JPH06181794A - Analysis of enzyme reaction product and its apparatus - Google Patents

Analysis of enzyme reaction product and its apparatus

Info

Publication number
JPH06181794A
JPH06181794A JP18626391A JP18626391A JPH06181794A JP H06181794 A JPH06181794 A JP H06181794A JP 18626391 A JP18626391 A JP 18626391A JP 18626391 A JP18626391 A JP 18626391A JP H06181794 A JPH06181794 A JP H06181794A
Authority
JP
Japan
Prior art keywords
column
enzyme
reaction product
immobilized enzyme
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18626391A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
廣志 鈴木
Hiroko Watanabe
浩子 渡辺
Tsunemi Tokieda
常美 時枝
Soyao Moriguchi
征矢生 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP18626391A priority Critical patent/JPH06181794A/en
Publication of JPH06181794A publication Critical patent/JPH06181794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To analyze an enzyme reaction product rapidly and in high precision by introducing a sample solution with an eluant into an immobilized enzyme column catalyzing an optically specific reaction and subjecting to react enzymatically, then detecting an effluent by a polarimetric detector to detect optically active compounds. CONSTITUTION:A gellike copolymer containing epoxy groups obtained by copolymerizing glycidyl methacrylate with ethyleneglycol dimethacrylate is treated with water to modify by ringopening, and further introduced epoxy groups by epichlorohydrin to obtain a gel, which is added to 0.1 MNaHCO3 aqueous solution and filled in an immobilized enzyme column 3 catalyzing an optically specific reaction and having been prepared by stirring for 8hr at 25 deg.C. A sample solution 7 is supplied by an injector 2 and an eluant by a liquid supplying pump 1 to the column respectively and subjected to react enzymatically, then an effluent is separated by a separation column 4 and made to flow into a polarimetric detector 5 to detect an optically active compound by an angle of rotation, thus an enzyme reaction product is analyzed rapidly and in high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酵素反応生成物の分析方
法およびその装置に係り、特に不斉反応を触媒する酵素
反応生成物の分析方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing an enzymatic reaction product and an apparatus therefor, and more particularly to a method for analyzing an enzymatic reaction product which catalyzes an asymmetric reaction and an apparatus therefor.

【0002】[0002]

【従来の技術】近年、光学活性な物質に対する関心が著
しく高まっている。これは生体成分であるアミノ酸、糖
類、タンパク質および核酸などがいずれも不斉中心を持
つ光学活性化合物であり、生命現象のあらゆる場面に、
これらの光学活性化合物が重要な働きをしていることが
強く認識されるようになったためである。
2. Description of the Related Art Recently, interest in optically active substances has remarkably increased. This is an optically active compound in which biological components such as amino acids, saccharides, proteins, and nucleic acids all have asymmetric centers, and in all situations of life phenomenon,
This is because it has been strongly recognized that these optically active compounds play important roles.

【0003】光学活性化合物を得る方法は、光学分割法
と合成法に大きく分けられる。光学分割法はラセミ体の
形で得られた目的物の光学異性体を分離分割する方法
で、さらに細かく分類するとジアステレオマー法、優先
晶析法、クロマトグラフィー法などが知られている。一
方、合成法には光学活性な化合物を出発物質または反応
試薬として用い、その光学活性を保持しつつ合成を進め
ていく方法と、光学不活性な化合物を出発物質として光
学活性な化合物を創出する不斉合成法とがある。後者の
不斉合成法は通常種々の不斉触媒を用いて行われている
が、最近になって、不斉触媒として酵素を用いる方法が
注目を集めている。
The method for obtaining an optically active compound is roughly classified into an optical resolution method and a synthesis method. The optical resolution method is a method of separating and resolving the optical isomers of a target substance obtained in the form of a racemate, and if further classified, a diastereomer method, a preferential crystallization method, a chromatography method and the like are known. On the other hand, in the synthetic method, an optically active compound is used as a starting material or a reaction reagent, and a method of proceeding with the synthesis while maintaining its optical activity, and creating an optically active compound from an optically inactive compound as a starting material There is an asymmetric synthesis method. The latter asymmetric synthesis method is usually carried out using various asymmetric catalysts, but recently, a method using an enzyme as an asymmetric catalyst has attracted attention.

【0004】従来、酵素が触媒する反応は、非常に立体
選択性が高いことが知られていたが、酵素は基質特異性
が高くその応用範囲が限られていると考えられていたこ
とから、実際の合成反応などで酵素を不斉触媒として用
いることは試みられていなかった。しかし、昭和50年
代になって、豚肝臓エステラーゼの基質特異性が比較的
低いことから種々の物質の不斉合成触媒にこの酵素が利
用できることが解明されて以来、次第に光学活性化合物
を得る有力な方法として普及してきた(Organic
Reaction、1989、[37]、P1−56
参照)。
Conventionally, it has been known that the reaction catalyzed by an enzyme has a very high stereoselectivity, but since the enzyme is considered to have a high substrate specificity and its application range is limited, No attempt has been made to use an enzyme as an asymmetric catalyst in an actual synthetic reaction or the like. However, since it was clarified in the 1950s that the substrate specificity of pig liver esterase was relatively low, it was found that this enzyme can be used as a catalyst for asymmetric synthesis of various substances, and it has gradually become a powerful candidate for obtaining optically active compounds. It has become popular as a method (Organic
Reaction, 1989, [37], P1-56.
reference).

