JPH06179901A - Production of alnico magnetic alloy powder for resin magnet - Google Patents

Production of alnico magnetic alloy powder for resin magnet

Info

Publication number
JPH06179901A
JPH06179901A JP4352433A JP35243392A JPH06179901A JP H06179901 A JPH06179901 A JP H06179901A JP 4352433 A JP4352433 A JP 4352433A JP 35243392 A JP35243392 A JP 35243392A JP H06179901 A JPH06179901 A JP H06179901A
Authority
JP
Japan
Prior art keywords
alloy powder
average particle
powder
kneaded
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4352433A
Other languages
Japanese (ja)
Inventor
Kenji Sato
賢司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4352433A priority Critical patent/JPH06179901A/en
Publication of JPH06179901A publication Critical patent/JPH06179901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To simply and inexpensively produce an Alnico magnetic alloy powder for resin magnet by kneading a specific metallic powder under specific conditions and aging by heating it under specific conditions. CONSTITUTION:At least two kinds of metallic powder and/or alloy powder having 100-600mum average particle diameter is kneaded in a ball mill in a non- oxidizing atmosphere for >=5 hours to be made 30-200mum average particle diameter. The kneaded material is heated to and held at 900-1300 deg.C in a non-oxidizing atmosphere and next, is cooled to or kept at 1000-800 deg.C in a magnetic field and furthermore is aged at 650-800 deg.C. As a result, dissolving process and pulverizing process become unnecessary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂磁石用アルニコ磁
石合金粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alnico magnet alloy powder for resin magnets.

【0002】[0002]

【従来の技術】100℃前後の温度にさらされる、テレ
ビに代表される家電製品やOA機器などに使用される磁
石は、(1)薄型や複雑形状の物が多い、(2)高い飽
和磁化を使用時でも比較的保持し得る、即ち温度特性が
良好である、(3)低価格である等により、アルニコ磁
石合金粉末を磁石粉末とした樹脂磁石が有用なものとし
て知られている。
2. Description of the Related Art Magnets used in home electric appliances such as televisions and OA equipment, which are exposed to a temperature of around 100 ° C., are often (1) thin and have a complicated shape, and (2) high saturation magnetization. Resin magnets that use alnico magnet alloy powder as magnet powder are known to be useful because they can be relatively retained even during use, that is, they have good temperature characteristics, and (3) they are inexpensive.

【0003】このアルニコ磁石合金粉末は、従来次のよ
うにして製造されていた。即ち、まず配合原料を溶解、
鋳造し、得られた鋳塊を900〜1300℃で溶体化処
理し、次に800〜900℃で磁界(0.5〜2kO
e)中冷却または保持し、更に500〜650℃で時効
した後、得られた熱処理物を微粉砕する方法によってい
た。
This alnico magnet alloy powder has been conventionally manufactured as follows. That is, first dissolve the ingredients
Casting, the obtained ingot is solution-treated at 900 to 1300 ° C., and then magnetic field (0.5 to 2 kO) at 800 to 900 ° C.
e) Medium cooling or holding, further aging at 500 to 650 ° C., and then finely pulverizing the obtained heat-treated product.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
方法は、溶解工程、微粉砕工程を必要とし、繁雑である
上、コスト的にも充分なものではない。そこで、本発明
の目的は、これらの問題点を解消し、簡潔で低コストで
すむ樹脂磁石用アルニコ磁石合金粉末の製造方法を提供
することにある。
However, the above method requires a dissolving step and a fine pulverizing step, is complicated, and is not sufficient in terms of cost. Therefore, an object of the present invention is to solve these problems, and to provide a method for producing an alnico magnet alloy powder for resin magnets, which is simple and inexpensive.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するものとして、平均粒径が100〜600μmの金
属粉末および、または合金粉末を少なくとも2種、ボー
ルミル中、非酸化性雰囲気で平均粒径が30〜200μ
mになるまで5時間以上混練し、該混練物を非酸化性雰
囲気中900〜1300℃で加熱し、次に1000〜8
00℃で磁界中冷却または磁界中保持し、更に650〜
550℃で時効することからなるものである。
In order to achieve the above object, the present invention provides at least two kinds of metal powder and / or alloy powder having an average particle diameter of 100 to 600 μm in a ball mill in a non-oxidizing atmosphere. Particle size is 30-200μ
kneading for 5 hours or more, heating the kneaded product at 900 to 1300 ° C. in a non-oxidizing atmosphere, and then 1000 to 8
Cool in a magnetic field at 00 ° C or hold in a magnetic field, and
It consists of aging at 550 ° C.

