JPH06174951A - Quartz-based glass waveguide and production thereof - Google Patents

Quartz-based glass waveguide and production thereof

Info

Publication number
JPH06174951A
JPH06174951A JP32535692A JP32535692A JPH06174951A JP H06174951 A JPH06174951 A JP H06174951A JP 32535692 A JP32535692 A JP 32535692A JP 32535692 A JP32535692 A JP 32535692A JP H06174951 A JPH06174951 A JP H06174951A
Authority
JP
Japan
Prior art keywords
substrate
thin film
glass
core
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32535692A
Other languages
Japanese (ja)
Inventor
Hiroaki Okano
広明 岡野
Toshihide Tokunaga
利秀 徳永
Toshikazu Kamoshita
敏和 鴨志田
Hideo Otsuki
秀夫 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP32535692A priority Critical patent/JPH06174951A/en
Publication of JPH06174951A publication Critical patent/JPH06174951A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials

Abstract

PURPOSE:To eliminate the roughness at the side of a core part formed by reac tive ion etching and to reduce the scattering loss due to the roughness. CONSTITUTION:The core glass layer consisting of SiO2-TiO2 is formed on a quartz glass base 1 by vapor deposition by an electron beam. The unwanted part of the core glass layer is removed by reactive ion etching to form a core part 2. The sol mixing silicon alkoxide soln. consisting of Si(OR)4 (R is alkyl group), alcohol and water is prepared, and the substrate 4 is immersed into the sol. After immersing, the substrate 4 is took up from the sol soln. 5 and a wet SiO2 thin film gel 6 is formed on the base 4. The substrate 4 is dried at about 300 deg.C in a furnace 7 to form a SiO2 thin film 8 on the core part 2. Glass particulates are deposited and clarified on the thin film 8 by a flame hyrolysis reaction to form the clad layer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は石英系ガラス基板上に形
成された石英系ガラス導波路及びその製造方法に係り、
特にコア部のエッチング面を改善したものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silica glass waveguide formed on a silica glass substrate and a manufacturing method thereof,
Particularly, the present invention relates to a core having an improved etching surface.

【0002】[0002]

【従来の技術】石英系ガラス導波路は、石英ガラス基板
上に導波路を設けたものと、シリコン基板上に石英ガラ
スを形成しその石英ガラス上に導波路を設けたものとが
あるが、その製造方法は共通している。これら石英系ガ
ラス導波路の従来の製造方法として、石英ガラス基板上
に導波路を設ける場合を図2を用いて説明する。
2. Description of the Related Art Quartz-based glass waveguides include those in which a waveguide is provided on a quartz glass substrate and those in which quartz glass is formed on a silicon substrate and the waveguide is provided on the quartz glass. The manufacturing method is common. As a conventional manufacturing method of these quartz glass waveguides, a case of providing a waveguide on a quartz glass substrate will be described with reference to FIG.

【0003】まず、石英ガラス基板1上にコア層を形成
したのち、コア層の不要部分を反応性イオンエッチング
法により除去して導波路を構成する凸状のコア部2を形
成する(図2(A))。次に、コア部2を形成した基板
1の上に火炎加水分解反応を利用してガラス微粒子を堆
積(火炎堆積法による堆積)させ、これを透明化してク
ラッド層3を形成する(図2(B))。
First, after forming a core layer on a quartz glass substrate 1, unnecessary portions of the core layer are removed by a reactive ion etching method to form a convex core portion 2 forming a waveguide (FIG. 2). (A)). Next, glass microparticles are deposited (deposition by the flame deposition method) on the substrate 1 on which the core portion 2 is formed by utilizing a flame hydrolysis reaction, and this is made transparent to form the cladding layer 3 (FIG. 2 ( B)).