【0005】また、酵素を不斉触媒として用いる例はこ
の他に最近ではリパーゼを用いた例、各種酸化還元酵素
を用いた例などが報告されている。この際、酵素を安定
化させたり、また再利用や反応の後処理を簡便にする目
的で、酵素を不溶性の担体に固定化したいわゆる固定化
酵素が用いられている。このための酵素の固定化方法や
固定化する担体の種類、固定化酵素の不斉触媒としての
特性、安定性に関する研究も広く行われている(千畑一
郎編、固定化酵素、講談社発行、1975年参照)。
In addition to the above, as examples of using an enzyme as an asymmetric catalyst, examples using lipase, examples using various oxidoreductases, etc. have been recently reported. At this time, a so-called immobilized enzyme in which the enzyme is immobilized on an insoluble carrier is used for the purpose of stabilizing the enzyme and facilitating reuse and post-treatment of the reaction. For this purpose, researches on methods of immobilizing enzymes, types of carriers to be immobilized, properties of immobilized enzymes as asymmetric catalysts, and stability have been widely conducted (edited by Ichiro Chibata, immobilized enzymes, published by Kodansha, 1975. See year).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、酵素を
用いて立体特異的な不斉反応を進める際には、反応生成
物を煩雑な操作を繰り返し、時間をかけて単離精製しな
ければその光学的性質と反応の選択性に関する情報が得
られず、また反応生成物が不安定な場合、正確な情報が
得られない恐れがあるという問題点があった。さらに、
得られた酵素反応生成物の光学的性質を測定する際に用
いる旋光計などの装置は大量の試料を必要とすることか
ら、酵素反応の結果を検討する際の障害となっていた。
本発明の目的は前記の問題点を克服して、簡便、迅速に
しかも高い精度で酵素反応生成物の分析が可能な分析方
法およびその装置を提供することにある。
However, when a stereospecific asymmetric reaction is carried out using an enzyme, complicated operations are repeated on the reaction product, and if the product is not isolated and purified over time, its optical However, there is a problem in that no accurate information can be obtained when the reaction product is unstable, because information on the physical properties and the selectivity of the reaction cannot be obtained. further,
Since an apparatus such as a polarimeter used for measuring the optical properties of the obtained enzyme reaction product requires a large amount of sample, it has been an obstacle in examining the result of the enzyme reaction.
An object of the present invention is to overcome the above-mentioned problems and provide an analysis method and an apparatus therefor capable of easily, rapidly and highly accurately analyzing an enzyme reaction product.

【0007】[0007]

【課題を解決するための手段】本発明は、試料溶液を溶
離液と共に光学特異的な反応を触媒する固定化酵素カラ
ムに導入して酵素反応生成物を生成、分離し、次いで前
記固定化酵素カラムからの溶出液を旋光度検出器へ流入
して旋光度に基づいて光学活性化合物を検出することか
らなる酵素反応生成物の分析方法、およびこの分析方法
において、固定化酵素カラムで酵素反応生成物を生成し
た後、前記固定化酵素カラムからの溶出液を分離カラム
に流入して前記酵素反応生成物を分離することからなる
方法にある。
According to the present invention, a sample solution is introduced together with an eluent into an immobilized enzyme column which catalyzes an optically specific reaction to produce and separate an enzymatic reaction product, and the immobilized enzyme is then separated. A method for analyzing an enzymatic reaction product, which comprises flowing an eluate from the column into an optical rotation detector and detecting an optically active compound based on the optical rotation, and in this analysis method, the enzymatic reaction is produced by an immobilized enzyme column. After the product is produced, the eluate from the immobilized enzyme column is flown into a separation column to separate the enzyme reaction product.

【0008】また、本発明の分析方法に基づいた基本構
成を有する分析装置にある。即ち、溶離液と試料溶液と
が流入する固定化酵素カラムと、その下流側に旋光度検
出器とを配置してなる酵素反応生成物分析装置、および
この分析装置において、固定化酵素カラムと旋光度検出
器との間に分離カラムが介在している分析装置にある。
Further, the present invention resides in an analyzing device having a basic configuration based on the analyzing method of the present invention. That is, an enzyme reaction product analyzer in which an immobilized enzyme column into which an eluent and a sample solution flow and an optical rotation detector are arranged on the downstream side thereof, and in this analyzer, the immobilized enzyme column and the optical rotation are used. In the analyzer, a separation column is interposed between the detector and the degree detector.

【0009】図1に本発明の分析装置の一例の系統図を
示してある。1は溶離液6を送液する送液ポンプを示
す。試料溶液7を試料インジェクター2より注入し固定
化酵素カラム3で光学特異的な反応を行い、その溶出液
8をさらに分離カラム4で反応生成物、出発物質、反応
の副生成物の分離を行い、次いでこの溶出液9を旋光度
検出器5に流入して光学活性化合物を検出する。なお、
固定化酵素カラム3内で同時に分離が可能な場合は、分
離カラム4は必要ない。
FIG. 1 shows a system diagram of an example of the analyzer of the present invention. Reference numeral 1 denotes a liquid feed pump that feeds the eluent 6. A sample solution 7 is injected from a sample injector 2 and an optically specific reaction is carried out in an immobilized enzyme column 3, and an eluate 8 thereof is further separated in a separation column 4 into a reaction product, a starting material and a by-product of the reaction. Then, the eluate 9 is introduced into the optical rotation detector 5 to detect the optically active compound. In addition,
The separation column 4 is not necessary when simultaneous separation is possible in the immobilized enzyme column 3.

【0010】本発明の分析装置において固定化酵素カラ
ムと旋光度検出器以外には特に制限はなく、通常の分析
に用いられている送液ポンプ、試料インジェクター、分
離カラム、記録計等を用いればよい。
In the analyzer of the present invention, there is no particular limitation other than the immobilized enzyme column and the optical rotation detector, and if a liquid feed pump, a sample injector, a separation column, a recorder, etc., which are used in ordinary analysis, are used. Good.

