JPH061804A - Production of polyolefin - Google Patents

Production of polyolefin

Info

Publication number
JPH061804A
JPH061804A JP15954492A JP15954492A JPH061804A JP H061804 A JPH061804 A JP H061804A JP 15954492 A JP15954492 A JP 15954492A JP 15954492 A JP15954492 A JP 15954492A JP H061804 A JPH061804 A JP H061804A
Authority
JP
Japan
Prior art keywords
reactor
fluidized bed
particles
catalyst
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15954492A
Other languages
Japanese (ja)
Inventor
Kenji Yamamoto
本 健 二 山
Tadao Kobayashi
林 忠 雄 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP15954492A priority Critical patent/JPH061804A/en
Publication of JPH061804A publication Critical patent/JPH061804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To prevent the formation of a fused resin caused by electrostatic effect by a simple means. CONSTITUTION:A process for the vapor-phase polymerization of an alpha-olefin by employing a fluidized bed reactor wherein an alpha-olefin and a catalyst are introduced into the fluidized bed comprising seed-polymer particles, which have been fed in advance, to initiate the polymerization, which process comprises feeding particles capable of forming a fluidized bed into the reactor before feeding the seed-polymer particles, maintaining the resulting fluidized bed, discharging most of the particles from the reactor, and forming a fluidized bed by feeding the seed-polymer particles into the reactor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】〔発明の背景〕BACKGROUND OF THE INVENTION

【産業上の利用分野】本発明は、ポリオレフィンの製造
において安定した運転を行なうための方法に関し、詳し
くは、気相流動床反応器によるポリオレフィンの製造に
おいて、反応開始時に起こりやすい溶融樹脂の発生を抑
制し、反応装置の運転を円滑に行なう方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stable operation in the production of polyolefins, and more specifically, in the production of polyolefins in a gas phase fluidized bed reactor, the generation of molten resin which tends to occur at the start of the reaction. The present invention relates to a method for suppressing and smoothly operating a reactor.

【0002】[0002]

【従来の技術】ポリオレフィンの気相流動床による重合
プロセスにおいては、流動床反応器にあらかじめ種ポリ
マーと呼ばれる樹脂の粉末を充填して流動を開始し、原
料混合ガス、触媒および助触媒としてのアルキルアルミ
ニウム化合物を連続的に供給すると共に、ガス中の不純
物(例えば酸素、水分等)を除去しながら重合反応を行
ない、所定の滞溜時間の間に成長した重合体粒子を抜き
出すことが行なわれている。上記の種ポリマーを使用し
ないと、供給した触媒が分散し難いため、粒状樹脂が生
成せず、したがって流動床も形成されないので、流動床
系の重合反応器においては運転開始時に必ず種ポリマー
が使用されてきた。
2. Description of the Related Art In a gas phase fluidized bed polymerization process of a polyolefin, a fluidized bed reactor is filled with a resin powder called a seed polymer in advance to start fluidization, and a raw material mixed gas, a catalyst and an alkyl as a co-catalyst are used. While continuously supplying the aluminum compound, the polymerization reaction is performed while removing impurities (eg, oxygen, water, etc.) in the gas, and the polymer particles grown during a predetermined retention time are extracted. There is. If the above seed polymer is not used, the supplied catalyst will be difficult to disperse, so no granular resin will be produced and therefore the fluidized bed will not be formed.Therefore, in the fluidized bed polymerization reactor, the seed polymer must be used at the start of operation. It has been.

【0003】気相流動床によるポリオレフィンの製造に
おいて最も重要な点は、投入された触媒が反応器内でで
きる限り均一に分散され、かつ流動化ガスが反応器内に
均一に分散されて、これらにより反応熱が充分に除去さ
れることである。すなわち、反応器内において触媒濃度
が局部的に著しく高くなったり、ガスが充分に分散せず
に冷却効果が不完全となった場合には、溶融樹脂が生成
し、これが塊状となって流動化を妨げ、温度分布が一層
不均一になってさらに溶融樹脂が生成し、この悪循環が
繰り返されて、ついには樹脂を容器内から抜き出すこと
が不可能となり、反応を停止せざるをえなくなる。
The most important point in the production of polyolefin by a gas-phase fluidized bed is that the charged catalyst is dispersed as uniformly as possible in the reactor, and the fluidizing gas is evenly dispersed in the reactor. That is, the heat of reaction is sufficiently removed. That is, when the catalyst concentration is locally extremely high in the reactor or the cooling effect is incomplete because the gas is not sufficiently dispersed, molten resin is generated and becomes a lump and fluidized. As a result, the temperature distribution becomes more non-uniform and molten resin is further generated, and this vicious cycle is repeated, so that it becomes impossible to withdraw the resin from the container and the reaction must be stopped.

