JPH06174201A - Fluidized-bed combustion furnace - Google Patents

Fluidized-bed combustion furnace

Info

Publication number
JPH06174201A
JPH06174201A JP32585792A JP32585792A JPH06174201A JP H06174201 A JPH06174201 A JP H06174201A JP 32585792 A JP32585792 A JP 32585792A JP 32585792 A JP32585792 A JP 32585792A JP H06174201 A JPH06174201 A JP H06174201A
Authority
JP
Japan
Prior art keywords
heat
fluidized
combustion
section
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32585792A
Other languages
Japanese (ja)
Other versions
JP2953890B2 (en
Inventor
Osamu Mukai
修 向井
Shigeru Matsumori
滋 松森
Atsushi Tanizaki
淳 谷崎
Junichi Sano
順一 佐野
Seiichi Nakai
誠一 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP4325857A priority Critical patent/JP2953890B2/en
Publication of JPH06174201A publication Critical patent/JPH06174201A/en
Application granted granted Critical
Publication of JP2953890B2 publication Critical patent/JP2953890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To enable keeping the temperature of the fluidized bed constant even when the amount of heat evolved from the burned material varies frequently and enable reducing the abrasion of heat-transfer pipes by fluidization medium. CONSTITUTION:From the fluidization medium 31 flowing into a heat-recovery part 36 from the fluidized bed of a combustion part 34 in which a material for combustion is burnt heat is absorbed through a group of boiler water tubes 35 and utilized. The fluidization medium 31 at the outlet 45 of a hopper 38 of the heat-recovery part 36 is forced to flow back into the fluidized bed of the combustion part 34 by ejection of air from the mouth 43 as supplied under control by a valve 26; the flow of the fluidization medium 31 in the hopper 38 to the outlet 45 is turned on and off and the rate of the flow is also controlled; the amount of heat absorbed in the heat exchange, in which the absorption of heat from the fluidization medium 31 is stopped and started alternately, is controllable with improved accuracy so that, with the temperature of the fluidized bed made constant, the furnace can be better controlled than ever. By keeping the heat-recovery part 36 from flow of fluidizing air the abrasion of the group of boiler water tubes 35 by the fluidization medium 31 can be minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼却物などの燃焼エネ
ルギーを熱回収するとともにベッド温度を制御する流動
床燃焼炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed combustion furnace which controls the bed temperature while recovering the combustion energy of incineration materials and the like.

【0002】[0002]