【0011】本発明における固定化酵素カラムとは、光
学特異的な反応を触媒する酵素を固定化した担体が充填
されているカラムである。カラムの材質、形状、大きさ
などは特に制限がなく、例えばステンレス製カラム、ガ
ラスカラムやポリマー系カラムなどを例示することがで
きる。
The immobilized enzyme column in the present invention is a column packed with a carrier on which an enzyme that catalyzes an optically specific reaction is immobilized. The material, shape and size of the column are not particularly limited, and examples thereof include a stainless steel column, a glass column and a polymer column.

【0012】固定化酵素カラムに用いられる酵素固定化
充填剤についても特に制限はなく、担体について言えば
酵素反応に用いられる塩や有機溶媒を含む水などの溶媒
に不溶なものであればよい。例えばアガロース、セルロ
ース、キトサン等の天然高分子、ポリアクリレート、ポ
リメタクリレート、ポリスチレン、ポリビニルアルコー
ル、ポリアクリルアミド等の合成高分子、シリカゲル、
ポーラスガラス、アルミナ、ジルコニア等の無機系の担
体を例示することができる。
The enzyme-immobilized packing material used in the immobilized enzyme column is not particularly limited, and the carrier may be any one that is insoluble in a solvent such as a salt used in the enzyme reaction or water containing an organic solvent. For example, natural polymers such as agarose, cellulose, chitosan, synthetic polymers such as polyacrylate, polymethacrylate, polystyrene, polyvinyl alcohol, polyacrylamide, silica gel,
Examples of the inorganic carrier include porous glass, alumina and zirconia.

【0013】これらの担体に固定化する酵素についても
光学特異的な反応を触媒するものであれば特に制限はな
く、例えば、アルコールオキシドレダクターゼ、コレス
テロールオキシダーゼまたはモノアミンオキシダーゼ等
の酸化還元酵素やトリプシン、キモトリプシン、アシラ
ーゼ、エステラーゼまたはグルコシダーゼ等の加水分解
酵素、メチルトランスフェラーゼ、アミノアシルトラン
スフェラーゼ、グリコシルトランスフェラーゼ等の転移
酵素などが例示される。
The enzyme immobilized on these carriers is not particularly limited as long as it catalyzes an optically specific reaction, and examples thereof include redox enzymes such as alcohol oxidoreductase, cholesterol oxidase or monoamine oxidase, trypsin and chymotrypsin. Examples thereof include hydrolases such as acylase, esterase and glucosidase, and transferases such as methyltransferase, aminoacyltransferase and glycosyltransferase.

【0014】本発明に於いて固定化酵素が触媒する光学
特異的な反応とは、光学活性物質を基質として立体選択
的に行われる反応または、光学不活性な物質を基質とし
て新たに不斉中心を生じせしめる反応を言う。
In the present invention, the optically specific reaction catalyzed by an immobilized enzyme means a reaction which is stereoselectively carried out using an optically active substance as a substrate or a new asymmetric center using an optically inactive substance as a substrate. Is a reaction that causes

【0015】また、担体に酵素を固定化する方法につい
ては特に制限はなく、常法に従って例えば前記引用した
成書に記載されているような方法、即ちエポキシ基、ア
ルデヒド基のような反応性の官能基を有する担体に、酵
素を含む水溶液を室温付近の緩和な条件で反応さるとい
う方法で容易に酵素を固定化することができる。
There is no particular limitation on the method for immobilizing the enzyme on the carrier, and the method described in the above-mentioned reference, for example, a method such as an epoxy group or an aldehyde group, which is reactive, can be used according to a conventional method. The enzyme can be easily immobilized on the carrier having a functional group by reacting an aqueous solution containing the enzyme under mild conditions near room temperature.

【0016】本発明における酵素反応生成物の分離は、
固定化酵素カラム内で同時に行われる場合もあるが、必
要に応じて固定化酵素カラムの後に分離カラムを用いて
二段階で行っても良い。例えば前者の場合、試料溶液の
流路に沿って上流側より固定化酵素カラムと旋光度検出
器を配置し、また後者の場合は試料溶液の流路に沿って
上流側より固定化酵素カラム、分離カラム、旋光度検出
器を配置して分析装置を構成する。
The separation of the enzymatic reaction product in the present invention is
The steps may be performed simultaneously in the immobilized enzyme column, but may be performed in two steps using a separation column after the immobilized enzyme column, if necessary. For example, in the case of the former, the immobilized enzyme column and the optical rotation detector are arranged from the upstream side along the flow path of the sample solution, and in the case of the latter, the immobilized enzyme column from the upstream side along the flow path of the sample solution, An analyzer is constructed by arranging a separation column and an optical rotation detector.

【0017】固定化酵素カラム内で同時に分離が可能な
場合とは、例えば試料とカラムに用いた担体との相互作
用の強さが、反応生成物と出発物質と反応の副生成物の
間で十分に異なる場合である。
When the separation can be carried out simultaneously in the immobilized enzyme column, for example, the strength of the interaction between the sample and the carrier used in the column depends on the reaction product, the starting material and the by-product of the reaction. This is the case when they are sufficiently different.