【0006】[0006]

【作用】本発明において、まず金属粉末を準備する。金
属は、アルニコ磁石合金の合金元素である、Fe、A
l、Ni、Co、Cu、Ti、Nbなどのうちの少なく
とも1種であり、これらの合金元素を適宜組合せた系の
合金粉末を準備してもよい。
In the present invention, the metal powder is first prepared. Metals are alloy elements of Alnico magnet alloy, Fe, A
It is possible to prepare an alloy powder of at least one selected from the group consisting of 1, Ni, Co, Cu, Ti, Nb and the like, and a system in which these alloy elements are appropriately combined.

【0007】これらの金属粉末および、または合金粉末
で、平均粒径が100〜600μmのものを少なくとも
2種ボールミル中で混練する。この混練は、粉末粒子間
に固相反応的な合金化をおこすために行なう。混練に供
される粉末の粒径が100μm未満では、固相反応的な
合金化をおこした混練物の平均粒径が30μm未満にな
り、一方、600μmを超えると、混練による合金化を
おこし難くなる。
These metal powders and / or alloy powders having an average particle diameter of 100 to 600 μm are kneaded in a ball mill. This kneading is performed in order to cause solid-phase reactive alloying between the powder particles. If the particle size of the powder to be kneaded is less than 100 μm, the average particle size of the kneaded product that has undergone solid-phase reactive alloying is less than 30 μm, while if it exceeds 600 μm, alloying due to kneading is difficult to occur. Become.

【0008】上記金属粉末や合金粉末は、600μmよ
り大きな粒度の塊、粒、板などをジョークラッシャー、
ディスクミル、スタンプミル、パルペライザー、ボール
ミルなどにより粉砕しても得られる。混練するボールミ
ルは、アトリッションミル、振動ミル、転動ミルなどが
挙げられるが、好ましくはアトリッションミルである。
The above-mentioned metal powder or alloy powder can be used as a jaw crusher for agglomerates, grains, plates, etc. having a grain size larger than 600 μm.
It can also be obtained by crushing with a disk mill, stamp mill, pulperizer, ball mill, or the like. The ball mill to be kneaded may be an attrition mill, a vibration mill, a rolling mill or the like, but an attrition mill is preferred.

【0009】この混練は、Ar、N2 、ヘキサン、アル
コールなどの非酸化性雰囲気で平均粒径が30〜200
μmになるまで行なわれる。非酸化性雰囲気は、混練物
の酸化防止のために必要である。また、混練物の粒径が
30μm未満では、酸化し易く、場合により発火の危険
も生じる。一方、200μmを超えると、樹脂磁石製造
の際、成形性が低下する。
This kneading is carried out in a non-oxidizing atmosphere of Ar, N 2 , hexane, alcohol or the like and having an average particle size of 30 to 200.
It is performed until it becomes μm. The non-oxidizing atmosphere is necessary for preventing the kneaded product from oxidizing. Further, if the particle size of the kneaded material is less than 30 μm, the kneaded material is likely to be oxidized, and there is a risk of ignition in some cases. On the other hand, when it exceeds 200 μm, the moldability is lowered during the production of the resin magnet.

【0010】混練時間は、混練物に固相反応的な合金化
をおこさせるため、5時間以上とする必要がある。
The kneading time is required to be 5 hours or longer in order to cause the kneaded product to undergo solid-phase reactive alloying.