【0004】以上の問題点の内、後者の流動化ガスの均
一な分散については、樹脂の粒径および粒径分布、かさ
密度などと流動化ガス速度との関係を検討し、かつ容器
の構造を配慮することなどによって比較的容易に解決す
ることができる。しかし、前者の触媒の分散に関して
は、触媒および樹脂の粉末の運動により発生する静電気
のため、容器壁へ触媒の微粉末が付着して触媒濃度が増
大する結果、均一な分散状態を実現することがきわめて
困難であった。多くの場合、反応開始後約半日間にこの
現象が著しく現われ、壁面のみ温度が上昇してそこで樹
脂の溶融が発生する。
Regarding the latter uniform dispersion of the fluidizing gas among the above problems, the relationship between the particle size and particle size distribution of the resin, the bulk density and the fluidizing gas velocity is examined, and the structure of the container is examined. Can be solved relatively easily by considering However, regarding the former dispersion of the catalyst, because of the static electricity generated by the movement of the powder of the catalyst and the resin, the fine powder of the catalyst adheres to the container wall and the catalyst concentration increases, so that a uniform dispersion state is realized. Was extremely difficult. In many cases, this phenomenon remarkably appears within about half a day after the start of the reaction, the temperature rises only on the wall surface, and melting of the resin occurs there.

【0005】樹脂の粉末が流動することにより静電気を
帯びる事実は日常よく経験されるところであり、たとえ
ば、樹脂粉をパイプで輸送する際に、その粉末がパイプ
の内面に薄く付着することなどが知られている。流動床
によるポリオレフィンの製造においてもこれらの事実は
従来から経験されており、その対策として米国特許4,
855,370号明細書においては反応器内に水分を含
有したガスを供給し、特開昭56−4608号公報にお
いては液状炭化水素を共存させる方法を開示しており、
さらに米国特許4,532,311号明細書ではクロム
含有化合物の添加を、また、特開平1−230607号
公報ではアルコール、ケトンなどをそれぞれ反応器内に
添加する方法を開示している。しかしこれらはいずれも
重合反応中に特定物質を反応器内に供給する方法である
ため、実施に当り特別の装置を設置する必要があり、か
つ運転操作も複雑にならざるを得ない。
The fact that resin powder flows to be charged with static electricity is a common experience every day. For example, it is known that when resin powder is transported by a pipe, the powder is thinly attached to the inner surface of the pipe. Has been. These facts have been conventionally experienced in the production of polyolefins in a fluidized bed, and US Pat.
Japanese Patent No. 855,370 discloses a method of supplying a gas containing water into a reactor, and Japanese Patent Laid-Open No. 56-4608 discloses a method of coexisting liquid hydrocarbons,
Further, U.S. Pat. No. 4,532,311 discloses a method of adding a chromium-containing compound, and JP-A-1-230607 discloses a method of adding an alcohol, a ketone and the like into a reactor. However, since all of these are methods of supplying a specific substance into the reactor during the polymerization reaction, it is necessary to install a special device for the implementation, and the operation is inevitably complicated.

【0006】より簡便な方法として、特開平4−853
07号、特開平4−85308号、特開平4−8530
9号各公報に開示される様な、水分および酸素等を種ポ
リマーに所定量含ませて反応を行なう方法がある。しか
し、水分および酸素等は触媒の毒物であるところから触
媒活性が大巾に低下したり立体規則性が低下する等の触
媒性能が低下する問題点がこの方法にはあるようであ
る。したがって、触媒性能を変化させない簡便な方法
で、有効に上記の問題を排除する手段が強く求められて
いた。
As a simpler method, Japanese Patent Laid-Open No. 4-853
07, JP-A-4-85308, JP-A-4-8530.
There is a method, as disclosed in each of Japanese Patent No. 9, in which a predetermined amount of water, oxygen and the like is contained in a seed polymer to carry out a reaction. However, since water and oxygen are poisons of the catalyst, the method seems to have a problem that the catalytic activity is greatly reduced, the stereoregularity is lowered, and the catalytic performance is lowered. Therefore, there has been a strong demand for a means for effectively eliminating the above problems by a simple method that does not change the catalyst performance.

