolution of an image, is applied to the present invention in a biological optical measurement device that measures an image relating to the morphology or biological function of a living body. In this time-gating method, light that has a broad optical path due to scattering, which causes deterioration of image spatial resolution, is removed by providing a gate with a time width within the detection time, and passes straight through the body. Selectively extract only light. Such a method is described in JP-A-63-206655.

【0015】図2に本発明の第二の実施例を示す。パル
ス光源部21は、パスル幅が数ピコ秒から数十ピコ秒の
範囲で、そのパルス光を数十メガヘルツから数百メガヘ
ルツの繰返し周波数で放射する波長500nmから15
00nm間の複数の波長の光で構成している。このよう
なパルス光は、たとえば、半導体レーザもしくはチタン
サファイアレーザなどで発生させることができる。この
パルス光源部から放射されたある波長の光は、第一の実
施例と同様な方法で、鏡5−1が取り付けられている入
射用光ファイバ4−1から被検体6に照射される。第一
の実施例と同様に、被検体6の表面による光反射によっ
て被検体6の外部に放出される光は鏡5−1によって再
び被検体6に照射され、そして、この被検体6の中を通
過した光は、被検体6の周囲の複数部位に配置している
検出用光ファイバ7−1から7−mでそれぞれ捕えられ
る。
FIG. 2 shows a second embodiment of the present invention. The pulse light source unit 21 emits the pulsed light at a repetition frequency of several tens of megahertz to several hundreds of megahertz in a pulse width range of several picoseconds to several tens of picoseconds and a wavelength of 500 nm to 15 nm.
It is composed of light having a plurality of wavelengths of 00 nm. Such pulsed light can be generated by, for example, a semiconductor laser or a titanium sapphire laser. Light of a certain wavelength emitted from this pulse light source unit is applied to the subject 6 from the incident optical fiber 4-1 to which the mirror 5-1 is attached, in the same manner as in the first embodiment. As in the first embodiment, the light emitted to the outside of the subject 6 due to the light reflection from the surface of the subject 6 is irradiated onto the subject 6 again by the mirror 5-1. The light that has passed through is captured by the detection optical fibers 7-1 to 7-m arranged at a plurality of sites around the subject 6, respectively.

【0016】これら検出用光ファイバ7−1から7−m
の他の一端は時間分解光検出部22に導入し、それぞれ
の光ファイバについて独立に光強度の時間依存性を計測
する。この時間分解光検出部として、たとえば検出時間
分解能が数ピコ秒から数十ピコ秒のストリークカメラを
用いる。時間分解光検出部22のサンプリング周波数は
パルス光源部21から放射されるパルス光の繰返し周波
数と同期している。これらの光検出強度の時間依存性は
データ記憶部9で記憶する。
These detection optical fibers 7-1 to 7-m
The other end is introduced into the time-resolved light detection unit 22, and the time dependence of the light intensity is measured independently for each optical fiber. As the time-resolved light detection unit, for example, a streak camera having a detection time resolution of several picoseconds to several tens of picoseconds is used. The sampling frequency of the time-resolved light detection unit 22 is synchronized with the repetition frequency of the pulsed light emitted from the pulse light source unit 21. The time dependency of these light detection intensities is stored in the data storage unit 9.

【0017】この一連の測定が一つの波長の光で終了す
ると、コンピュータ10によってパルス光源部21を制
御して測定波長を順次変化させ、全ての波長に対して同
様に測定する。次に、コンピュータ10によって一入力
・多出力光スイッチ3を制御して、パルス光源部21か
ら一入力・多出力光スイッチ3に導入している光源用光
ファイバ2を、たとえば、入射用光ファイバ4−2に接
続して、被検体6への光照射を前回とは異なった位置か
ら行う。このようにして順次、被検体6への光照射位置
を変化させながら、同時におのおのの光照射位置におい
て波長を変化させた測定を繰返す。
When this series of measurements is completed with light of one wavelength, the computer 10 controls the pulse light source unit 21 to sequentially change the measurement wavelengths and perform similar measurements for all wavelengths. Next, by controlling the one-input / multi-output optical switch 3 by the computer 10, the light source optical fiber 2 introduced from the pulse light source unit 21 to the one-input / multi-output optical switch 3 is, for example, an incident optical fiber. By connecting to 4-2, the subject 6 is irradiated with light from a position different from the previous time. In this way, while sequentially changing the light irradiation position on the subject 6, the measurement is repeated while changing the wavelength at each light irradiation position.