【0018】固定化酵素カラムと検出器の間に接続する
分離カラムについては特に制限はない。即ち、固定化酵
素カラムで触媒された反応の生成物と出発物質および、
反応の副生成物とを分離可能なカラムであればよく、目
的とする物質を分子量の違いで分離するGPCモード、
酸性度塩基性度の違いで分離するイオン交換モード、疎
水性の違いで分離する分配吸着モード、特定の物質を選
択的に吸着分離するアフィニティモード等の中から目的
に応じて選択し用いることができる。
There is no particular limitation on the separation column connected between the immobilized enzyme column and the detector. That is, the products and starting materials of the reaction catalyzed by the immobilized enzyme column, and
Any column can be used as long as it can be separated from the by-products of the reaction, and a GPC mode for separating a target substance by a difference in molecular weight,
It can be selected and used according to the purpose from ion exchange mode that separates by acidity and basicity, partition adsorption mode that separates by hydrophobicity, affinity mode that selectively adsorbs and separates specific substances, etc. it can.

【0019】酵素反応生成物の検出に用いる旋光度検出
器についても特に制限はない。即ち、前述の固定化酵素
カラムまたは分離カラムに連結して溶離液中の光学活性
化合物の旋光度を検出することが可能な検出器であれば
よく、例えばShodexOR−1(商品名、昭和電工
(株)製)、Chiramonitor(商品名、AC
S社製)、KNAUER Chiral Ditect
or(商品名、KNAUER社製)などを用いることが
できる。また旋光度検出器と併用して、紫外分光検出
器、示差屈折率検出器等を適宜組み合わせて用いること
により、光学純度等さらに多くの情報を得ることも可能
である。
The optical rotation detector used for detecting the enzymatic reaction product is also not particularly limited. That is, any detector capable of detecting the optical rotation of the optically active compound in the eluent by connecting to the above-mentioned immobilized enzyme column or separation column, for example Shodex OR-1 (trade name, Showa Denko ( Ltd.), Chiramonitor (trade name, AC
S company), KNAUER Chiral Detect
or (trade name, manufactured by KNAUER) or the like can be used. Further, it is possible to obtain more information such as optical purity by using an ultraviolet spectroscopic detector, a differential refractive index detector and the like in combination with the optical rotation detector.

【0020】[0020]

【実施例】以下に本酵素反応分析法について代表的な例
を示し、更に具体的に説明する。但しこれらは説明のた
めの単なる例示であって本発明はこれらになんら制限さ
れないことは言うまでもない。
EXAMPLES A typical example of the present enzymatic reaction analysis method will be shown below and will be described more specifically. However, it goes without saying that these are merely examples for explanation and the present invention is not limited to these.

【0021】実施例1 グリシジルメタクリレートとエチレングリコールジメタ
クリレートから得られたエポキシ基含有ゲル状共重合体
を水により該エポキシ基を開環変性し、更にエピクロル
ヒドリンでエポキシ基を導入したゲル(乾燥ゲル1gあ
たり0.3mMのエポキシ基を含む。)1gをトリプシ
ン(タイプIX:シグマ社製)50mgを含む0.1M
炭酸水素ナトリウム水溶液10mlに加えて摂氏25度
で8時間攪はん後、摂氏4度で一夜放置した。次いでゲ
ルをろ取し1%酢酸水溶液および水で洗浄した。こうし
て得られた固定化酵素ゲルは乾燥ゲル1gあたりトリプ
シンを15mg担持していることが、反応終了後に反応
液およびゲル洗浄液中の未反応原料を高速液体クロマト
グラフィーで分析することにより確かめられた。
Example 1 A gel copolymer obtained from glycidyl methacrylate and ethylene glycol dimethacrylate containing an epoxy group was subjected to ring-opening modification of the epoxy group with water, and the epoxy group was introduced with epichlorohydrin (dry gel 1 g 0.1 M containing 1 mg of trypsin (Type IX: manufactured by Sigma).
The mixture was added to 10 ml of an aqueous sodium hydrogen carbonate solution, stirred at 25 ° C for 8 hours, and then left overnight at 4 ° C. Then, the gel was collected by filtration and washed with a 1% acetic acid aqueous solution and water. It was confirmed that the immobilized enzyme gel thus obtained carried 15 mg of trypsin per 1 g of dry gel by analyzing the unreacted raw materials in the reaction solution and the gel washing solution after the reaction by high performance liquid chromatography.

【0022】得られたトリプシン固定化ゲルを充填した
カラムと旋光度検出器から構成された分析装置に、DL-
N-ベンゾイルアルギニンエチルエステル0.5mgを
注入したところ図2に示すクロマトグラムが得られた。
図中、ピークAは加水分解された(S)-(−)-N-ベンゾ
イルアルギニン、ピークBは未反応の(R)-(+)-N-ベ
ンゾイルアルギニンエチルエステルである。図2よりN
−ベンゾイルアルギニンエチルエステルのL体のみが選
択的に加水分解を受け、生成物の酸は(S)-(−)体で未
反応のエステルは(R)-(+)体であることが確認され
た。なお、測定条件は次の通りである。 溶離液 :0.1M 燐酸ナトリウム緩衝液(pH
7.4) 溶離速度 :0.5ml/min 旋光度検出器:Shodex OR−1(商品名、昭和
電工(株)製)
DL- was added to an analyzer composed of a column packed with the obtained trypsin-immobilized gel and an optical rotation detector.
Injecting 0.5 mg of N-benzoylarginine ethyl ester gave the chromatogram shown in FIG.
In the figure, peak A is hydrolyzed (S)-(−)-N-benzoylarginine, and peak B is unreacted (R)-(+)-N-benzoylarginine ethyl ester. From Figure 2, N
-It was confirmed that only the L-form of benzoylarginine ethyl ester was selectively hydrolyzed and the product acid was the (S)-(-) form and the unreacted ester was the (R)-(+) form. Was done. The measurement conditions are as follows. Eluent: 0.1M sodium phosphate buffer (pH
7.4) Elution rate: 0.5 ml / min Optical rotation detector: Shodex OR-1 (trade name, Showa Denko KK)