【0007】[0007]

【発明が解決しようとする課題】本発明は、気相流動床
による重合反応において上記の問題を排除し、反応系に
特に新たな設備を設けることなく、きわめて容易な手段
で静電気の発生に基づく溶融樹脂の生成を防止してポリ
オレフィン粒子を製造する方法を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention eliminates the above-mentioned problems in the polymerization reaction by a gas phase fluidized bed, and is based on the generation of static electricity by a very easy means without providing any new equipment in the reaction system. It is an object of the present invention to provide a method for producing polyolefin particles by preventing generation of molten resin.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

〔発明の概要〕 <要旨>本発明者らは、上記の目的に沿って鋭意検討し
た結果、気相流動床によるα‐オレフィンの重合体にお
いて、種ポリマー粒子の装入前に、他の粒子による流動
床を形成させた後、当該粒子を排出することにより、溶
融樹脂の生成を防ぐことができることを見出して本発明
に到達した。すなわち、本発明によるポリオレフィンの
製造法は、反応器内において、あらかじめ装入した種ポ
リマー粒子の流動床にα‐オレフィンおよび触媒を導入
して重合を開始させることからなる、気相流動床による
α‐オレフィンの重合法において、種ポリマー粒子の装
入前に、流動床を形成しうる粒子を反応器内に装入して
流動床を形成させてそれを維持し、その後、当該粒子を
実質的に反応器から排出してから種ポリマー粒子を装入
して流動床を形成させること、を特徴とするものであ
る。
[Summary of the Invention] <Summary> The inventors of the present invention have made intensive studies in accordance with the above-mentioned object, and as a result, in a polymer of α-olefin by a gas-phase fluidized bed, other particles before seed polymer particles were charged. The present invention was found to be able to prevent the generation of molten resin by discharging the particles after forming the fluidized bed by the method. That is, the method for producing a polyolefin according to the present invention comprises introducing α-olefin and a catalyst into a fluidized bed of seed polymer particles which have been charged in advance in a reactor to initiate polymerization. -In the olefin polymerization process, before the seed polymer particles are charged, particles capable of forming a fluidized bed are charged into the reactor to form and maintain the fluidized bed, and thereafter, the particles are substantially Is discharged from the reactor and charged with seed polymer particles to form a fluidized bed.

【0009】<効果>本発明によれば、反応器内の温度
が局部的に高温になることなく、運転停止後の反応器内
には溶融樹脂の生成が認められない。よって、壁面改質
粒子(詳細後記)を流動させない場合に比べて著しく円
滑な運転が可能となる。
<Effects> According to the present invention, the temperature in the reactor does not locally rise to a high temperature, and no molten resin is formed in the reactor after the operation is stopped. Therefore, as compared with the case where the wall surface-modifying particles (described later in detail) do not flow, remarkably smooth operation becomes possible.

【0010】〔発明の具体的説明〕本発明は、α‐オレ
フィンの気相重合法の改良に関する。α‐オレフィンの
気相重合は、反応器内にあらかじめポリマー(以下、種
ポリマーという)粒子の流動床を形成させてから、そこ
へ触媒およびα‐オレフィンを導入して重合を開始させ
ることからなるが、本発明による改良は、種ポリマー粒
子の流動床の形成に対して適当粒子(以下、壁面改質粒
子という)の流動床の形成および維持を前置したことか
らなる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a gas phase polymerization method for α-olefins. Gas phase polymerization of α-olefins consists of forming a fluidized bed of polymer (hereinafter referred to as seed polymer) particles in the reactor in advance, and then introducing a catalyst and α-olefin into the fluidized bed to start the polymerization. However, the improvement according to the present invention consists in the preceding formation and maintenance of a fluidized bed of suitable particles (hereinafter referred to as wall-modified particles) with respect to the formation of a fluidized bed of seed polymer particles.