【0011】得られた混練物は、固相反応的なアルニコ
磁石合金粉末になっている。この混練物を、次に、非酸
化性雰囲気中900〜1300℃に加熱する。この加熱
によって、合金の溶体化を行なう。更に、好ましくは
0.5〜2kOeでの磁界中冷却または磁界中保持を1
000〜800℃で、時効を650〜550℃で行な
う。上記溶体化の温度が1300℃を超えると、加熱さ
れる混練物が焼結ないし溶融する傾向が著しくなる。ま
た、同温度が900℃未満であったり、上記磁界中冷却
または磁界中保持の温度および上記時効温度が上記範囲
を外れると、夫々の熱処理を行なう効果が希薄となる。
The obtained kneaded product is a solid-state reactive alnico magnet alloy powder. This kneaded material is then heated to 900 to 1300 ° C. in a non-oxidizing atmosphere. By this heating, solution treatment of the alloy is performed. Furthermore, preferably, cooling in a magnetic field or holding in a magnetic field at 0.5 to 2 kOe is 1
Aging is performed at 650 to 550 ° C at 000 to 800 ° C. If the solutionizing temperature exceeds 1300 ° C., the heated kneaded product tends to sinter or melt. Further, if the temperature is lower than 900 ° C., or if the temperature for cooling in the magnetic field or the temperature for holding in the magnetic field and the aging temperature are out of the above ranges, the effect of each heat treatment becomes weak.

【0012】以上のようにして処理されたアルニコ磁石
合金粉末は、そのままあるいは、軽微な粉砕を行なうの
みで樹脂磁石の製造に供することができる。そして、製
造された樹脂磁石は、従来の、鋳造、熱処理、粉砕等の
工程を経て作成されたアルニコ磁石合金粉末を使用して
製造された樹脂磁石と同等の磁気特性を有する。
The alnico magnet alloy powder treated as described above can be used as it is or after only slight pulverization for the production of resin magnets. The produced resin magnet has the same magnetic characteristics as the resin magnet produced using the conventional alnico magnet alloy powder produced through the steps of casting, heat treatment, pulverization and the like.

【0013】[0013]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 純度99.8重量%の電解Co塊240g、純度99.
9重量%の電解Ni塊140g、純度99.8重量%の
電解Al塊80g、純度99.8重量%の電解Cu塊3
0g、純度99.8重量%の電解Fe片510gをジョ
ークラッシャーで2〜3mm大の角状に粉砕した。その
後、得られた粉砕物をディスクミルで粉砕し平均粒径を
400μmとした。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 240 g of electrolytic Co lump having a purity of 99.8% by weight, purity 99.
140 g of 9 wt% electrolytic Ni lump, 80 g of electrolytic Al lump having 99.8 wt% purity, and 3 g of electrolytic Cu lump having 99.8 wt% purity
510 g of electrolytic Fe pieces having 0 g and a purity of 99.8% by weight were crushed into a square having a size of 2 to 3 mm by a jaw crusher. Then, the obtained pulverized product was pulverized by a disc mill to have an average particle size of 400 μm.

【0014】次に、この粉砕粉末をアトリッションミル
(バッチ式、タンク容量5l、粉砕球:WC製、8mm
径)で混練した。この際、雰囲気はAr、攪拌機の回転
数は200rpm、混練時間は24時間であった。得ら
れた混練物の平均粒径は150μmであった。
Next, the crushed powder was mixed with an attrition mill (batch type, tank capacity 5 liters, crushed ball: WC, 8 mm).
Diameter). At this time, the atmosphere was Ar, the rotation speed of the stirrer was 200 rpm, and the kneading time was 24 hours. The average particle size of the obtained kneaded product was 150 μm.