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した従来
の石英系ガラス導波路の製造方法では、反応性ガスプラ
ズマによってエッチング面、すなわちコア部の側面にエ
ッチングによる粗れが生じ、このエッチングによる粗れ
が導波路の損失要因をもたらすという欠点があった。す
なわち、反応性イオンエッチングによって凸状のコア部
形成後、火炎堆積法によりクラッド層を堆積して凸状コ
ア部を埋め込み、熱処理するが、このとき、コア部の側
面に生じている粗れにより、十分にコア部側面にクラッ
ド層が埋め込まれない。このために熱処理の段階で、コ
ア部の側面に微小な気泡が残存し、これが導波路の散乱
損失になって、低損失なガラス導波路を得ることが困難
であった。
However, in the above-mentioned conventional method for manufacturing a silica-based glass waveguide, the reactive gas plasma causes roughness on the etching surface, that is, the side surface of the core portion due to the etching. This has a drawback that it causes a loss factor of the waveguide. That is, after forming a convex core portion by reactive ion etching, a cladding layer is deposited by a flame deposition method to fill the convex core portion and heat treatment is performed, but at this time, due to the roughness generated on the side surface of the core portion. , The clad layer is not sufficiently embedded on the side surface of the core part. Therefore, in the heat treatment stage, minute bubbles remain on the side surface of the core portion, which causes scattering loss of the waveguide, making it difficult to obtain a low-loss glass waveguide.

【0005】本発明は上記事情に鑑みてなされたもの
で、エッチングにより形成されるコア部側面の粗れをゾ
ルゲル法によって形成した薄層でカバーするようにした
ものである。なお、従来、石英系導波路の製造方法にお
いては、ゾルゲル法を使って、予め石英系ガラス膜を基
板上に形成することにより、基板の変形を小さく抑え、
気泡や剥離の発生のおそれをなくすものは提案されてい
るが(特開平4−147202号公報)、未だコア部側
面の粗れを解消するために、ゾルゲル法を使ったものは
ない。
The present invention has been made in view of the above circumstances, and is one in which the roughness of the side surface of the core portion formed by etching is covered with a thin layer formed by the sol-gel method. Conventionally, in the method for manufacturing a silica-based waveguide, the sol-gel method is used to previously form a silica-based glass film on the substrate to suppress the deformation of the substrate to be small.
Although there has been proposed one that eliminates the risk of bubbles and peeling (Japanese Patent Application Laid-Open No. 4-147202), there is still no one that uses the sol-gel method to eliminate the roughness of the side surface of the core.

【0006】本発明の目的は、ゾルゲル法によってコア
部側面を滑らかにすることによって、上述した従来技術
の欠点を解消して、低損失な石英系ガラス導波路及びそ
の製造方法を提供することにある。
It is an object of the present invention to provide a silica glass waveguide having a low loss and a method for manufacturing the same by eliminating the above-mentioned drawbacks of the prior art by smoothing the side surface of the core portion by the sol-gel method. is there.

【0007】[0007]

【課題を解決するための手段】本発明の石英系ガラス導
波路は、石英ガラス基板あるいはシリコン上に石英ガラ
スを形成したシリコン基板上にコア部と、このコア部を
覆うクラッド層とを有する石英系ガラス導波路におい
て、コア部とこれを覆うクラッド層との間に、SiO2
薄膜が設けられているものである。
A quartz glass waveguide of the present invention is a quartz glass substrate having a core portion on a quartz glass substrate or a silicon substrate formed by forming quartz glass on silicon, and a clad layer covering the core portion. In the system glass waveguide, SiO 2 is provided between the core and the cladding layer covering the core.
A thin film is provided.