【0011】<α‐オレフィンの気相重合>壁面改質粒
子の流動床の形成および維持を前置させることを除け
ば、本発明によるα‐オレフィンの気相重合は従来から
知られあるいは従来提案されるべきものと本質的に異な
らない。
<Gas-phase Polymerization of α-Olefin> The gas-phase polymerization of α-olefin according to the present invention is conventionally known or proposed except that the formation and maintenance of the fluidized bed of the wall-modified particles is preceded. It is essentially no different from what should be done.

【0012】(イ) 気相流動床 本発明で使用する気相流動床とは、実質的に気−固系で
運転される流動床系をすべて包含し、攪拌機を有する場
合または有しない場合のいずれであってもよい。
(A) Gas-phase fluidized bed The gas-phase fluidized bed used in the present invention includes substantially all fluidized-bed systems operated in a gas-solid system, with or without a stirrer. Either may be used.

【0013】(ロ) α‐オレフィン 本発明で用いるα‐オレフィン(本発明では、エチレン
も包含するものとする)としては、通常、炭素数2〜8
のもの、たとえば、エチレン、プロピレン、1‐ブデ
ン、1‐ヘキセン、4‐メチル‐1‐ペンテン、1‐オ
クテンなどのα‐オレフィンが挙げられる。これらは単
独でまたは2種以上の共重合物あるいは混合物として用
いられる。
(B) α-Olefin The α-olefin used in the present invention (including ethylene in the present invention) usually has 2 to 8 carbon atoms.
And α-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene. These are used alone or as a copolymer or a mixture of two or more kinds.

【0014】(ハ) 重合触媒 使用する重合触媒は、特に限定されないが、広義のチー
グラー系触媒およびCrを含有するフィリップス触媒な
ど公知のものが挙げられる。例えば、特開昭63−27
508号、特開昭63−27511号、特開昭58−1
13208号、特開昭60−163905号、特開昭5
9−172507号、特開平3−134004号、特開
平3−100013号、特開平2−77413号、特開
平2−84411号、特開平2−99506号、特開平
4−53806号、特開平3−217404号、特開昭
63−142008号、特開昭54−148093号、
特開昭54−142192号、特公昭44−2996
号、特開昭51−112891号、特開平4−8074
号、特開平2−194011号および特開平2−263
807号各公報等に記載されたものが挙げられる。代表
的なものとしては、遷移金属化合物成分と還元剤(例え
ば有機アルミニウム化合物)とを組合わせてなるチーグ
ラー型触媒がある。
(C) Polymerization catalyst The polymerization catalyst to be used is not particularly limited, but known ones such as a Ziegler type catalyst in a broad sense and a Phillips catalyst containing Cr can be mentioned. For example, JP-A-63-27
508, JP-A-63-27511, JP-A-58-1
13208, JP-A-60-163905, JP-A-5
9-172507, JP-A-3-134004, JP-A-3-100013, JP-A-2-77413, JP-A-2-84411, JP-A-2-99506, JP-A-4-53806, JP-A-3. -217404, JP-A-63-142008, JP-A-54-148093,
JP-A-54-142192, JP-B-44-2996
JP-A-51-112891 and JP-A-4-8074.
Japanese Patent Application Laid-Open No. 2-194011 and Japanese Patent Application Laid-Open No. 2-263.
Those described in each publication of No. 807 and the like can be mentioned. A typical example is a Ziegler type catalyst which is a combination of a transition metal compound component and a reducing agent (for example, an organoaluminum compound).

【0015】(ニ) 種ポリマー α‐オレフィンの気相重合に際して流動床反応器内にあ
らかじめ形成させる種ポリマーの流動床は、各種のポリ
マー粒子の流動床でありうる。流動化の条件および製品
の品質への影響などを考慮すれば、特に製品ポリオレフ
ィンに類似した成分からなる粒子が好ましい。ポリオレ
フィン粒子の性状としては、平均粒径350〜2000
μm、好ましくは400〜1000μm、程度で、微粉
が少なくかつ嵩密度0.25〜0.50g/cm3 、好
ましくは0.35〜0.47g/cm3 、程度のものが
好ましい。
(D) Seed Polymer The fluidized bed of the seed polymer preformed in the fluidized bed reactor during the gas phase polymerization of the α-olefin may be a fluidized bed of various polymer particles. Considering the fluidization conditions and the influence on the quality of the product, particles having a component similar to the product polyolefin are particularly preferable. The polyolefin particles have an average particle size of 350 to 2000.
It is preferable that the particle size is about μm, preferably 400 to 1000 μm, has a small amount of fine powder, and has a bulk density of 0.25 to 0.50 g / cm 3 , preferably 0.35 to 0.47 g / cm 3 .

