JPH06181315A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06181315A
JPH06181315A JP43A JP33310092A JPH06181315A JP H06181315 A JPH06181315 A JP H06181315A JP 43 A JP43 A JP 43A JP 33310092 A JP33310092 A JP 33310092A JP H06181315 A JPH06181315 A JP H06181315A
Authority
JP
Japan
Prior art keywords
drain
resistance
region
electrode
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Minoru Yoshioka
稔 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP43A priority Critical patent/JPH06181315A/en
Publication of JPH06181315A publication Critical patent/JPH06181315A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices

Abstract

PURPOSE:To decrease the resistance on the part where a drain electrode will be provided and also to decrease an ON-resistance in total by a method wherein a plurality of recesses and protrusions are provided on the surface where a drain electrode is to be formed, and the impurities of the same conductivity type as the above-mentioned electrode-forming part are ion-implanted on the whole roughened surface. CONSTITUTION:A drain substrate 1, having the low resistance back side, is polished and a plurality of recesses and protrusions are formed on the back side of the drain substrate 1 using an anisotropic etchant. Then, the impurities such as phosphorus and the like having the same conductivity type as that of the drain substrate 1 are ion-implanted on the surface of the roughened drain substrate 1. After an electrode metal, which becomes a drain electrode 9, has been formed by vacuum deposition and the like, a heat treatment is conducted at 440 deg.C or thereabout, and the manufacturing process is completed. As a result, the contact resistance of the drain electrode 9 can be decreased, and the ON-resistance of the semiconductor element can be reduced as a whole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オン抵抗が低い特性を
有する半導体素子、特に縦型MOSFETの改良に関す
るもので、パワー用に適する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a semiconductor device having a characteristic of low on-resistance, especially a vertical MOSFET, and is suitable for power.

【0002】[0002]

【従来の技術】図2は、Nチャネル縦型パワーMOSF
ETの一例の略断面図である。
2. Description of the Related Art FIG. 2 shows an N-channel vertical power MOSF.
It is a schematic sectional drawing of an example of ET.

【0003】第1の導電型たとえばN型の低比抵抗シリ
コン単結晶であるドレイン基板1上にエピタキシャル成
長されたN型の高比抵抗ドレイン領域2が形成されてお
り、このドレイン領域2にチャネルを形成する第2の導
電型、たとえばP型のウェル領域3が多数設けられ、さ
らにこのウェル領域3にはそれぞれN型の低抵抗のソー
ス領域4が形成されている。ここで各ウェル領域3は、
所定間隔おきに配置されソース領域4およびウェル領域
3に対するソース電極7のコンタクトホール部分を除
き、シリコン酸化膜6が表面に被覆されていて、このシ
リコン酸化膜6上には隣接するウェル領域3相互にわた
ってポリシリコンのゲート電極5が配置されている。そ
してこのゲート電極5はPSG(リンガラス)等の層間
絶縁膜8で覆われている。
An N type high specific resistance drain region 2 epitaxially grown is formed on a drain substrate 1 which is a first conductivity type, for example, N type low specific resistance silicon single crystal, and a channel is formed in this drain region 2. A large number of well regions 3 of the second conductivity type, for example, P type, to be formed are provided, and each well region 3 is formed with an N type low resistance source region 4. Here, each well region 3 is
Except for the contact hole portion of the source electrode 7 for the source region 4 and the well region 3, which are arranged at a predetermined interval, the surface thereof is covered with a silicon oxide film 6, and on the silicon oxide film 6, adjacent well regions 3 are separated from each other. A gate electrode 5 made of polysilicon is arranged over the entire area. The gate electrode 5 is covered with an interlayer insulating film 8 such as PSG (phosphorus glass).

【0004】なお、ソース電極7はこの層間絶縁膜8を
覆う形でこれらの上にスパッタリング蒸着等により形成
され、ソース領域4とウェル領域3とにコンタクトして
いる。
The source electrode 7 is formed on the interlayer insulating film 8 by sputtering deposition or the like so as to cover the interlayer insulating film 8 and is in contact with the source region 4 and the well region 3.