【0023】実施例2 多孔性シリカゲルに3−グリシドキシプロピルトリメト
キシシランでエポキシ基を導入したゲル(乾燥ゲル1g
あたり0.3mMのエポキシ基を含む。)1gをブタ肝
臓エステラーゼ(シグマ社製)10mgを含む0.1モ
ル炭酸水素ナトリウム水溶液10mlに加えて摂氏25
度で8時間攪はん後、摂氏4度で一夜放置した。次いで
ゲルをろ取し、1%酢酸水溶液さらに水で洗浄した。こ
うして得られた固定化酵素ゲルは、乾燥ゲル1gあたり
ブタ肝臓エステラーゼを15mg担持していることが、
反応終了後に反応液およびゲル洗浄液中の未反応原料を
高速液体クロマトグラフィーで分析することにより確か
められた。
Example 2 A gel obtained by introducing an epoxy group into porous silica gel with 3-glycidoxypropyltrimethoxysilane (1 g of dry gel).
Each contains 0.3 mM of epoxy groups. ) 1 g was added to 10 ml of 0.1 molar sodium hydrogen carbonate aqueous solution containing 10 mg of pig liver esterase (manufactured by Sigma) to obtain 25 ° C.
After stirring for 8 hours, the mixture was left overnight at 4 degrees Celsius. Then, the gel was collected by filtration and washed with a 1% aqueous acetic acid solution and further with water. The immobilized enzyme gel thus obtained carries 15 mg of pig liver esterase per 1 g of dry gel,
After the reaction was completed, it was confirmed by analyzing the unreacted raw materials in the reaction solution and the gel washing solution by high performance liquid chromatography.

【0024】得られた豚肝臓エステラーゼ固定化ゲルを
充填したカラムと旋光度検出器と紫外分光検出器とから
構成された分析装置にN-ベンジロキシカルボニル-β-
グルタミン酸ジメチルエステル0.5mgを注入し、実
施例1と同じ測定条件で分析を行ったところ図3に示す
クロマトグラムが得られた。図中、ピークAは加水分解
された(−)-N-ベンジロキシカルボニル-β-グルタミ
ン酸モノメチルエステル、また、紫外分光検出で認めら
れるピークBは未反応のN-ベンジロキシカルボニル-β
-グルタミン酸ジメチルエステルであった。生成したモ
ノエステル体を紫外分光検出で得られた標準品と比べた
ところ、光学純度約90%の(S)-(−)体であることが
確認された。なお、測定条件は次の通りである。 溶離液 :0.1M 燐酸ナトリウム緩衝液(pH
7.4) 溶離速度 :0.5ml/min 旋光度検出器 :Shodex OR−1(商品名、昭
和電工(株)製) 紫外分光検出器:Shodex UV−41(商品名、
昭和電工(株)製) 検出波長 :230nm
N-benzyloxycarbonyl-β-was added to an analyzer composed of a column packed with the obtained pig liver esterase-immobilized gel, an optical rotation detector and an ultraviolet spectroscopic detector.
When 0.5 mg of glutamic acid dimethyl ester was injected and analyzed under the same measurement conditions as in Example 1, the chromatogram shown in FIG. 3 was obtained. In the figure, peak A is hydrolyzed (−)-N-benzyloxycarbonyl-β-glutamic acid monomethyl ester, and peak B observed by ultraviolet spectroscopic detection is unreacted N-benzyloxycarbonyl-β.
-Glutamic acid dimethyl ester. When the produced monoester form was compared with the standard product obtained by ultraviolet spectroscopic detection, it was confirmed to be the (S)-(−) form with an optical purity of about 90%. The measurement conditions are as follows. Eluent: 0.1M sodium phosphate buffer (pH
7.4) Elution rate: 0.5 ml / min Optical rotation detector: Shodex OR-1 (trade name, manufactured by Showa Denko KK) Ultraviolet spectroscopic detector: Shodex UV-41 (trade name,
Showa Denko KK) Detection wavelength: 230 nm

【0025】実施例3 グリシジルメタクリレートとエチレングリコールジメタ
クリレートから得られたエポキシ基含有ゲル状共重合体
を水により該エポキシ基を開環変性し、更に1,4‐ブタ
ンジオールジグリシジルエーテルでエポキシ基を導入
し、次いでアンモニアと作用させて得たゲル(乾燥ゲル
1gあたり0.2mMのアミノ基を含む。)1gをキモ
トリプシン(タイプII:シグマ社製)30mgを含む
0.1Mリン酸水素ナトリウム緩衝液(pH6.5)5
mlに加えて、次いで1-エチル-3-(3-ジメチルアミノプ
ロピル)カルボジイミド約20mgを加えて氷冷下で3
時間振とう反応させた。次いでゲルをろ取し、1M塩化
ナトリウム水溶液および水で洗浄した。こうして得られ
た固定化酵素ゲルは乾燥ゲル1gあたりキモトリプシン
を約20mg担持していることが、反応終了後に反応液
およびゲル洗浄液中の未反応原料を高速液体クロマトグ
ラフィーで分析することにより確かめられた。
Example 3 An epoxy group-containing gel-like copolymer obtained from glycidyl methacrylate and ethylene glycol dimethacrylate was subjected to ring opening modification of the epoxy group with water, and the epoxy group was further modified with 1,4-butanediol diglycidyl ether. 0.1 g of a gel (containing 0.2 mM of amino groups per 1 g of dry gel) obtained by reacting with ammonia and containing 30 mg of chymotrypsin (type II: manufactured by Sigma). Liquid (pH 6.5) 5
In addition to ml, about 20 mg of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide was added, and the mixture was cooled to 3 with ice.
The reaction was shaken for a time. The gel was then collected by filtration and washed with 1M aqueous sodium chloride solution and water. It was confirmed that the immobilized enzyme gel thus obtained carried about 20 mg of chymotrypsin per 1 g of dried gel by analyzing unreacted raw materials in the reaction solution and the gel washing solution after the reaction by high performance liquid chromatography. .