【0018】データ記憶部9で記憶された全ての光検出
強度の時間依存性のデータに対して、コンピュータ10
で任意の時間ゲート幅内の検出光を選択的に抽出し、そ
の光量を計算する。このようにして求めた時間ゲート幅
内の検出光量を用いて、最終的にコンピュータ10で演
算処理もしくは画像処理を、前記第一の実施例と同様な
方法で行い、生体の形態もしくは生体機能に関する画像
として表示部11で表示する。
For all the time-dependent data of the light detection intensities stored in the data storage unit 9, the computer 10
At, the detection light within the gate width at any time is selectively extracted and the amount of light is calculated. Using the detected light amount within the time gate width thus obtained, the computer 10 finally performs the arithmetic processing or the image processing in the same manner as in the first embodiment, and relates to the morphology or the biological function of the living body. It is displayed as an image on the display unit 11.

【0019】[0019]

【発明の効果】本発明によれば、光を用いて生体の形態
もしくは生体機能を計測し画像化する生体光計測装置に
おいて、生体表面からの光の反射による入射光量の損失
を減少させることにより生体通過光量を増加させ、高い
S/N比の計測が可能となる。
According to the present invention, in a living body light measuring apparatus for measuring the morphology or living body function of a living body using light and imaging it, the loss of the incident light quantity due to the reflection of the light from the living body surface is reduced. It is possible to increase the amount of light passing through the living body and measure a high S / N ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による生体光計測装置の第一の実施例の
構成を示すブロック図。
FIG. 1 is a block diagram showing the configuration of a first embodiment of a biological optical measurement device according to the present invention.

【図2】本発明による生体光計測装置の第二の実施例の
構成を示すブロック図。
FIG. 2 is a block diagram showing a configuration of a second embodiment of the biological optical measurement device according to the present invention.

【図3】被検体表面からの反射光の放出がある従来の計
測手段の例を示す説明図。
FIG. 3 is an explanatory diagram showing an example of a conventional measuring unit that emits reflected light from the surface of a subject.

【図4】本発明による、被検体表面からの反射光の放出
を減少させる手段を示す説明図。
FIG. 4 is an illustration showing means for reducing the emission of reflected light from the surface of the subject according to the present invention.

【符号の説明】[Explanation of symbols]

1…光源部、2…光源用光ファイバ、3…一入力・多出
力光スイッチ、4−1〜4−n…入射用光ファイバ、5
−1〜5−n…鏡、6…被検体、7−1〜7−m…検出
用光ファイバ、8…マルチチャンネル光検出部、9…デ
ータ記憶部、10…コンピュータ、11…表示部。
DESCRIPTION OF SYMBOLS 1 ... Light source part, 2 ... Light source optical fiber, 3 ... 1 input / multi-output optical switch, 4-1 to 4-n ... Incident optical fiber, 5
-1 to 5-n ... Mirror, 6 ... Subject, 7-1 to 7-m ... Detecting optical fiber, 8 ... Multi-channel photodetecting section, 9 ... Data storage section, 10 ... Computer, 11 ... Display section.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】可視から近赤外の波長領域の中から一つも
しくは複数の波長の光を光源部から光伝達手段によって
生体に照射し、前記生体を通過した光を前記生体の単数
もしくは複数の位置から前記光伝達手段によって光検出
部に導入し、前記光検出部によって検出された検出光か
ら前記生体の形態もしくは機能計測を行う装置におい
て、前記生体への光照射位置の周囲に鏡をその鏡面を前
記生体に向けて配置することを特徴とする生体光計測装
置。
1. A living body is irradiated with light having one or a plurality of wavelengths from a visible to near-infrared wavelength range by a light transmitting means, and the light passing through the living body is singular or plural in the living body. In the device for introducing into the photodetection unit by the light transmission means from the position of, and measuring the form or function of the living body from the detection light detected by the light detection unit, a mirror is provided around the light irradiation position on the living body. A living body optical measurement device, characterized in that its mirror surface is arranged facing the living body.
【請求項2】請求項1において、前記光源部から短パル
ス光を繰返し任意の時間放射する生体光計測装置。
2. The biological light measuring device according to claim 1, wherein the short pulsed light is repeatedly emitted from the light source unit for an arbitrary time.
【請求項3】請求項2において、前記光検出部が時間分
解機能を有する生体光計測装置。
3. The biological optical measurement device according to claim 2, wherein the photodetector has a time-resolving function.
【請求項4】請求項3において、前記光検出部で検出さ
れた光を任意の時間幅で選択的に抽出し、それら抽出さ
れた光を用いて生体の形態もしくは機能計測を行う生体
光計測装置。
4. The biological optical measurement according to claim 3, wherein the light detected by the photodetector is selectively extracted in an arbitrary time width, and the morphology or function of the living body is measured using the extracted light. apparatus.
【請求項5】請求項1,2,3または4において、前記
伝達手段として光ファイバを用い、前記光ファイバの一
端の周囲に鏡を配置する生体光計測装置。
5. The biological optical measurement device according to claim 1, 2, 3, or 4, wherein an optical fiber is used as the transmitting means, and a mirror is arranged around one end of the optical fiber.
JP4339980A 1992-12-21 1992-12-21 Organismic light measuring device Pending JPH06181930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4339980A JPH06181930A (en) 1992-12-21 1992-12-21 Organismic light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4339980A JPH06181930A (en) 1992-12-21 1992-12-21 Organismic light measuring device