【0005】また、ドレイン基板1の裏面側には金属製
のドレイン電極9が真空蒸着等の技術により形成され、
ドレイン基板1を覆っている。
A drain electrode 9 made of metal is formed on the back surface of the drain substrate 1 by a technique such as vacuum deposition.
It covers the drain substrate 1.

【0006】ゲート電極5に所定の電圧を印加すると、
ゲート電極5の下部に位置するウェル領域3の部分にチ
ャネル層が形成され、ソース電極7に対してドレイン電
極9に電圧をかけると、電流がドレイン電極9からドレ
イン基板1およびドレイン領域2を通りチャネル領域1
0を経てソース領域4,ソース電極8へと流れる。
When a predetermined voltage is applied to the gate electrode 5,
A channel layer is formed in a portion of the well region 3 located below the gate electrode 5, and when a voltage is applied to the drain electrode 9 with respect to the source electrode 7, a current flows from the drain electrode 9 through the drain substrate 1 and the drain region 2. Channel region 1
It flows to the source region 4 and the source electrode 8 via 0.

【0007】このような構成の縦型MOSFETは、同
一表面上にソース電極,ドレイン電極が配列される横型
MOSFETに比べて、電流の取出し面積が広くとれる
ため、大電流素子として最適である。
The vertical MOSFET having such a structure is suitable as a large-current element because it has a larger current extraction area than a lateral MOSFET in which a source electrode and a drain electrode are arranged on the same surface.

【0008】[0008]

【発明が解決しようとする課題】前述の縦型パワーMO
SFETにあっては、図2のウェル領域3に挟まれた高
比抵抗のドレイン領域2を電流が流れるため、ソースド
レイン間の導通時における抵抗値(オン抵抗)を下げる
には限界がある。すなわち高比抵抗のドレイン領域2の
比抵抗を下げると、ウェル領域3との接合部に大きな電
界がかかり、ソース・ドレイン間の耐圧が低下してしま
うことになる。
The above-mentioned vertical power MO
In the SFET, a current flows through the drain region 2 having a high specific resistance sandwiched between the well regions 3 in FIG. 2, so that there is a limit to lowering the resistance value (ON resistance) during conduction between the source and the drain. That is, if the specific resistance of the drain region 2 having a high specific resistance is lowered, a large electric field is applied to the junction with the well region 3 and the breakdown voltage between the source and drain is lowered.

【0009】そのため、このドレイン領域2の比抵抗を
ある程度までしか低くできないという欠点がある。
Therefore, there is a drawback that the specific resistance of the drain region 2 can be lowered only to some extent.

【0010】また、オン抵抗を下げるために単位セル数
を増大させることは、チップ面積の増大につながりコス
ト増、実装上の問題などが生じてくる。
Further, increasing the number of unit cells in order to reduce the on-resistance leads to an increase in chip area, which leads to an increase in cost and problems in mounting.

【0011】オン抵抗は、前述のウェル領域3,3に挟
まれたドレイン領域2とチャネル領域10を電流が流れ
るときの抵抗成分とドレイン基板1の抵抗成分と、コン
タクト抵抗(ソースコンタクトとドレインコンタクト)
成分に大別される。しかし、上述した理由により半導体
基板内部のオン抵抗には限界がある。
The on-resistance is the resistance component when a current flows through the drain region 2 and the channel region 10 sandwiched between the well regions 3 and 3 and the resistance component of the drain substrate 1, and the contact resistance (source contact and drain contact). )
The ingredients are roughly classified. However, there is a limit to the on-resistance inside the semiconductor substrate for the reasons described above.

【0012】本発明の目的は、ドレイン電極を設ける部
分の抵抗を低減し、トータルとしてのオン抵抗を低減さ
せることにある。
An object of the present invention is to reduce the resistance of the portion where the drain electrode is provided and to reduce the total on-resistance.