【0008】また、本発明の石英系ガラス導波路の製造
方法は、石英ガラス基板あるいはシリコン上に石英ガラ
スを形成した基板上にコア部とクラッド層からなる導波
路を形成した石英系ガラス導波路の製造方法において、
上記基板上にコア部をエッチングにより形成した後、 一般式Si(OR)4 [ただしRはアルキル基] で表わせるシリコンアルコキシドに水及びアルコールを
加えて混合したゾル状態の液を上記コア部を形成した基
板上に塗布し、塗布後乾燥させてコア部の表面にゲル状
態の組成SiO2 からなる薄膜を厚さ0.1〜1.0μ
m形成し、この薄膜が形成された基板上に火炎加水分解
反応を利用してガラス微粒子を堆積させ、これを透明ガ
ラス化することによりクラッド層を形成するようにした
ものである。なお、堆積させたガラス微粒子を透明ガラ
ス化する過程で、コア部に形成したSiO2 薄膜もガラ
ス化する。ここで、コア部とは光が実質的に伝搬するコ
アパターンないし導波路部を意味する。
The method for manufacturing a silica glass waveguide according to the present invention is a silica glass waveguide in which a waveguide including a core portion and a clad layer is formed on a silica glass substrate or a substrate in which silica glass is formed on silicon. In the manufacturing method of
After the core portion is formed on the substrate by etching, a liquid in a sol state obtained by mixing water and alcohol into a silicon alkoxide represented by the general formula Si (OR) 4 [where R is an alkyl group] is mixed with the core portion. It is applied on the formed substrate and dried after application to form a thin film of composition SiO 2 in the gel state on the surface of the core part with a thickness of 0.1 to 1.0 μm.
m, the glass particles are deposited on the substrate on which this thin film is formed by utilizing a flame hydrolysis reaction, and the glass particles are made into transparent glass to form a clad layer. Incidentally, in the process of vitrifying the deposited glass particles, the SiO 2 thin film formed on the core part is also vitrified. Here, the core portion means a core pattern or a waveguide portion through which light substantially propagates.

【0009】この製造方法において、上記塗布後乾燥さ
せてコア部の表面にゲル状態の組成SiO2 からなる薄
膜を形成した後、さらに平滑化促進ために焼結させて厚
さ0.1〜1.0μmのSiO2 ガラス薄膜とした後、
上記クラッド層を形成するようにしてもよい。ここで、
SiO2 膜の膜厚ないしSiO2 ガラス薄膜の厚さを上
記の範囲に限定したのは、SiO2 膜の膜厚ないしSi
2 ガラス薄膜の厚さを1.0μm以上とすると、乾燥
時にSiO2 膜にクラックあるいは剥離が生じてしま
い、0.1μm以下とすると、コア部の側面の粗れを平
滑化するだけの十分な効果がなく、導波路の伝送損失が
増加するからである。特に、SiO2 薄膜の最適値は
0.3〜0.6μmの範囲とすることが望ましく、この
範囲であれば、再現性よく50mmのガラス導波路素子
の伝搬損失0.1dB以下を達成することができる。
In this manufacturing method, a thin film of the composition SiO 2 in a gel state is formed on the surface of the core part by drying after coating as described above, and then further sintered to promote smoothing to a thickness of 0.1-1. After forming a SiO 2 glass thin film of 0.0 μm,
You may make it form the said clad layer. here,
The thickness of the SiO 2 film or the thickness of the SiO 2 glass thin film is limited to the above range by the thickness of the SiO 2 film or Si.
If the thickness of the O 2 glass thin film is 1.0 μm or more, cracks or peeling will occur in the SiO 2 film during drying, and if it is 0.1 μm or less, it is sufficient to smooth the side surface roughness of the core part. This is because there is no such effect and the transmission loss of the waveguide increases. In particular, the optimum value of the SiO 2 thin film is preferably in the range of 0.3 to 0.6 μm, and within this range, a propagation loss of 0.1 dB or less for a 50 mm glass waveguide element can be achieved with good reproducibility. You can

【0010】なお、シリコンアルコキシドと水とアルコ
ールとの混合液の中に、屈折率制御用のドーパントを添
加させても良い。ドーパントとしては、例えば、Geア
ルコキシド、Tiアルコキシド、ボロンアルコキシド、
リンアルコキシドなどがある。
A dopant for controlling the refractive index may be added to the mixed solution of silicon alkoxide, water and alcohol. Examples of the dopant include Ge alkoxide, Ti alkoxide, boron alkoxide,
There are phosphorus alkoxides.