【0016】(ホ) 重合の開始および継続 触媒がたとえば遷移金属成分と有機アルミニウム成分と
の組み合わせからなるものであるときは、両成分を別々
にあるいはあらかじめ組合せてから、適当手段、たとえ
ば不活性ガスによる噴霧、によって、原料α‐オレフィ
ンと共にあるいは別々に反応器内に導入することによっ
て、重合を開始する。所定の滞留時間が確保されるよう
に、α‐オレフィンの導入速度との関連で生成重合体を
反応器から抜出して、連続的に気相重合反応を実施す
る。
(E) Initiation and continuation of polymerization When the catalyst comprises, for example, a combination of a transition metal component and an organoaluminum component, both components may be separately or pre-combined and then suitable means such as an inert gas may be used. Polymerization is initiated by introduction into the reactor with or without separate feed α-olefins by spraying with. The polymer produced is withdrawn from the reactor in relation to the rate of introduction of the α-olefin so as to ensure a predetermined residence time, and the gas phase polymerization reaction is carried out continuously.

【0017】<壁面改質粒子の流動床>本発明で用いら
れる壁面改質粒子は、流動床を形成し得るものであれば
いかなる種類のものでも使用することができるが、流動
化の条件および製品の品質への影響などを考慮すると、
製品ポリオレフィンに類似した成分からなる粒子が好ま
しい。この壁面改質粒子は、種ポリマー粒子と同一粒子
でも異粒子でも良いが、同一粒子の方が品質への影響な
どを考慮すると好ましい。
<Fluidized Bed of Wall Modified Particles> The wall modified particles used in the present invention may be of any type as long as they can form a fluidized bed. Considering the impact on product quality,
Particles consisting of components similar to the product polyolefin are preferred. The wall surface modifying particles may be the same particles as the seed polymer particles or different particles, but the same particles are preferable in consideration of the influence on the quality.

【0018】壁面改質粒子も、種ポリマー粒子と同程度
の粒度特性を持つものが好ましい。従って、平均粒径は
350〜2000μm、程度で、微粉が少なくかつ嵩密
度が0.25〜0.50g/cm3 、好ましくは0.3
5〜0.47cm3 、程度のものが適当である。壁面改
質粒子を流動させる時間は、必ずしも厳密に制限される
ものではないが、少なくとも1時間流動させることが好
ましい。そのときの流動化ガスは、不活性ガス、たとえ
ば窒素ガスでもよく、水素ガスでもよく、またα‐オレ
フィンでもよい。好ましいものは、窒素である。また、
壁面改質粒子の流動床は常温〜100℃程度の温度で維
持することが好ましい。
The wall-modified particles also preferably have the same particle size characteristics as the seed polymer particles. Therefore, the average particle size is 350 to 2000 μm, the amount of fine powder is small, and the bulk density is 0.25 to 0.50 g / cm 3 , preferably 0.3.
A value of about 5 to 0.47 cm 3 is suitable. The time for flowing the wall surface modified particles is not necessarily strictly limited, but it is preferable to flow for at least 1 hour. The fluidizing gas at that time may be an inert gas such as nitrogen gas, hydrogen gas, or α-olefin. Preferred is nitrogen. Also,
The fluidized bed of wall-modified particles is preferably maintained at a temperature of room temperature to 100 ° C.

【0019】流動床を形成させてそれを所定時間維持し
た壁面改質粒子は、実質的に反応器から排出される。こ
こで、「実質的に排出される」とは、当該壁面改質粒子
の全量を排出する場合のみを意味するものではなく、若
干量が反応器内に残留していてもよいことを意味するも
のである。
The wall-modified particles that have formed a fluidized bed and maintained it for a predetermined time are substantially discharged from the reactor. Here, “substantially discharged” does not mean only the case where the entire amount of the wall surface-modified particles is discharged, but means that some amount may remain in the reactor. It is a thing.