【0013】[0013]

【課題を解決するための手段】本発明においては、ドレ
イン電極を形成する面に多数の凹凸を設け、さらにこの
凹凸部全面にわたりその部分と同じ導電型の不純物をイ
オン注入するようにした。
In the present invention, a large number of irregularities are provided on the surface on which the drain electrode is formed, and the entire surface of the irregularities is ion-implanted with an impurity of the same conductivity type as that portion.

【0014】[0014]

【作用】本発明によれば、ドレイン電極を形成する部分
の面に多数の凹凸を設けるから、ドレイン電極部のコン
タクト面積が大きくなりコンタクト抵抗をより小さくす
ることができ、またこの部分に同じ導電型の不純物を注
入することで、裏面の不純物濃度が高くなりコンタクト
抵抗をより小さくすることができる。
According to the present invention, since a large number of irregularities are formed on the surface of the portion where the drain electrode is formed, the contact area of the drain electrode portion can be increased and the contact resistance can be further reduced. By implanting the type impurities, the impurity concentration on the back surface is increased and the contact resistance can be further reduced.

【0015】[0015]

【実施例】図1は、本発明の一実施例であるNチャネル
縦型パワー用MOSFETの略断面図である。
1 is a schematic sectional view of an N-channel vertical power MOSFET according to an embodiment of the present invention.

【0016】このMOSFETは以下のようにして作成
される。まず、たとえばN型の単結晶シリコンである低
比抵抗ドレイン基板(通常比抵抗0.01Ωcm程度、ウ
ェーハ厚さ525μm 程度)1上に通常のエピタキシャ
ル成長により高比抵抗N型のドレイン領域2を所定の厚
さ(通常数μm 〜数十μm )まで成長させる。次にゲー
ト酸化膜としてシリコン酸化膜6を熱酸化により500
Å〜1000Å程度に形成し、その上にポリシリコンを
LPCVD(減圧気相成長装置)によって4000Å〜
6000Å程度形成する。
This MOSFET is manufactured as follows. First, a predetermined high-resistivity N-type drain region 2 is formed on a low-resistivity drain substrate (usually having a specific resistance of about 0.01 Ωcm and a wafer thickness of about 525 μm) 1 made of N-type single crystal silicon by ordinary epitaxial growth. Grow to a thickness (usually several μm to several tens of μm). Next, the silicon oxide film 6 as a gate oxide film is thermally oxidized to 500
Å ~ 1000 Å formed, and polysilicon on it by LPCVD (Low Pressure Vapor Deposition Equipment) 4000 Å ~
Form about 6000Å.

【0017】その後フォトレジストを用いたマスクによ
るドライエッチング(通常RIE:Reactive Ion Etchi
ng)により、ゲート電極5となるポリシリコンと下地の
ゲート酸化膜6をパターニングする。そして、そのポリ
シリコンによるゲート電極5をマスクとして、P型のウ
ェル領域3とその表面にN型のソース領域4を、たとえ
ばボロン(B)および砒素(As)のイオン注入により
形成する。次に層間絶縁膜8として、たとえばPSG
(リンガラス)をCVDにより6000Å〜10000
Å程度形成し、1000℃程度の熱処理により形状を滑
らかにした後、ソースコンタクトホールを形成するため
層間絶縁膜8をエッチングする。そしてソース電極7お
よびゲート配線のためAl−Siをスパッタ蒸着により
形成し、440℃程度のH2 シンターにより、上面側の
通常のMOSFET部の形成は完了する。
After that, dry etching (usually RIE: Reactive Ion Etchi) with a mask using a photoresist is performed.
ng), the polysilicon to be the gate electrode 5 and the underlying gate oxide film 6 are patterned. Then, using the gate electrode 5 made of polysilicon as a mask, a P-type well region 3 and an N-type source region 4 are formed on the surface thereof by ion implantation of, for example, boron (B) and arsenic (As). Next, as the interlayer insulating film 8, for example, PSG
(Phosphorus glass) by CVD from 6000Å to 10000
After forming about Å and smoothing the shape by heat treatment at about 1000 ° C., the interlayer insulating film 8 is etched to form a source contact hole. Then, Al-Si for the source electrode 7 and the gate wiring is formed by sputter deposition, and the normal MOSFET portion on the upper surface side is completed by H 2 sintering at about 440 ° C.