【0011】[0011]

【作用】石英ガラス基板あるいはシリコン上に石英ガラ
スを形成した基板上に、CVD(化学堆積法)やPVD
(物理堆積法)などの堆積法により多孔質ガラス膜を形
成して透明ガラス化し、これをエッチングして不要部分
を除去することにより、コアパターンとなる凸状のコア
部を基板上に形成する。通常、エッチングは反応性イオ
ンエッチングによって行うが、ウエットエッチングでも
行われる。
Function: CVD (chemical deposition method) or PVD is performed on a quartz glass substrate or a substrate in which quartz glass is formed on silicon.
A porous glass film is formed by a deposition method such as (physical deposition method) to form a transparent glass, and an unnecessary portion is removed by etching this to form a convex core portion to be a core pattern on a substrate. . Usually, etching is performed by reactive ion etching, but wet etching is also performed.

【0012】次に、このコア部を形成した基板上に、ゾ
ルゲル法により加水分解、脱水縮合させることによりS
iO2 の薄膜を形成する。すなわち、Si(OR)4
表わせるシリコンアルコキシドに水及びアルコールを加
えて混合して得たシリカゾルを、コア部に塗布する。こ
の塗布は凸状のコア部のみに施してもよいが、コア部を
形成した基板全面に塗布してもよい。シリカゾルに基板
を浸漬する場合には、基板全面に塗布する方が容易であ
る。スプレーにより噴霧する場合、さらにはブラシによ
り塗布する場合には、コア部の形成された基板表面のみ
に塗布する方が容易である。塗布後、塗布されたゾル液
を乾燥させることにより、コア部の表面ないしコア部の
形成された基板上にゲル状態の組成SiO2 からなる薄
膜が形成される。このコア部の表面に形成されたSiO
2 の薄膜は、エッチングにより粗れたコア部の側面(特
に反応性イオンエッチングのときは粗れが大きい)を覆
って滑らかにする。
Next, the substrate on which the core portion is formed is hydrolyzed and dehydrated by the sol-gel method to form S.
Form a thin film of iO 2 . That is, silica sol obtained by adding water and alcohol to a silicon alkoxide represented by Si (OR) 4 and mixing them is applied to the core portion. This coating may be applied only to the convex core portion, or may be applied to the entire surface of the substrate on which the core portion is formed. When the substrate is dipped in silica sol, it is easier to apply it to the entire surface of the substrate. In the case of spraying, or in the case of applying with a brush, it is easier to apply only to the substrate surface on which the core portion is formed. After the application, the applied sol solution is dried to form a thin film of gel composition SiO 2 on the surface of the core or on the substrate on which the core is formed. SiO formed on the surface of this core
The thin film of 2 covers and smoothes the side surface of the core portion roughened by etching (in particular, the roughness is large in the case of reactive ion etching).

【0013】そして、この上にさらに、火炎堆積法によ
るクラッド層の形成が行われるが、その形成に際して、
SiO2 薄膜により滑らかになったコア部側面にクラッ
ド層が十分に埋め込まれることになるので、透明ガラス
化の熱処理段階で、導波路の散乱損失の原因となるコア
部側面の微小な気泡の発生が有効に防止され、低損失な
ガラス導波路の製造が可能となる。
Then, a clad layer is further formed thereon by the flame deposition method.
Since the clad layer is sufficiently embedded on the side surface of the core portion smoothed by the SiO 2 thin film, minute bubbles on the side surface of the core portion that cause scattering loss of the waveguide are generated during the heat treatment step of transparent vitrification. Is effectively prevented, and a glass waveguide with low loss can be manufactured.

【0014】[0014]

【実施例】以下、本発明の実施例を図1を用いて説明す
る。
EXAMPLE An example of the present invention will be described below with reference to FIG.