【0015】そして、この混練物を軟鉄製容器に充填
し、常圧Arガス雰囲気中1000℃で4時間、次に1
270℃で30分間加熱した。その後、上記軟鉄製容器
を加熱炉から取り出し、送風により900℃まで急冷し
た。この時の冷却速度は平均5℃/秒であった。
Then, this kneaded product was filled in a soft iron container, and kept in an atmosphere of Ar gas at 1000 ° C. for 4 hours, and then 1
Heated at 270 ° C. for 30 minutes. Then, the soft iron container was taken out of the heating furnace and rapidly cooled to 900 ° C. by blowing air. The cooling rate at this time was 5 ° C./second on average.

【0016】そして、上記軟鉄製容器を2kOeの磁場
を印加しながら、平均1℃/秒の冷却速度で800℃ま
で冷却した後、冷却を続け、590℃で48時間、57
0℃で48時間の時効処理を施した。その後は、常温ま
で放冷した。得られた合金粉末は、組成がAl8重量
%、Ni14重量%、Co24重量%、Cu3重量%、
残部実質的にFeであり、平均粒径は150μmであっ
た。この合金粉末を5重量%のエポキシ樹脂と混合し、
5t/cm2 の圧力でプレス成形し、その後120℃で
1時間加熱して樹脂を硬化させた。得られた磁石の磁気
特性を表1に示す。
Then, the soft iron container was cooled to 800 ° C. at an average cooling rate of 1 ° C./sec while applying a magnetic field of 2 kOe, and then continued to cool at 590 ° C. for 48 hours.
Aging treatment was performed at 0 ° C. for 48 hours. After that, it was left to cool to room temperature. The composition of the obtained alloy powder is Al 8 wt%, Ni 14 wt%, Co 24 wt%, Cu 3 wt%,
The balance was substantially Fe, and the average particle size was 150 μm. This alloy powder is mixed with 5% by weight of epoxy resin,
It was press-molded at a pressure of 5 t / cm 2 and then heated at 120 ° C. for 1 hour to cure the resin. Table 1 shows the magnetic characteristics of the obtained magnet.

【0017】実施例2 電解Co塊を330g、電解Al塊を70g、電解Cu
塊を40g、電解Fe片を370gとし、更に純度9
9.8重量%のTi粒50gを追加した以外は、実施例
1と同様にしてディスクミルで粉砕し平均粒径を500
μmとした。
Example 2 330 g of electrolytic Co lump, 70 g of electrolytic Al lump, electrolytic Cu
40 g of lumps, 370 g of electrolytic Fe pieces, and a purity of 9
An average particle size of 500 was obtained by crushing with a disk mill in the same manner as in Example 1 except that 50 g of 9.8 wt% Ti particles was added.
μm.

【0018】次に、この粉砕粉末を実施例1と同様にし
てアトリッションミルで混練した。得られた混練物の平
均粒径は150μmであった。
Next, this pulverized powder was kneaded by an attrition mill in the same manner as in Example 1. The average particle size of the obtained kneaded product was 150 μm.

【0019】この混練物を軟鉄製容器に充填することか
ら以後は、1270℃の加熱を1300℃としたこと、
送風により平均20℃/秒の冷却速度で810℃まで急
冷し、更に、810℃で上記軟鉄製容器を2kOeの磁
場を印加しながら30分保持した後、600℃まで冷却
し、600℃で10時間の時効処理を施したこと以外
は、実施例1と同様にして試験した。得られた合金粉末
の組成は、Al7重量%、Ni14重量%、Co33重
量%、Ti5重量%、Cu4重量%、残部実質的にFe
であり、平均粒径は130μmであった。また、磁石の
磁気特性を表1に示す。
Since this kneaded product was filled in a soft iron container, heating at 1270 ° C. was set to 1300 ° C.,
It is rapidly cooled to 810 ° C. at an average cooling rate of 20 ° C./sec by blowing air, and the soft iron container is held at 810 ° C. for 30 minutes while applying a magnetic field of 2 kOe, and then cooled to 600 ° C. The test was conducted in the same manner as in Example 1 except that the time aging treatment was performed. The composition of the obtained alloy powder was as follows: Al 7% by weight, Ni 14% by weight, Co 33% by weight, Ti 5% by weight, Cu 4% by weight, the balance being substantially Fe.
And the average particle size was 130 μm. Table 1 shows the magnetic characteristics of the magnet.