【0018】その後、MOSFETを通る電流による熱
抵抗を下げるという実装上の問題のため、裏面の低抵抗
のドレイン基板1をウェハ厚さ200μm 前後まで研摩
し、KOHなどの異方性エッチング液でドレイン基板1
裏面に多数の凹凸をつける。ただし、異方性エッチング
の際、表面のゲートソース側はレジストで覆い保護して
おく。この凹凸溝の大きさは、ドレイン電極に使用する
金属の種類,厚みや固着するフレームとの接着剤の種類
により、ある程度制限されるので一様には最適値を決定
できない。
After that, because of the mounting problem of lowering the thermal resistance due to the current passing through the MOSFET, the low-resistance drain substrate 1 on the back surface was polished to a wafer thickness of about 200 μm and drained with an anisotropic etching solution such as KOH. Board 1
Make many irregularities on the back. However, during anisotropic etching, the gate source side of the surface is covered with a resist for protection. The size of the concave-convex groove is limited to some extent depending on the type of metal used for the drain electrode, the thickness, and the type of adhesive with the frame to be fixed, and therefore the optimum value cannot be uniformly determined.

【0019】その後、凹凸を設けたドレイン基板1の面
に、ドレイン基板1と同じ導電型のたとえばリン(P)
を1×1018ion/cm2 程度イオン注入で打込み、ドレイ
ン電極9となる電極金属を真空蒸着等により形成後、4
40℃程度の熱処理を施し工程を完了する。
After that, on the surface of the drain substrate 1 provided with irregularities, for example, phosphorus (P) having the same conductivity type as that of the drain substrate 1 is formed.
Is implanted by about 1 × 10 18 ion / cm 2 by ion implantation, and an electrode metal to be the drain electrode 9 is formed by vacuum deposition or the like, and then 4
Heat treatment at about 40 ° C. is performed to complete the process.

【0020】なお、本実施例ではNチャネル縦型パワー
MOSFETについて説明したが、本発明はPチャネル
縦型パワーMOSFETにも適用できることは明らかで
ある。またバイポーラ型MOSFET(通称IGBT:
Insulated Gate Bipolar Mode Transistor)にも、ドレ
イン電極を設ける基板の極性が異なるだけであるから、
適用できる。
Although the N-channel vertical power MOSFET has been described in this embodiment, it is obvious that the present invention can be applied to the P-channel vertical power MOSFET. In addition, a bipolar MOSFET (commonly called IGBT:
Insulated Gate Bipolar Mode Transistor), the polarity of the substrate on which the drain electrode is installed is different,
Applicable.

【0021】[0021]

【発明の効果】以上のように、本発明によれば裏面の基
板に凹凸を付けることと、その凹凸を付けた部分の基板
に同じ導電型のイオンを注入することで、ドレイン電極
のコンタクト抵抗を低減することができ、全体としての
半導体素子のオン抵抗を低減させることになる。また、
これは他の電気特性等を劣化させることなく達成され
る。
As described above, according to the present invention, the contact resistance of the drain electrode can be obtained by making the substrate on the back surface uneven and by implanting ions of the same conductivity type into the substrate in the uneven portion. Can be reduced, and the on-resistance of the semiconductor element as a whole can be reduced. Also,
This is achieved without degrading other electrical properties and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の略断面図である。FIG. 1 is a schematic sectional view of an embodiment of the present invention.