【0026】得られたキモトリプシン固定化ゲルを充填
したカラムと分配吸着モードのカラム(商品名;Sho
dex RSpak DM−614:昭和電工(株)
製)と旋光度検出器から構成された分析装置にDL-フェ
ニルアラニンエチルエステル0.3mgを注入したとこ
ろ、図4に示すクロマトグラムが得られた。図中、ピー
クAは加水分解された(S)-(−)-フェニルアラニン、ピ
ークBは未反応の(R)-(−)-フェニルアラニンエチルエ
ステルであった。図4によりフェニルアラニンエチルエ
ステルのL体のみが選択的に加水分解を受け生成物の酸
は(S)-(−)体で未反応のエステルは(R)-(−)体である
ことが確認された。なお、測定条件は次の通りである。 溶離液 :0.1M 燐酸ナトリウム緩衝液(pH7.
4)+5% エタノール 溶離速度:0.5ml/min 旋光度検出器:Shodex OR−1(商品名、昭和
電工(株)製)
A column packed with the obtained chymotrypsin-immobilized gel and a column in a partition adsorption mode (trade name: Sho
dex RSpak DM-614: Showa Denko KK
When 0.3 mg of DL-phenylalanine ethyl ester was injected into an analyzing device composed of the above (trade name) and an optical rotation detector, the chromatogram shown in FIG. 4 was obtained. In the figure, peak A was hydrolyzed (S)-(−)-phenylalanine, and peak B was unreacted (R)-(−)-phenylalanine ethyl ester. From FIG. 4, it was confirmed that only the L-form of phenylalanine ethyl ester was selectively hydrolyzed and the product acid was the (S)-(-) form and the unreacted ester was the (R)-(-) form. Was done. The measurement conditions are as follows. Eluent: 0.1 M sodium phosphate buffer (pH 7.
4) + 5% ethanol Elution rate: 0.5 ml / min Optical rotation detector: Shodex OR-1 (trade name, Showa Denko KK)

【0027】実施例4 多孔性セルロースゲルであるセルロファインA−3(商
品名、チッソ(株)製)に20%水酸化ナトリウム存在
下エピクロルヒドリンでエポキシ基を導入し、次いで過
ヨウ素酸ナトリウムを作用させてアルデヒド基を導入し
たゲル(ゲル1mlあたり0.05mMのアルデヒド基
を含む。)2.0gをα-グルコシダーゼ(東洋紡績
(株)製)100mgを含む0.1M炭酸水素ナトリウ
ム水溶液10mlに加え、さらに水素化シアノホウ素ナ
トリウム20mgを加えて摂氏25度で12時間攪はん
した。次いでゲルをろ取し1M塩化ナトリウム水溶液お
よび水で洗浄した。こうして得られた吸着体はゲル1m
lあたりα-グルコシダーゼを4mg担持していること
が、反応終了後に反応液およびゲル洗浄液中の未反応原
料を高速液体クロマトグラフィーで分析することにより
確かめられた。
Example 4 Into Cellulofine A-3 (trade name, manufactured by Chisso Co., Ltd.), which is a porous cellulose gel, an epoxy group was introduced with epichlorohydrin in the presence of 20% sodium hydroxide, and then sodium periodate was acted on. Then, 2.0 g of an aldehyde group-introduced gel (containing 0.05 mM aldehyde group per 1 ml of gel) was added to 10 ml of 0.1 M sodium hydrogen carbonate aqueous solution containing 100 mg of α-glucosidase (manufactured by Toyobo Co., Ltd.). Then, 20 mg of sodium cyanoborohydride was further added, and the mixture was stirred at 25 ° C. for 12 hours. Then, the gel was collected by filtration and washed with a 1M aqueous sodium chloride solution and water. The adsorbent thus obtained is 1 m of gel
It was confirmed that 4 mg of α-glucosidase was carried per 1 by analyzing the unreacted raw materials in the reaction solution and the gel washing solution after the reaction by high performance liquid chromatography.

【0028】得られたα-グルコシダーゼ固定化ゲルを
充填したカラムとGPCモードのカラム(商品名;Sh
odex OHpak Q−801:昭和電工(株)
製)と旋光度検出器から構成された分析装置にD-グルコ
ース、D-マルトース、D-マルトトリオースを全て0.2
mg注入し分析したところ、図5に示すクロマトグラム
が得られた。図中、ピークAはD-グルコース、ピークB
はD-マルトース、ピークCはD-マルトトリオースを示
す。生成したD-グルコースおよびD-マルトースをそれぞ
れの標準品と比べたところ、光学的に純粋なD-グルコー
スおよびD-マルトースが生成していることが確認され
た。なお、測定条件は次の通りである。 溶離液 :0.1M 燐酸ナトリウム緩衝液(pH
7.4) 溶離速度 :0.5ml/min 旋光度検出器:Shodex OR−1(商品名、昭和
電工(株)製)
A column packed with the obtained α-glucosidase-immobilized gel and a GPC mode column (trade name: Sh
odex OHpak Q-801: Showa Denko KK
Manufactured by K.K.) and an optical rotation detector were used to add D-glucose, D-maltose and D-maltotriose to 0.2
When mg was injected and analyzed, the chromatogram shown in FIG. 5 was obtained. In the figure, peak A is D-glucose, peak B
Indicates D-maltose, and peak C indicates D-maltotriose. When the produced D-glucose and D-maltose were compared with the respective standard products, it was confirmed that optically pure D-glucose and D-maltose were produced. The measurement conditions are as follows. Eluent: 0.1M sodium phosphate buffer (pH
7.4) Elution rate: 0.5 ml / min Optical rotation detector: Shodex OR-1 (trade name, Showa Denko KK)