【0015】実施例1 直径3インチ、厚さ1mmの石英ガラス基板1上に、電
子ビーム蒸着法によりSiO2 −TiO2 を成分とする
コアガラス層を形成する。次に、反応性イオンエッチン
グでコアガラス層の不要部分を除去し、幅、高さとも8
μmのコア部2を形成する(図1(A))。このコア部
2の形成された基板を符号4で表わす。
Example 1 A core glass layer containing SiO 2 —TiO 2 as a component is formed on a quartz glass substrate 1 having a diameter of 3 inches and a thickness of 1 mm by an electron beam evaporation method. Then, the unnecessary portion of the core glass layer is removed by reactive ion etching to reduce the width and height to 8
A core portion 2 having a thickness of μm is formed (FIG. 1 (A)). The substrate on which the core portion 2 is formed is indicated by reference numeral 4.

【0016】次に、一般式Si(OR)4 {Rはアルキ
ル基}から成るシリコンアルコキシド溶液とアルコール
と水とを混合させた溶液(ゾル)5を作成する。本実施
例ではシリコンアルコキシドとしてSi(OC2 5
4 を用いた。このゾル5は室内に放置すると加水分解及
び重合反応によって粘度が大きくなるが、約5センチポ
イズとなったところで、コア部2が形成された基板4を
このゾル液5に浸漬する(図1(B))。
Next, a solution (sol) 5 is prepared by mixing a silicon alkoxide solution having the general formula Si (OR) 4 {R is an alkyl group} with alcohol and water. In this embodiment, Si (OC 2 H 5 ) is used as the silicon alkoxide.
4 was used. When this sol 5 is left indoors, its viscosity increases due to hydrolysis and polymerization reactions, but when it reaches about 5 centipoise, the substrate 4 on which the core portion 2 is formed is dipped in this sol solution 5 (see FIG. )).

【0017】浸漬後、基板4をゾル液5から引上げて、
ウエット状のSiO2 薄膜ゲル6をコア部2が形成され
た基板4上に形成する(図1(C))。
After the immersion, the substrate 4 is pulled up from the sol liquid 5,
A wet SiO 2 thin film gel 6 is formed on the substrate 4 on which the core portion 2 is formed (FIG. 1C).

【0018】しかる後に、この基板4を電気炉7内に入
れて約300℃で乾燥させることでコア部2上に膜厚
0.5μmのSiO2 薄膜8を形成する(図1
(D))。
Thereafter, the substrate 4 is placed in an electric furnace 7 and dried at about 300 ° C. to form a SiO 2 thin film 8 having a thickness of 0.5 μm on the core portion 2 (FIG. 1).
(D)).

【0019】最後に、その上に、火炎加水分解反応を利
用してクラッド用のガラス微粒子を堆積させ、これを焼
結して透明化することによりクラッド層3を形成し、石
英系ガラス導波路を製造する(図1(E))。
Finally, glass particles for cladding are deposited thereon by utilizing a flame hydrolysis reaction, and the cladding layer 3 is formed by sintering this to make it transparent, thereby forming a silica glass waveguide. Is manufactured (FIG. 1 (E)).

【0020】このようにして製造した石英系ガラス導波
路の素子を評価した。素子の長さは50mmである。5
0mmの導波路の伝搬損失は0.1dBであり、従来方
法による同一長さの導波路の伝送損失0.5〜1.0d
Bに比して、良好な結果が得られた。
The quartz glass waveguide device thus manufactured was evaluated. The length of the element is 50 mm. 5
The propagation loss of a 0 mm waveguide is 0.1 dB, and the transmission loss of a waveguide of the same length according to the conventional method is 0.5 to 1.0 d.
Compared to B, good results were obtained.