【0020】[0020]

【実施例】以下の実施例および比較例は、本発明をさら
に具体的に説明するためのものである。よって、本発明
はこれらによって限定されるものではない。
EXAMPLES The following examples and comparative examples serve to explain the present invention more specifically. Therefore, the present invention is not limited to these.

【0021】〔実施例1〕気相流動床反応により、ポリ
プロピレンを製造するに際し、N2 ガスを循環させ、加
熱しながら反応系内の水分量が1ppm 以下になる迄、系
を乾燥させた。次に、壁面改質粒子としてあらかじめ製
造してあったポリプロピレン粒子(平均粒径710μ
m)を導入し、N2 下で常温で3時間流動させた後、反
応器から排出した。新たに壁面改質粒子と同一粒子を種
粒子としてN2 気流で反応器に挿入し、プロピレン60
vol %、水素1vol %および窒素39vol %からなる原
料ガスを循環させることにより流動化させて反応を開始
した。触媒は、塩化マグネシウム担持型のチーグラーナ
ッタ触媒であり、助触媒としてトリエチルアルミニウム
を用いた。触媒の供給を開始した後、重合反応は順調に
開始し、MFR30g/10分のポリプロピレン粒子が
得られた。反応器内の温度に場所による偏りは見られ
ず、また20日間運転を継続した後、停止して反応器内
部の点検を行なったところ、溶融樹脂によるシートの生
成は観察されなかった。
[Example 1] When polypropylene was produced by a gas phase fluidized bed reaction, N 2 gas was circulated and the system was dried with heating until the water content in the reaction system was 1 ppm or less. Next, polypropylene particles (average particle size of 710 μm) that had been manufactured in advance as wall surface modifying particles were used.
m) was introduced and allowed to flow under N 2 at room temperature for 3 hours and then discharged from the reactor. The same particles as the wall-modified particles were newly inserted as seed particles into the reactor by N 2 gas flow, and propylene 60
The reaction was started by circulating a raw material gas consisting of vol%, hydrogen 1 vol% and nitrogen 39 vol% for fluidization. The catalyst was a magnesium chloride-supported Ziegler-Natta catalyst, and triethylaluminum was used as a co-catalyst. After starting the supply of the catalyst, the polymerization reaction started smoothly, and polypropylene particles having an MFR of 30 g / 10 min were obtained. The temperature in the reactor was not biased depending on the location, and after the operation was continued for 20 days, the reactor was stopped and the inside of the reactor was inspected. As a result, no sheet formation by the molten resin was observed.

【0022】〔比較例1〕実施例1で使用した流動床反
応器を用い、壁面改質粒子の充填・流動・排出工程を実
施しない以外は同一種粒子を用い同一原料ガスを用い同
一条件下で反応を開始した。触媒の供給を開始して3時
間経過した頃から、分散板上30cm及び60cmの高
さの反応器壁温度計が流動床平均温度より2〜3℃高い
値を示し始めた。更に触媒供給4時間後に重合生成物中
に溶融ポリプロピレンが観察され、5時間後には重合物
抜出し口が閉塞したため反応を停止した。反応器内部に
は約1.5kgのシートが存在した。
Comparative Example 1 Using the fluidized bed reactor used in Example 1, the same seed particles were used, the same raw material gas was used, and the same conditions were used, except that the steps of filling, flowing and discharging the wall surface reforming particles were not performed. Then the reaction started. About 3 hours after starting the supply of the catalyst, the reactor wall thermometers with heights of 30 cm and 60 cm above the dispersion plate began to show a value 2-3 ° C. higher than the average temperature of the fluidized bed. Further, 4 hours after the catalyst was supplied, molten polypropylene was observed in the polymerized product, and after 5 hours, the outlet of the polymer was clogged and the reaction was stopped. There was about 1.5 kg of sheet inside the reactor.