【0029】実施例5 実施例2で得られた豚肝臓エステラーゼ固定化ゲルを充
填したカラムと分配吸着モードのカラム(商品名;Sh
odex RSpak DM−614、昭和電工(株)
製)と旋光度検出器から構成された分析装置に、RS-
マンデル酸メチルエステル83μgを注入したところ、
図6に示すクロマトグラムが得られた。図中、ピークA
は(S)‐(+)-マンデル酸、ピークBは未反応の(R)‐
(−)-マンデル酸メチルエステル、ピークCは(S)-(+)
-マンデル酸エチルエステルである。
Example 5 A column packed with the pig liver esterase-immobilized gel obtained in Example 2 and a column in a partition adsorption mode (trade name: Sh
odex RSpak DM-614, Showa Denko KK
RS-
When 83 μg of mandelic acid methyl ester was injected,
The chromatogram shown in FIG. 6 was obtained. Peak A in the figure
Is (S)-(+)-mandelic acid, peak B is unreacted (R)-
(−)-Mandelic acid methyl ester, peak C is (S)-(+)
-Mandelic acid ethyl ester.

【0030】得られたクロマトグラムを紫外分光検出で
得られた標準品と比較することにより、マンデル酸メチ
ルエステルはその一部は加水分解されて光学純度90%
のマンデル酸に、また一部は溶離液中のエタノールとエ
ステル交換して光学純度73%のマンデル酸エチルエス
テルとなることが認められた。なお、測定条件は次の通
りである。 溶離液 :0.1M 燐酸ナトリウム緩衝液(pH7.
8)+ 5%エタノール 溶離速度:0.5ml/min 旋光度検出器:Shodex OR−1(商品名、昭和
電工(株)製) 紫外分光検出器:Shodex UV−41(商品名、
昭和電工(株)製) 検出波長 :230nm
By comparing the obtained chromatogram with a standard product obtained by ultraviolet spectroscopic detection, mandelic acid methyl ester was partially hydrolyzed to give an optical purity of 90%.
It was confirmed that the ester of mandelic acid of (3) and a part of it were transesterified with ethanol in the eluent to give ethyl mandelic acid having an optical purity of 73%. The measurement conditions are as follows. Eluent: 0.1 M sodium phosphate buffer (pH 7.
8) + 5% ethanol Elution rate: 0.5 ml / min Optical rotation detector: Shodex OR-1 (trade name, manufactured by Showa Denko KK) Ultraviolet spectroscopic detector: Shodex UV-41 (trade name,
Showa Denko KK) Detection wavelength: 230 nm

【0031】[0031]

【発明の効果】本発明による酵素反応生成物の分析方法
およびその装置によれば、固定化酵素が触媒する光学特
異的な反応の生成物を単離精製することなく微量の試料
で迅速かつ高精度に分析することができる。そして、本
発明は特に複数の光学活性化合物が生成するような反応
系でその反応解析を行う際に活用される。また、固定化
酵素の基質特異性、反応の立体特異性、反応速度等に関
する情報を容易に入手することが可能となるため、光学
活性物質の分離分析に関わる様々な分野においても有用
である。
EFFECTS OF THE INVENTION According to the method for analyzing an enzyme reaction product and the apparatus thereof according to the present invention, the product of the optically specific reaction catalyzed by the immobilized enzyme can be rapidly and highly purified with a small amount of sample without isolation and purification. It can be analyzed with accuracy. Further, the present invention is particularly utilized when conducting reaction analysis in a reaction system in which a plurality of optically active compounds are produced. Further, since it becomes possible to easily obtain information on the substrate specificity of the immobilized enzyme, the stereospecificity of the reaction, the reaction rate, etc., it is also useful in various fields related to the separation and analysis of optically active substances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分析装置を構成する系統図である。FIG. 1 is a system diagram of an analyzer of the present invention.

【図2】実施例1の結果を示すクロマトグラムである。FIG. 2 is a chromatogram showing the results of Example 1.

【図3】実施例2の結果を示すクロマトグラムである。FIG. 3 is a chromatogram showing the results of Example 2.

【図4】実施例3の結果を示すクロマトグラムである。FIG. 4 is a chromatogram showing the results of Example 3.

【図5】実施例4の結果を示すクロマトグラムである。5 is a chromatogram showing the results of Example 4. FIG.

【図6】実施例5の結果を示すクロマトグラムである。FIG. 6 is a chromatogram showing the results of Example 5.