【従来の技術】図6は従来の流動床燃焼炉の構成を示す
縦断面図である。図6において、炉1の内底部の空気室
2に導かれて傾斜した吹込面3を経て上方に吹き込む流
動化空気4により流動媒体を流動化せしめる流動層5
を、仕切壁6によって熱回収部7と燃焼物を供給する燃
焼部8とに区分している。この燃焼部8の仕切壁6の近
傍における単位面積当たりの流動化空気引込み風量を熱
回収部7の単位面積当たりの流動化空気引込み風量より
も大きくとることにより、燃焼部8の流動層5における
上層部の流動媒体は矢印Aに示すように仕切壁6を越え
るとともに水管10群の隙間を通り抜けて熱回収部7に流
入する。この流入した流動媒体の熱は、伝熱管11群との
熱交換によって熱回収される。そして、熱回収部7では
流入した流動媒体で下部の圧力が高まり、その下部の流
動媒体は矢印Bに示すように仕切壁6の下部における還
流用連通部9の水管10群の間隙から燃焼部8に還流す
る。
2. Description of the Related Art FIG. 6 is a longitudinal sectional view showing the structure of a conventional fluidized bed combustion furnace. In FIG. 6, a fluidized bed 5 for fluidizing a fluidized medium by fluidized air 4 which is guided to an air chamber 2 at an inner bottom portion of a furnace 1 and blows upward through an inclined blowing surface 3.
Is divided by a partition wall 6 into a heat recovery section 7 and a combustion section 8 for supplying combustion products. In the fluidized bed 5 of the combustion unit 8, the amount of the fluidized air intake air per unit area in the vicinity of the partition wall 6 of the combustion unit 8 is set to be larger than the amount of the fluidized air intake air per unit area of the heat recovery unit 7. As shown by arrow A, the fluidized medium in the upper layer portion passes through the partition wall 6 and passes through the gap between the water pipes 10 and flows into the heat recovery portion 7. The heat of the flowing medium that has flowed in is recovered by heat exchange with the group of heat transfer tubes 11. Then, in the heat recovery part 7, the pressure of the lower part is increased by the flowing-in fluid medium, and the lower part of the fluid medium flows from the gap of the water pipes 10 group of the reflux communication part 9 in the lower part of the partition wall 6 to the combustion part as shown by an arrow B. Reflux to 8.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の構
成では、熱回収部7と燃焼部8の間の流動媒体の還流
は、燃焼部8と熱回収部7の流動化空気引込み風量の差
により熱回収部7に流入させる流入流動媒体の圧力だけ
で還流させていたため、流動媒体の還流量は正確に制御
できず、燃焼物の発熱量がよく変動するような場合に
は、ベッド温度一定に制御することは困難であった。ま
た、焼却物などの燃焼エネルギーを利用して熱回収する
熱回収部7にも流動化空気4を流していたため、熱交換
用の伝熱管11群に流動媒体が当たって摩耗の恐れがあっ
た。
However, in the above-mentioned conventional configuration, the flow of the fluidized medium between the heat recovery section 7 and the combustion section 8 is caused by the difference in the fluidized air intake air volume between the combustion section 8 and the heat recovery section 7. Therefore, the bed temperature is kept constant when the reflux amount of the fluidized medium cannot be accurately controlled and the calorific value of the combustion product fluctuates well because the fluidized medium is recirculated only by the pressure of the fluidized medium flowing into the heat recovery section 7. It was difficult to control. Further, since the fluidized air 4 was also made to flow through the heat recovery section 7 that recovers heat by utilizing the combustion energy of incineration materials, there was a risk of wear due to the fluidized medium hitting the heat transfer tubes 11 for heat exchange. .

【0004】本発明は上記従来の問題を解決するもの
で、燃焼物の発熱量がよく変動するような場合にも、ベ
ッド温度を一定に制御するとともに流動媒体による伝熱
管の摩耗を軽減することができる流動床燃焼炉を提供す
ることを目的とする。
The present invention solves the above-mentioned problems of the prior art by controlling the bed temperature at a constant level and reducing the wear of the heat transfer tube due to the fluidized medium even when the heat value of the combustion product fluctuates well. The object is to provide a fluidized bed combustion furnace capable of

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明の流動床燃焼炉は、流動媒体に流動化ガスを供
給して前記流動媒体を流動化させるとともに燃焼物が供
給されて燃焼される燃焼部と、前記燃焼部から流入する
流動媒体から伝熱管群を介して熱を吸収してベッド温度
を制御する熱回収部を有する流動床燃焼炉であって、上
部容積が大きくなる段部を耐熱性外壁内周部に設け、前
記耐熱性外壁内周部との間に前記熱回収部を有するよう
に区分する仕切部材を前記段部上方に設け、前記熱回収
部の底部と前記燃焼部を連通させる出口部を前記段部と
仕切部材の間に設け、前記出口部の流動媒体を前記燃焼
部側に強制還流させる流動化ガス噴出部を前記耐熱性外
壁内周部に設け、前記流動化ガス噴出部に接続される管
部に流動化ガスの供給量を制御可能な流動化ガス量制御
部材を設けたものである。
In order to solve the above-mentioned problems, a fluidized bed combustion furnace of the present invention supplies a fluidizing gas to a fluidized medium to fluidize the fluidized medium, and at the same time, a combustion product is supplied to burn the fluidized material. And a heat recovery section for controlling the bed temperature by absorbing heat from the fluidized medium flowing from the combustion section through the heat transfer tube group, the stage having a large upper volume. A portion is provided on the inner peripheral portion of the heat-resistant outer wall, and a partition member is provided above the step portion to divide the heat-resistant outer wall inner peripheral portion so as to have the heat recovery portion, and the bottom portion of the heat recovery portion and the An outlet part for communicating a combustion part is provided between the step part and the partition member, and a fluidizing gas jet part for forcibly refluxing the fluidized medium of the outlet part to the combustion part side is provided in the heat-resistant outer wall inner peripheral part, Of the fluidizing gas to the pipe part connected to the fluidizing gas jetting part. It is provided with a controllable fluidization gas quantity control member supply volume.