【0021】実施例2 実施例1においてコア部2の形成された基板4をゾル液
5に浸漬して引上げ、ウエット状のSiO2 薄膜ゲル6
を基板4上に形成するまでの工程(図1(A)〜
(C))は同じとしたが、その後に行われる図1(D)
の乾燥工程に焼結工程を加えたものである。すなわち、
電気炉7内でウエット状の薄膜ゲル6を300℃で乾燥
してSiO2 薄膜8とした後、さらにHeガス雰囲気中
で約1200℃に加熱してSiO2 薄膜8を透明な薄膜
ガラスとした。このとき膜厚は0.5μmであった。そ
の後は、実施例1と同様に、火炎加水分解反応を利用し
てガラス微粒子を堆積させ、これを焼結して透明ガラス
化することでクラッド層3を形成した。長さ50mmの
石英系ガラス導波路素子の伝送損失は実施例1と同じく
0.1dBであった。
Example 2 In Example 1, the substrate 4 having the core portion 2 formed thereon was dipped in the sol solution 5 and pulled up to form a wet SiO 2 thin film gel 6.
Process for forming the film on the substrate 4 (see FIG.
(C)) is the same, but FIG. 1 (D) performed after that.
The sintering process is added to the drying process. That is,
The wet thin film gel 6 was dried at 300 ° C. in the electric furnace 7 to form a SiO 2 thin film 8 and then heated to about 1200 ° C. in a He gas atmosphere to form the SiO 2 thin film 8 as a transparent thin film glass. . At this time, the film thickness was 0.5 μm. After that, as in Example 1, glass particles were deposited by utilizing the flame hydrolysis reaction, and the glass particles were sintered and made into transparent glass to form the cladding layer 3. The transmission loss of the silica glass waveguide element having a length of 50 mm was 0.1 dB as in Example 1.

【0022】比較例1 コア部2上に形成するSiO2 薄膜ゲルの膜厚を1μm
以上とした点以外は、実施例1と同様にした。この場合
は、乾燥時にSiO2 薄膜8にクラックあるいは剥離が
生じてしまった。
Comparative Example 1 The thickness of the SiO 2 thin film gel formed on the core portion 2 was 1 μm.
Except for the points described above, the same procedure as in Example 1 was performed. In this case, cracks or peeling occurred in the SiO 2 thin film 8 during drying.

【0023】比較例2 コア部2上に形成するSiO2 薄膜ゲルの膜厚を0.1
μm以下とした点以外は、実施例1と同様にした。この
場合は、膜厚が薄過ぎるのでコア部の側面の粗れを平滑
化するだけの十分な効果がなく、50mmの導波路の伝
送損失は0.3dB止りであった(注2.本発明の権利
範囲には、伝送損失0.3〜0.5dBの範囲に入る導
波路が含まれなくなりますが、よろしいでしょうか?も
し、この範囲も含ませるとしたら、もう少し膜厚の下限
を広げたらよろしいかと思いますが、いかがでしょうか
?)。
Comparative Example 2 The thickness of the SiO 2 thin film gel formed on the core portion 2 was 0.1.
The same procedure as in Example 1 was carried out except that the thickness was set to μm or less. In this case, since the film thickness was too thin, there was no sufficient effect to smooth the roughness of the side surface of the core part, and the transmission loss of the 50 mm waveguide was only 0.3 dB (Note 2. The present invention). The right range will not include waveguides that fall within the range of transmission loss of 0.3 to 0.5 dB, but is that correct? If you also include this range, if you expand the lower limit of film thickness a little I think it's OK, but how about it?).

【0024】[0024]

【発明の効果】【The invention's effect】

(1)請求項1に記載の石英系ガラス導波路によれば、
導波路の損失要因となるコア部表面に、これを平滑にす
るSiO2 薄膜が形成されているので、低損失化を図る
ことができる。
(1) According to the silica-based glass waveguide according to claim 1,
Since the SiO 2 thin film for smoothing the core is formed on the surface of the core that causes the loss of the waveguide, the loss can be reduced.