【符号の説明】[Explanation of symbols]

1 送液ポンプ 2 試料インジェクター 3 固定化酵素カラム 4 分離カラム 5 旋光度検出器 6 溶離液 7 試料 8 溶出液 9 溶出液 1 Liquid feeding pump 2 Sample injector 3 Immobilized enzyme column 4 Separation column 5 Optical rotation detector 6 Eluent 7 Sample 8 Eluent 9 Eluent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森口 征矢生 東京都大田区多摩川2−24−25 昭和電工 株式会社総合技術研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Seiya Moriguchi 2-24-25 Tamagawa, Ota-ku, Tokyo Showa Denko K.K.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試料溶液を溶離液と共に光学特異的な
反応を触媒する固定化酵素カラムに導入して酵素反応生
成物を生成、分離し、次いで前記固定化酵素カラムから
の溶出液を旋光度検出器へ流入して旋光度に基づいて光
学活性化合物を検出することを特徴とする酵素反応生成
物の分析方法。
1. A sample solution is introduced together with an eluent into an immobilized enzyme column that catalyzes an optical-specific reaction to produce and separate an enzyme reaction product, and then the eluate from the immobilized enzyme column is rotated by optical rotation. A method for analyzing an enzymatic reaction product, which comprises flowing into a detector and detecting an optically active compound based on optical rotation.
【請求項2】 固定化酵素カラムで酵素反応生成物を
生成した後、前記固定化酵素カラムからの溶出液を分離
カラムに流入して前記酵素反応生成物を分離することを
特徴とする請求項1記載の酵素反応生成物の分析方法。
2. An enzyme reaction product is produced by an immobilized enzyme column, and then an eluate from the immobilized enzyme column is introduced into a separation column to separate the enzyme reaction product. 1. The method for analyzing an enzyme reaction product according to 1.
【請求項3】 溶離液と試料溶液とが流入する固定化
酵素カラムと、その下流側に旋光度検出器とを配置して
いることを特徴とする酵素反応生成物分析装置。
3. An enzyme reaction product analyzer, comprising: an immobilized enzyme column into which an eluent and a sample solution flow, and an optical rotation detector downstream of the immobilized enzyme column.
【請求項4】 固定化酵素カラムと旋光度検出器との
間に分離カラムが介在していることを特徴とする請求項
3記載の酵素反応生成物分析装置。
4. The enzyme reaction product analyzer according to claim 3, wherein a separation column is interposed between the immobilized enzyme column and the optical rotation detector.
JP18626391A 1991-07-25 1991-07-25 Analysis of enzyme reaction product and its apparatus Pending JPH06181794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18626391A JPH06181794A (en) 1991-07-25 1991-07-25 Analysis of enzyme reaction product and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18626391A JPH06181794A (en) 1991-07-25 1991-07-25 Analysis of enzyme reaction product and its apparatus

Publications (1)

Publication Number Publication Date
JPH06181794A true JPH06181794A (en) 1994-07-05

Family

ID=16185225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18626391A Pending JPH06181794A (en) 1991-07-25 1991-07-25 Analysis of enzyme reaction product and its apparatus

Country Status (1)

Country Link
JP (1) JPH06181794A (en)

Similar Documents

Publication Publication Date Title
Kitaguchi et al. Enzymic resolution of racemic amines: crucial role of the solvent
Mateo et al. One‐step purification, covalent immobilization, and additional stabilization of poly‐His‐tagged proteins using novel heterofunctional chelate‐epoxy supports
Troy Chemistry and biosynthesis of the poly (γ-d-glutamyl) capsule in Bacillus licheniformis: II. Characterization and structural properties of the enzymatically synthesized polymer
JPH09227488A (en) Production of (s)-cyanohydrin
CA1339812C (en) Filler for measuring enzyme activity, column packed with the filler, andmethod of measuring enzyme activity by using the column
Klockow et al. Capillary electrophoresis of ANTS labelled oligosaccharide ladders and complex carbohydrates
May et al. Stereoselective formation of diepoxides by an enzyme system of Pseudomonas oleovorans
US5480542A (en) Packings combining protein to a support via a spacer
JPH06181794A (en) Analysis of enzyme reaction product and its apparatus
US4708944A (en) Protease adsorbent and process for purifying TPA utilizing the same
Dudman et al. [24] Carboxylesterases from pig and ox liver
KR100575488B1 (en) Method for producing baccatin
EP0255431B1 (en) Purified foetal thymidin kinase
CN114606221A (en) Immobilized enzyme, preparation method and application thereof
Yu et al. Simultaneous analysis of enantiomeric composition of amino acids and N‐acetyl‐amino acids by enantioselective chromatography
CN115433747A (en) Enzymatic synthesis method of puerarin 6'' -O-acetate
Valenzuela et al. Preparation and Kinetic Properties of a New Form of Chymotrypsin Which Is Active at Alkaline pH: α1-Chymotrypsin
Ziegler et al. Chemoenzymatic synthesis of enantiomerically enriched aminoalkenols and glycosides thereof
Bojarski et al. Enantioselective lipase‐catalyzed ester hydrolysis: Effects on rates and enantioselectivity from a variation of the ester structure
Bycroft et al. Heterocyclic β-hydroxy-α-amino acids as substrates for a novel aldolase from Streptomyces amakusaensis; preparation of (2R, 3R)-3-(2-thienyl) serine and (2R, 3R)-3-(2-furyl) serine from racemic threo material
Weinstein Enantiomeric analysis of the common protein amino acids by liquid chromatography
JP2006288303A (en) Method for purification of riboflavin glycoside and method for analysis thereof
JPH02276586A (en) Production of d-homophenylalanine
JPS6192596A (en) Immobilized enzyme, and production of optically active indoline-2-carboxylic acid therewith
Litty et al. An Efficient Synthesis of Optically Pure Nδ-Monomethylated l-Arginine and l-Ornithine