【0006】[0006]

【作用】上記構成により、燃焼部から流入する流動媒体
から熱を吸収する熱回収部における出口部の流動媒体
を、流動化ガス量制御部で制御される流動化ガスの供給
量に応じて、燃焼部側に流動化ガス噴出部で強制還流さ
せるので、熱回収部内の流動媒体の出口部への流下のオ
ン/オフを制御するとともにその流下度合も制御しなが
ら、流動媒体からの熱を吸収したりしなかったりして熱
交換される吸熱量がより正確に制御可能となってベッド
温度一定で炉がより良好に制御可能となる。また、熱回
収部側に流動化ガスをできる限り流さないようにすれ
ば、流動媒体による伝熱管群の摩耗は最小限に押さえら
れる。
With the above structure, the fluidized medium at the outlet of the heat recovery unit that absorbs heat from the fluidized medium flowing from the combustion unit is changed according to the supply amount of the fluidized gas controlled by the fluidized gas amount control unit. Since the fluidized gas is forcibly recirculated to the combustion section by the fluidized gas jet section, the heat from the fluid medium is absorbed while controlling the on / off flow of the fluid medium in the heat recovery section to the outlet and also controlling the degree of the flow. The amount of heat absorbed by heat exchange with or without heat treatment can be controlled more accurately, and the furnace can be controlled better with a constant bed temperature. Further, if the fluidizing gas is prevented from flowing to the heat recovery section side as much as possible, the wear of the heat transfer tube group due to the fluidized medium can be suppressed to the minimum.

【0007】[0007]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。図1は本発明の一実施例の流動床燃
焼炉の一部構成を示す縦断面図である。図1において、
炉本体の耐熱性外壁を構成するキャスタ外壁21の内面下
部には垂直方向よりもやや傾斜した傾斜部22に連なり外
方に伸びる水平面で構成される段部23が設けられ、炉の
上部容積が大きくなっている。この段部23には、キャス
タ外壁21の内部を貫通して設けられた管24の一方端が垂
直方向上向きに開口している。この管24の他方端は空気
溜まり25を介して、供給風量を制御可能な流動化ガス量
制御部としてのバルブ26に接続されており、このバルブ
26は送風機などの空気供給装置27に接続されている。ま
た、この段部23の奥に連なって設けられる傾斜部28と垂
直なキャスタ外壁21の内面上部との間にやや傾斜した傾
斜部29が連なって設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical sectional view showing a partial configuration of a fluidized bed combustion furnace according to an embodiment of the present invention. In FIG.
At the lower part of the inner surface of the caster outer wall 21 that constitutes the heat-resistant outer wall of the furnace body, there is provided a stepped portion 23 formed by a horizontal plane that extends to the outside, connected to an inclined portion 22 that is slightly inclined from the vertical direction, and the upper volume of the furnace is It is getting bigger. In this step portion 23, one end of a pipe 24 provided penetrating the inside of the caster outer wall 21 is opened vertically upward. The other end of the pipe 24 is connected via an air reservoir 25 to a valve 26 as a fluidizing gas amount control unit capable of controlling the supply air amount.
26 is connected to an air supply device 27 such as a blower. In addition, a slightly inclined inclined portion 29 is provided continuously between the inclined portion 28 provided continuously to the inner side of the step portion 23 and the upper inner surface of the caster outer wall 21 which is vertical.