【0025】(2)請求項2または3に記載の石英系ガ
ラス導波路の製造方法によれば、コア部上にゾルゲル法
という簡易な方法によりSiO2 の薄膜を形成して、エ
ッチングによるコア部側面の粗れをなくしたので、低損
失なガラス導波路を容易に得ることができる。
(2) According to the method for manufacturing a silica-based glass waveguide according to claim 2 or 3, a SiO 2 thin film is formed on the core portion by a simple method such as a sol-gel method, and the core portion is etched. Since the roughness of the side surface is eliminated, a low-loss glass waveguide can be easily obtained.

【0026】(3)請求項4に記載の石英系ガラスの導
波路の製造方法によれば、SiO2薄膜ないしSiO2
ガラス薄膜の膜厚を0.3〜0.6の範囲に設定したの
で、伝送損失がより低く信頼性の高い導波路が得られ
る。
(3) According to the method of manufacturing a silica glass waveguide according to the fourth aspect, a SiO 2 thin film or SiO 2 is formed.
Since the film thickness of the glass thin film is set in the range of 0.3 to 0.6, a waveguide with lower transmission loss and high reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による石英系ガラス導波路の製
造工程図。
FIG. 1 is a manufacturing process diagram of a silica glass waveguide according to an embodiment of the present invention.

【図2】従来例による石英系ガラス導波路の製造工程
図。
FIG. 2 is a manufacturing process diagram of a silica-based glass waveguide according to a conventional example.

【符号の説明】[Explanation of symbols]

1 石英ガラス基板 2 コア部 3 クラッド層 4 コア部の形成された基板 5 シリコンアルコキシド+水+アルコールの混合液 6 SiO2 薄膜ゲル 7 電気炉 8 SiO2 薄膜1 Quartz Glass Substrate 2 Core Part 3 Cladding Layer 4 Substrate with Core Part Formed 5 Mixture of Silicon Alkoxide + Water + Alcohol 6 SiO 2 Thin Film Gel 7 Electric Furnace 8 SiO 2 Thin Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大槻 秀夫 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Otsuki Inventor Hide 1-1 Otsuki 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Hitachi Cable Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】石英ガラス基板あるいはシリコン上に石英
ガラスを形成したシリコン基板上にコア部と、これを覆
うクラッド層とを有する石英系ガラス導波路において、
上記コア部とこれを覆うクラッド層との間に、コア部表
面を平滑にするSiO2 薄膜が設けられていることを特
徴とする石英系ガラス導波路。
1. A silica-based glass waveguide having a core portion and a cladding layer covering the core portion on a quartz glass substrate or a silicon substrate in which quartz glass is formed on silicon,
A silica-based glass waveguide characterized in that a SiO 2 thin film for smoothing the surface of the core is provided between the core and the cladding layer covering the core.
【請求項2】石英ガラス基板あるいはシリコン上に石英
ガラスを形成した基板上に導波路を形成した石英系ガラ
ス導波路の製造方法において、上記基板上に導波路を構
成するコア部をエッチングにより形成した後、一般式S
i(OR)4 [ただしRはアルキル基]で表わせるシリ
コンアルコキシドに水及びアルコールを加えて混合した
ゾル状態の液を上記コア部を形成した基板上に塗布し、
塗布後乾燥してコア部の表面にゲル状態の組成SiO2
からなる薄膜を厚さ0.1〜1.0μm形成し、この薄
膜が形成された基板上にクラッド層を形成することを特
徴とする石英系ガラス導波路の製造方法。
2. A method of manufacturing a silica glass waveguide in which a waveguide is formed on a quartz glass substrate or a substrate in which quartz glass is formed on silicon, wherein a core portion constituting the waveguide is formed on the substrate by etching. After that, the general formula S
i (OR) 4 [where R is an alkyl group], a liquid in a sol state, in which water and alcohol are added to a silicon alkoxide represented by the formula, is applied onto the substrate having the core portion formed thereon,
After coating and drying, the composition of the gel state on the surface of the core part SiO 2
Is formed to a thickness of 0.1 to 1.0 μm, and a clad layer is formed on the substrate on which the thin film is formed.
【請求項3】上記塗布後乾燥してコア部の表面にゲル状
態の組成SiO2 からなる薄膜を形成した後、さらに焼
結して厚さ0.1〜1.0μmのSiO2 ガラス薄膜と
した後、上記クラッド層を形成することを特徴とする請
求項2に記載の石英系ガラス導波路の製造方法。
3. A SiO 2 glass thin film having a thickness of 0.1 to 1.0 μm, which is obtained by drying after applying the above to form a thin film of composition SiO 2 in a gel state on the surface of the core portion and further sintering. The method for producing a silica-based glass waveguide according to claim 2, wherein the cladding layer is formed after the etching.
【請求項4】上記組成SiO2 からなる薄膜ゲル、また
はSiO2 ガラス薄膜の膜厚を0.3〜0.6の範囲と
することを特徴とする請求項2または3に記載の石英系
ガラス導波路の製造方法。
4. The silica glass according to claim 2, wherein the film thickness of the thin film gel comprising the composition SiO 2 or the SiO 2 glass thin film is in the range of 0.3 to 0.6. Method of manufacturing waveguide.
JP32535692A 1992-12-04 1992-12-04 Quartz-based glass waveguide and production thereof Pending JPH06174951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32535692A JPH06174951A (en) 1992-12-04 1992-12-04 Quartz-based glass waveguide and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32535692A JPH06174951A (en) 1992-12-04 1992-12-04 Quartz-based glass waveguide and production thereof