【0020】従来例1 高周波溶解後鋳造して得られた鋳塊を常圧Arガス雰囲
気中1270℃で30分間加熱した。その後、900℃
まで急冷した。更に、2kOeの磁場を印加しながら、
平均1℃/秒の冷却速度で800℃まで冷却した後、冷
却を続け、590℃で48時間、570℃で48時間の
時効処理を施した。その後は、常温まで放冷した。得ら
れた熱処理物は、ジョークラッシャーとスタンプミルで
150μm以下まで粉砕して合金粉末を得た。この粉末
は、Al8重量%、Ni17重量%、Co24重量%、
Cu3重量%、残部実質的にFeであった。この合金粉
末から実施例1と同様にして樹脂磁石を作成した。得ら
れた磁石の磁気特性を表1に示す。
Conventional Example 1 An ingot obtained by high-frequency melting and casting was heated at 1270 ° C. for 30 minutes in an atmospheric pressure Ar gas atmosphere. Then 900 ° C
I quickly cooled to. Furthermore, while applying a magnetic field of 2 kOe,
After cooling to 800 ° C. at an average cooling rate of 1 ° C./sec, the cooling was continued and an aging treatment was performed at 590 ° C. for 48 hours and 570 ° C. for 48 hours. After that, it was left to cool to room temperature. The obtained heat-treated product was crushed with a jaw crusher and a stamp mill to 150 μm or less to obtain an alloy powder. This powder contains 8 wt% Al, 17 wt% Ni, 24 wt% Co,
Cu was 3% by weight, and the balance was substantially Fe. A resin magnet was prepared from this alloy powder in the same manner as in Example 1. Table 1 shows the magnetic characteristics of the obtained magnet.

【0021】従来例2 高周波溶解後鋳造して得られた鋳塊を常圧Arガス雰囲
気中1300℃で30分間加熱した。その後、810℃
まで急冷した。更に、その温度(810℃)で2kOe
の磁場を印加しながら、30分間保持した後、冷却を続
け、600℃で10時間の時効処理を施した。その後
は、常温まで放冷した。この熱処理物の粉砕からは従来
例1と同様にして、樹脂磁石を作成した。なお、上記粉
砕により得られた合金粉末は、Al8重量%、Ni17
重量%、Co34重量%、Cu5重量%、Ti5重量
%、残部実質的にFeであった。上記樹脂磁石の磁気特
性を表1に示す。
Conventional Example 2 An ingot obtained by casting after high frequency melting was heated at 1300 ° C. for 30 minutes in an Ar gas atmosphere at normal pressure. Then 810 ℃
I quickly cooled to. Furthermore, at that temperature (810 ° C), 2 kOe
After maintaining for 30 minutes while applying the magnetic field, the cooling was continued and the aging treatment was performed at 600 ° C. for 10 hours. After that, it was left to cool to room temperature. A resin magnet was prepared in the same manner as in Conventional Example 1 from the pulverization of the heat-treated product. The alloy powder obtained by the above pulverization was Al 8 wt% and Ni 17
% By weight, 34% by weight of Co, 5% by weight of Cu, 5% by weight of Ti, and the balance being substantially Fe. Table 1 shows the magnetic characteristics of the resin magnet.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】以上から、本発明は、(1)溶解工程、
(2)粉砕工程が不要である、などにより、簡潔に、低
コストで従来と同等の磁気特性を有する樹脂磁石用アル
ニコ磁石合金粉末を製造する方法を提供することができ
るものであることが判る。
As described above, according to the present invention, (1) the dissolution step,
(2) It can be seen that it is possible to simply provide a method for producing an alnico magnet alloy powder for a resin magnet, which has magnetic characteristics equivalent to conventional ones, at low cost, because a crushing step is unnecessary. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 30/00 38/00 303 B 38/16 H01F 1/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C22C 30/00 38/00 303 B 38/16 H01F 1/06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が100〜600μmの金属粉
末および、または合金粉末を少なくとも2種、ボールミ
ル中、非酸化性雰囲気で平均粒径が30〜200μmに
なるまで5時間以上混練し、該混練物を非酸化性雰囲気
中900〜1300℃で加熱し、次に1000〜800
℃で磁界中冷却または磁界中保持し、更に650〜55
0℃で時効することからなる樹脂磁石用アルニコ磁石合
金粉末の製造方法。
1. At least two kinds of metal powder and / or alloy powder having an average particle diameter of 100 to 600 μm are kneaded in a ball mill in a non-oxidizing atmosphere for 5 hours or more until the average particle diameter becomes 30 to 200 μm, The kneaded product is heated at 900 to 1300 ° C. in a non-oxidizing atmosphere, and then 1000 to 800.
Cooling in a magnetic field at ℃ or holding in a magnetic field, 650-55
A method for producing an alnico magnet alloy powder for a resin magnet, which comprises aging at 0 ° C.
JP4352433A 1992-12-11 1992-12-11 Production of alnico magnetic alloy powder for resin magnet Pending JPH06179901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4352433A JPH06179901A (en) 1992-12-11 1992-12-11 Production of alnico magnetic alloy powder for resin magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4352433A JPH06179901A (en) 1992-12-11 1992-12-11 Production of alnico magnetic alloy powder for resin magnet