【図2】従来の一例の略断面図である。FIG. 2 is a schematic sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 ドレイン基板 2 ドレイン領域 3 ウェル領域 4 ソース領域 5 ゲート電極 6 シリコン酸化膜 7 ソース電極 8 層間絶縁膜 9 ドレイン電極 10 チャネル領域 1 Drain Substrate 2 Drain Region 3 Well Region 4 Source Region 5 Gate Electrode 6 Silicon Oxide Film 7 Source Electrode 8 Interlayer Insulation Film 9 Drain Electrode 10 Channel Region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電型の半導体基板よりなるドレ
イン領域と、該半導体基板表面の一部に形成された第2
の導電型の不純物拡散領域よりなるウェル領域と、この
ウェル領域の表面の一部に形成された第1の導電型の不
純物拡散領域よりなるソース領域と、ソース・ドレイン
間の第2の導電型の表面領域をチャネル部としてこの上
に絶縁膜を介して形成されたゲート電極と、半導体基板
の表面に形成したソース電極と、裏面に形成したドレイ
ン電極とよりなり、ドレイン電極を形成する半導体基板
の面に複数の凹凸を設けたことを特徴とする半導体素
子。
1. A drain region made of a semiconductor substrate of a first conductivity type and a second region formed on a part of the surface of the semiconductor substrate.
Region formed of a first conductivity type impurity diffusion region formed in a part of the surface of the well region, and a second conductivity type between the source and the drain. A semiconductor substrate including a gate electrode formed on the surface region of which is a channel portion via an insulating film, a source electrode formed on the front surface of the semiconductor substrate, and a drain electrode formed on the back surface to form the drain electrode. A semiconductor element having a plurality of irregularities on its surface.
【請求項2】 凹凸を設けた半導体基板の面に、凹凸を
設けた層と同じ導電型の不純物イオンを注入したことを
特徴とする請求項1記載の半導体素子。
2. The semiconductor element according to claim 1, wherein impurity ions of the same conductivity type as that of the layer provided with the irregularities are implanted into the surface of the semiconductor substrate provided with the irregularities.
JP43A 1992-12-14 1992-12-14 Semiconductor device Pending JPH06181315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06181315A (en) 1992-12-14 1992-12-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06181315A (en) 1992-12-14 1992-12-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH06181315A true JPH06181315A (en) 1994-06-28

Family

ID=18262283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06181315A (en) 1992-12-14 1992-12-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH06181315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522802A (en) * 2006-01-09 2009-06-11 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド Transistor structure and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522802A (en) * 2006-01-09 2009-06-11 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド Transistor structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100415490B1 (en) Power mos element and method for producing the same
EP0342952B1 (en) Topographic pattern delineated power MOSFET with profile tailored recessed source
US20010009800A1 (en) Manufacture of trench-gate semiconductor devices
EP0179407A2 (en) Method for producing a DMOS semiconductor device
JP3915180B2 (en) Trench type MOS semiconductor device and manufacturing method thereof
US4598461A (en) Methods of making self-aligned power MOSFET with integral source-base short
JP4030139B2 (en) Power semiconductor device and manufacturing method thereof
EP0689238B1 (en) MOS-technology power device manufacturing process
JPH05251709A (en) Mos-fet for power having source-base short-circuitting part and producing method therefor
JP5008247B2 (en) Manufacturing method of vertical MOS transistor
JP3484690B2 (en) Vertical field-effect transistor
KR100272051B1 (en) Process for manufacture of a p-channel mos gated device with base implant through the contact window
JPH06104446A (en) Semiconductor device
JPH11261066A (en) Electric element having duplex field board structure
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
US6197640B1 (en) Semiconductor component and method of manufacture
JP3489602B2 (en) Semiconductor device and manufacturing method thereof
JPH11354780A (en) Semiconductor device and its manufacture
JP3498431B2 (en) Method for manufacturing semiconductor device
JPH06181315A (en) Semiconductor device
JPH10335660A (en) Semiconductor device and manufacture thereof
JPH10150207A (en) High voltage element and its manufacture
JPS5987871A (en) Insulated gate field effect semiconductor device
KR100597583B1 (en) A method for fabricating highly integrated trench gate power device
US4892838A (en) Method of manufacturing an insulated gate field effect transistor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990601