Publications (1)

Publication Number Publication Date
JPH06174951A true JPH06174951A (en) 1994-06-24

Family

ID=18175910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32535692A Pending JPH06174951A (en) 1992-12-04 1992-12-04 Quartz-based glass waveguide and production thereof

Country Status (1)

Country Link
JP (1) JPH06174951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347319A3 (en) * 2002-03-21 2004-11-24 Dalsa Semiconductor Inc. Method of making photonic devices with Spin-On-Glass interlayer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347319A3 (en) * 2002-03-21 2004-11-24 Dalsa Semiconductor Inc. Method of making photonic devices with Spin-On-Glass interlayer
US6937806B2 (en) 2002-03-21 2005-08-30 Dalsa Semiconductor Inc. Method of making photonic devices with SOG interlayer

Similar Documents

Publication Publication Date Title
US5519803A (en) Optical waveguide
JPH06174951A (en) Quartz-based glass waveguide and production thereof
JPH05215929A (en) Manufacture of glass waveguide
JPH09222525A (en) Production of optical waveguide
JPH05345619A (en) Production of quartz waveguide type optical part
JP2927597B2 (en) Manufacturing method of glass waveguide
JP2842874B2 (en) Manufacturing method of waveguide type optical device
JPH05246727A (en) Production of glass waveguide
JPH05181031A (en) Optical waveguide and its production
KR100219715B1 (en) Rare earth ion doped optical waveguide manufacturing method
JPH10197734A (en) Three-dimensional optical waveguide having flexibility
JP3108212B2 (en) Manufacturing method of grating waveguide
JP2827657B2 (en) Glass waveguide and manufacturing method thereof
JPH03215322A (en) Preparation of light waveguide
KR100221550B1 (en) Thick film forming method using oxide particle
JP2953173B2 (en) Optical waveguide
JP2005037410A (en) Planar optical waveguide using aerosol process and its manufacturing method
JPH04147202A (en) Manufacture of quartz-based optical waveguide
JP3067860B2 (en) How to make a silica-based optical waveguide
JPH11295544A (en) Manufacture of buried planar optical wave circuit element
JPH08292335A (en) Manufacture of optical waveguide
JPH03232729A (en) Production of optical waveguide
KR20020089871A (en) An optical waveguide device and fabrication method therefor
KR100328132B1 (en) Planar optical amplifier and its fabrication method
JPH05150129A (en) Production of glass waveguide