Publications (1)

Publication Number Publication Date
JPH06179901A true JPH06179901A (en) 1994-06-28

Family

ID=18424048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4352433A Pending JPH06179901A (en) 1992-12-11 1992-12-11 Production of alnico magnetic alloy powder for resin magnet

Country Status (1)

Country Link
JP (1) JPH06179901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055923A1 (en) * 1998-04-27 1999-11-04 Vladyslav Mihailovich Sokolov Method of alnico alloy melting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055923A1 (en) * 1998-04-27 1999-11-04 Vladyslav Mihailovich Sokolov Method of alnico alloy melting
US6485539B1 (en) 1998-04-27 2002-11-26 Vladislav M. Sokolov Method of ALNIKO alloy melting
GB2351298B (en) * 1998-04-27 2003-05-21 Vladyslav Mihailovich Sokolov A method of AlNiCo alloy refining

Similar Documents

Publication Publication Date Title
JPH06151132A (en) Manufacture of powder of anisotropic magnet material and manufacture of magnet using anisotropic magnet material powder obtained by same manufacture
JPS6393841A (en) Rare-earth permanent magnet alloy
JPH06179901A (en) Production of alnico magnetic alloy powder for resin magnet
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JPWO2003040421A1 (en) Alloy for Sm-Co magnet, its manufacturing method, sintered magnet and bonded magnet
JP2939815B2 (en) Method for producing shape-anisotropic soft magnetic alloy powder
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JP2004339542A (en) Recycling method for rare earth-transition metal alloy
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPS60125338A (en) Production of permanent magnet alloy
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPH02138707A (en) Rare-earth magnet powder annealing method
JP2660917B2 (en) Rare earth magnet manufacturing method
JPS59154004A (en) Manufacture of permanent magnet
JPH04141502A (en) Manufacture of alloy powder for rare earth metal bond magnet
JPH08148317A (en) Production of rare earth magnet
JPS6263645A (en) Production of permanent magnet material
JPH0732200A (en) Production of sn-containing ndfeb sintered magnet having excellent corrosion resistance
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPH04107244A (en) Rare earth magnet material and its manufacture
JPS60246603A (en) Manufacture of rare earth-cobalt magnet powder for resin magnet
JPH04221005A (en) Production of rare-earth metal-containing alloy powder by reductive diffusion
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPH05135925A (en) Manufacture of rare earth magnet material