【0023】〔比較例2〕種粒子として60ppm の水分
を含むものを使用した以外は比較例1と同様に反応を開
始した。触媒供給後3時間経過した頃から重合反応が起
こり始めたが、分散板上30cm及び60cmの反応器
壁面温度が徐々に低下し、3時間後には流動床平均温度
より10〜12℃低い温度となった。更に触媒フィード
8時間後に分散板上30cmの壁面温度が5〜6℃急激
に上昇し、その直後に重合物の抜出し量が低下したので
反応を停止した。反応器内部には約500gのシートが
存在し、壁面には粒径150μm以下の微粉が厚さ1c
m程度付着していた。
[Comparative Example 2] The reaction was initiated in the same manner as Comparative Example 1 except that seed particles containing 60 ppm of water were used. The polymerization reaction began to occur about 3 hours after the catalyst was supplied, but the reactor wall surface temperatures of 30 cm and 60 cm on the dispersion plate gradually decreased, and 3 hours later, the temperature was 10 to 12 ° C. lower than the fluidized bed average temperature. became. Further, after 8 hours from the catalyst feeding, the wall surface temperature of 30 cm on the dispersion plate rapidly increased by 5 to 6 ° C., and immediately after that, the withdrawal amount of the polymer decreased and the reaction was stopped. There is a sheet of about 500g inside the reactor, and the fine particles with a particle size of 150μm or less have a thickness of 1c on the wall surface.
m was attached.

【0024】〔比較例3〕比較例2と同じ種粒子を用
い、反応器内で窒素を循環させ加熱しながら水分を系外
に除いた後、トリエチルアルミニウムで充分水分を除去
した以外は比較例2と同一条件下で反応を開始した。触
媒の供給開始後、重合反応は順調に開始したが、触媒供
給2時間後に分散板上30cm及び60cmの壁面温度
が6〜7℃低い値を示し始めた。8日間、壁面温度が低
いままで運転を継続し反応を停止した。反応器内部には
溶融ポリプロピレンは存在しなかったが反応器壁面には
粒径150μm以下の微粉が5mm程度の厚みで付着し
ていた。
Comparative Example 3 Comparative Example 3 except that the same seed particles as in Comparative Example 2 were used and nitrogen was circulated in the reactor to remove water while heating and then water was sufficiently removed with triethylaluminum. The reaction was started under the same conditions as 2. After the catalyst was supplied, the polymerization reaction started smoothly, but 2 hours after the catalyst was supplied, the wall surface temperatures of 30 cm and 60 cm on the dispersion plate began to show 6 to 7 ° C. lower values. The operation was continued by keeping the wall temperature low for 8 days to stop the reaction. No molten polypropylene was present inside the reactor, but fine powder having a particle size of 150 μm or less was attached to the wall surface of the reactor with a thickness of about 5 mm.

【0025】〔実施例2〕壁面改質粒子としてエチレン
‐ブテン1共重合体を用い、N2 下で3時間流動させた
後、反応器から排出した。その後、比較例3と全く同じ
処理を実施した後、同一条件下で反応を開始した。触媒
供給開始後、重合反応は順調に開始し、MFR28g/
10分のポリプロピレン粒子が得られた。反応器内の温
度に場所により偏りは見られず、また15日間運転を継
続した後、停止して反応器内部の点検を行なったとこ
ろ、溶融樹脂によるシートの生成は観察されなかった。
Example 2 An ethylene-butene 1 copolymer was used as the wall-modified particles, and the particles were allowed to flow for 3 hours under N 2 and then discharged from the reactor. Then, after carrying out exactly the same treatment as in Comparative Example 3, the reaction was started under the same conditions. After the catalyst supply was started, the polymerization reaction started smoothly and the MFR was 28 g /
Ten minute polypropylene particles were obtained. The temperature in the reactor was not biased depending on the place, and when the operation was continued for 15 days and then stopped and the inside of the reactor was inspected, no sheet formation by the molten resin was observed.

【0026】[0026]