【0008】また、この傾斜部22の下部には水平方向に
分散板30が配設され、この分散板30上には流動媒体31が
静止層高さDの位置まで収容されている。また、分散板
30の下部には空気室32が設けられ、炉の内底部の、この
空気室32に導かれた流動化ガスとしての流動化空気33を
分散板30の吹込面を経て上方に吹き込ませる構成であ
る。この流動化空気33により流動媒体31を流動層高さE
の位置まで流動化させて流動層を形成させるとともに燃
焼物が供給されて燃焼される燃焼部34と、この燃焼部34
の流動層から流入する流動媒体31から伝熱管群としての
ボイラ水管35群を介して熱を吸収する熱回収部36とを区
分する仕切部材としての仕切壁37を段部23の上方部に設
けている。
Further, a dispersion plate 30 is horizontally arranged below the inclined portion 22, and a fluid medium 31 is accommodated on the dispersion plate 30 up to a position of the stationary layer height D. Also, dispersion plate
An air chamber 32 is provided in the lower part of 30, and in the inner bottom portion of the furnace, the fluidized air 33 as the fluidized gas guided to the air chamber 32 is blown upward through the blowing surface of the dispersion plate 30. is there. This fluidized air 33 causes the fluidized medium 31 to move to a fluidized bed height E.
And a combustion section 34 in which a combustion product is supplied and burned while fluidizing to a position of
A partition wall 37 as a partition member for partitioning the heat recovery part 36 that absorbs heat from the fluid medium 31 flowing in from the fluidized bed of ing.

【0009】さらに、この仕切壁37の頂部は水平面で構
成され、仕切壁37の一方側面は、キャスタ外壁21の傾斜
部29に対向してホッパ部38を形成する傾斜部39で構成さ
れている。また、仕切壁37の他方側面はキャスタ外壁21
の底部の傾斜部22の面と合うように傾斜した傾斜部40で
構成されている。さらに、仕切壁37の底面は2つの面で
構成されており、ホッパ部38側の奥の傾斜面41の傾斜角
θは流動層の流動媒体31が燃焼部34から熱回収部36に移
行したときに溜まる安息角と一致する傾斜角θとしてい
る。また、仕切壁37の底面における流動層側の傾斜面42
は管24の流動化ガス噴出部としての開口部43と対向して
おり、この開口部43から空気が噴射したときに流動層側
に流れるように上向きに傾斜している。さらに、仕切壁
37の断熱部材には、寿命を考慮してホッパ部38の内部の
ボイラ水管35と同様のボイラ水管44を配置する。さら
に、段部23と仕切壁37の間にはホッパ部38の流動層への
出口部45が設けられ、ホッパ部38の底部と燃焼部34を連
通させている。
Further, the top portion of the partition wall 37 is formed by a horizontal plane, and one side surface of the partition wall 37 is formed by an inclined portion 39 which faces the inclined portion 29 of the caster outer wall 21 and forms a hopper portion 38. . Also, the other side surface of the partition wall 37 is the caster outer wall 21.
It is composed of an inclined portion 40 that is inclined so as to match the surface of the inclined portion 22 at the bottom of the. Further, the bottom surface of the partition wall 37 is composed of two surfaces, and the inclination angle θ of the rear inclined surface 41 on the hopper portion 38 side is such that the fluid medium 31 of the fluidized bed is transferred from the combustion portion 34 to the heat recovery portion 36. The inclination angle is set to coincide with the angle of repose that sometimes accumulates. In addition, an inclined surface 42 on the fluidized bed side of the bottom surface of the partition wall 37
Faces an opening 43 as a fluidized gas jetting portion of the pipe 24, and is inclined upward so that when air is jetted from the opening 43, the air flows toward the fluidized bed. Furthermore, the partition wall
A boiler water pipe 44 similar to the boiler water pipe 35 inside the hopper portion 38 is arranged in the heat insulating member of 37 in consideration of the life. Further, an outlet portion 45 to the fluidized bed of the hopper portion 38 is provided between the step portion 23 and the partition wall 37, and the bottom portion of the hopper portion 38 and the combustion portion 34 are communicated with each other.