Publications (1)

Publication Number Publication Date
JPH06181930A true JPH06181930A (en) 1994-07-05

Family

ID=18332594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4339980A Pending JPH06181930A (en) 1992-12-21 1992-12-21 Organismic light measuring device

Country Status (1)

Country Link
JP (1) JPH06181930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018755A1 (en) * 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
JP2015515347A (en) * 2012-04-17 2015-05-28 マシモ コーポレーションMasimo Corporation Supersaturation index

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018755A1 (en) * 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
GB2311854A (en) * 1995-11-17 1997-10-08 Hitachi Ltd Instrument for optical measurement of living body
GB2311854B (en) * 1995-11-17 2000-03-22 Hitachi Ltd Optical measurement instrument for living body
JP2015515347A (en) * 2012-04-17 2015-05-28 マシモ コーポレーションMasimo Corporation Supersaturation index
US10531819B2 (en) 2012-04-17 2020-01-14 Masimo Corporation Hypersaturation index
US10674948B2 (en) 2012-04-17 2020-06-09 Mastmo Corporation Hypersaturation index
US11071480B2 (en) 2012-04-17 2021-07-27 Masimo Corporation Hypersaturation index

Similar Documents

Publication Publication Date Title
JP3433498B2 (en) Method and apparatus for measuring internal information of scattering medium
US5413098A (en) Path constrained spectrophotometer and method for determination of spatial distribution of light or other radiation scattering and absorbing substances in a radiation scattering medium
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
JP3844815B2 (en) Method and apparatus for measuring absorption information of scatterers
US6282438B1 (en) Optical system for measuring metabolism in a body and imaging method
EP0710832B1 (en) Method and apparatus for measuring scattering and absorption characteristics of a scattering medium
JP3107914B2 (en) Apparatus and method for measuring absorption information inside scattering absorber
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
EP0760477B1 (en) Apparatus for measuring scattering medium and method for the same
EP2734113B1 (en) A non-invasive device and method for measuring bilirubin levels
US10925525B2 (en) Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor
JPH0657216B2 (en) Liver function test device
Le et al. Review of modern techniques in detecting port-wine stain response to laser therapy
US20220117525A1 (en) Sensor and system for neonatal jaundice monitoring and management
CA2123152A1 (en) Non-invasive determination of analyte concentration using non-continuous radiation
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
US8406840B2 (en) Spatially resolved oxymetry
USRE36044E (en) Path constrained spectrophotometer and method for determination of spatial distribution of light or other radiation scattering and absorbing substances in a radiation scattering medium
JP3524976B2 (en) Concentration measuring device
JP3304559B2 (en) Optical measurement method and device
JPH06181930A (en) Organismic light measuring device
KR19990029222A (en) Method and apparatus for measuring blood component concentration in blood
JP4077477B2 (en) Method and apparatus for measuring absorption information of scatterers
JP3887668B2 (en) Method and apparatus for measuring extinction coefficient of light scattering medium and light scattering coefficient
KR20070055614A (en) Instrument for noninvasively measuring blood sugar level