【発明の効果】本発明によれば、反応器内の温度が局部
的に高温を示すことなく、運転停止後の反応器内に溶融
樹脂の生成が認められないことは、「発明の概要」の項
において前記したところである。
EFFECTS OF THE INVENTION According to the present invention, the temperature in the reactor does not locally show a high temperature, and no molten resin is generated in the reactor after the operation is stopped. This is as described above in the section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】反応器内において、あらかじめ装入した種
ポリマー粒子の流動床にα‐オレフィンおよび触媒を導
入して重合を開始させることからなる、気相流動床によ
るα‐オレフィンの重合法において、種ポリマー粒子の
装入前に、流動床を形成しうる粒子を反応器内に装入し
て流動床を形成させてそれを維持し、その後、当該粒子
を実質的に反応器から排出してから種ポリマー粒子を装
入して流動床を形成させることを特徴とする、ポリオレ
フィンの製造法。
1. A method for polymerizing α-olefins by a gas-phase fluidized bed, which comprises introducing α-olefin and a catalyst into a fluidized bed of seed polymer particles which have been charged in advance in a reactor to initiate the polymerization. , Before the seed polymer particles are charged, particles capable of forming a fluidized bed are charged into the reactor to form and maintain a fluidized bed, after which the particles are substantially discharged from the reactor. A method for producing a polyolefin, which comprises charging seed polymer particles to form a fluidized bed.
JP15954492A 1992-06-18 1992-06-18 Production of polyolefin Pending JPH061804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15954492A JPH061804A (en) 1992-06-18 1992-06-18 Production of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15954492A JPH061804A (en) 1992-06-18 1992-06-18 Production of polyolefin

Publications (1)

Publication Number Publication Date
JPH061804A true JPH061804A (en) 1994-01-11

Family

ID=15696076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15954492A Pending JPH061804A (en) 1992-06-18 1992-06-18 Production of polyolefin

Country Status (1)

Country Link
JP (1) JPH061804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152250A (en) * 2004-10-28 2006-06-15 Sumitomo Chemical Co Ltd Method for producing olefin polymer
JP2013209461A (en) * 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd Method for producing olefin polymer
EP3231817A1 (en) 2016-04-12 2017-10-18 Sumitomo Chemical Co., Ltd. Method for producing polyolefin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152250A (en) * 2004-10-28 2006-06-15 Sumitomo Chemical Co Ltd Method for producing olefin polymer
JP2013209461A (en) * 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd Method for producing olefin polymer
EP3231817A1 (en) 2016-04-12 2017-10-18 Sumitomo Chemical Co., Ltd. Method for producing polyolefin
JP2017190376A (en) * 2016-04-12 2017-10-19 住友化学株式会社 Method for producing polyolefin
US10011667B2 (en) 2016-04-12 2018-07-03 Sumitomo Chemical Company, Limited Method for producing polyolefin

Similar Documents

Publication Publication Date Title
KR100337049B1 (en) Gas phase polymerization method of alpha-olefin
EP0224479B1 (en) Process for reducing sheeting during polymerization of alpha-olefins
AU658055B2 (en) Process for the gas-phase polymerization of olefins
EP0541760B1 (en) Process for the gas-phase polymerization of olefins
CN101346174B (en) Gas-phase process and apparatus for the polymerization of olefins
JP4987722B2 (en) Method for vapor phase polymerization of olefins
CA2293467C (en) Polymerisation process
HU185489B (en) Process for producing improves catalyst composition for polymerising ethylene
NZ226841A (en) Method of preventing or reducing polymer deposition on the walls of fluidised bed reactor (sheeting) during the polymerisation of alpha-olefins
JPH06157663A (en) Polymerization method
EA001029B1 (en) A PROCESS AND APPARATUS FOR POLYMERIZATION OF OLEFIN MONOMERS (57) 1. A process for polymerization of olefin monomer and optionally other monomer in the presence of olefin polymerizing catalyst, diluent and optional co-catalyst and donors, said process comprising the steps:
KR20130099955A (en) Method for feeding an antistatic compound to a polymerization reactor
CZ277996B6 (en) Process of one or more alpha-olefins continuous polymerization
JPH061804A (en) Production of polyolefin
JP2001172304A (en) Process for starting operation for manufacturing polybutadiene in gas phase
EP0131832B1 (en) Olefin polymerization catalysts adapted for gas phase processes
JPH0725933A (en) Ethylene / propylene copolymer rubber
JP3013093B2 (en) Polyolefin production method
JPH0320403B2 (en)
AU590720B2 (en) Process for reducing sheeting in polymerization of alpha-olefins
JPH0485307A (en) Production of polyolefin
JP3295640B2 (en) Improved gas fluidized bed polymerization process
JPS5991108A (en) Manufacture of 1-olefin polymer or copolymer
JPH0485309A (en) Production of polyolefin
JPH029047B2 (en)