【0010】このとき、ボイラ水管35群で構成されるボ
イラ伝熱面は上部の媒体安息角(約35°)の下、数十m
m以下とする。また、このボイラ水管35群は流動層とフ
リーボードでの断面積の変わる範囲に設ける。すなわ
ち、ボイラ水管35群は流動媒体31の静止層高さDと流動
層高さEの間の範囲に設ける。さらに、ホッパ部38の出
口部45は、静止層高さDの表面より下部とし、内部媒体
が自然流出しないように出口奥と出口先端が安息角また
はそれより少し小さな角となるような形状とする。さら
に、ホッパ部38の上面は、燃焼部34から熱回収部36に流
動媒体31を移行させるために流動層高さEより低くなけ
ればならないので、静止層高さDの1/3程度、静止層
高さDの上面より上がった位置とする。
At this time, the boiler heat transfer surface composed of the 35 groups of boiler water pipes is several tens of meters below the upper medium repose angle (about 35 °).
m or less. Further, the group of boiler water pipes 35 is provided in a range where the cross-sectional areas of the fluidized bed and the freeboard change. That is, the boiler water pipe group 35 is provided in a range between the stationary bed height D and the fluidized bed height E of the fluidized medium 31. Further, the outlet portion 45 of the hopper portion 38 is located below the surface of the stationary layer height D, and has a shape such that the inside of the outlet and the outlet tip have an angle of repose or a little smaller angle so that the internal medium does not spontaneously flow out. To do. Furthermore, since the upper surface of the hopper section 38 must be lower than the fluidized bed height E in order to transfer the fluidized medium 31 from the combustion section 34 to the heat recovery section 36, it is about 1/3 of the stationary bed height D and is stationary. The position is higher than the upper surface of the layer height D.

【0011】上記構成により、以下、その動作を説明す
る。まず、炉の内底部の空気室32に導かれた流動化空気
33は分散板30の吹込面を経て上方に吹き込むことによ
り、流動媒体31を静止層高さDから流動層高さEまで流
動化させる。次に、燃焼部34においては、この流動層に
燃焼物を投入して燃焼させる。特に、燃焼物が汚泥状物
質の場合、燃焼しにくい部分は流動層内で乾燥しながら
最後まで燃える。そして、流動層高さEをホッパ部38の
上面よりも高く流動化させて、温度が上がった流動媒体
31を燃焼部34から熱回収部36に移行させる。このよう
に、熱回収部36に流入させた流動媒体31の熱は、ボイラ
水管35群との熱交換によって熱回収される。そして、熱
回収部36のホッパ部38では流入した流動媒体31で下部の
圧力が高まり、その下部の流動媒体31はホッパ部38下部
の出口部45から燃焼部34側に還流しようとする。ところ
が、ホッパ部38の下部の出口奥と出口先端が安息角また
はそれより少し小さな角となるような形状としているの
で、その内部の流動媒体31はホッパ部38下部の出口部45
から燃焼部34側に自然流出しない。
The operation of the above arrangement will be described below. First, the fluidized air introduced into the air chamber 32 at the bottom of the furnace
33 is fluidized from the stationary bed height D to the fluidized bed height E by blowing upward through the blowing surface of the dispersion plate 30. Next, in the combusting section 34, the combusted material is put into the fluidized bed and combusted. In particular, when the combustion product is a sludge-like substance, the part that is difficult to burn burns to the end while drying in the fluidized bed. Then, the fluidized bed height E is fluidized to be higher than the upper surface of the hopper portion 38, and the fluidized medium whose temperature has risen
31 is transferred from the combustion section 34 to the heat recovery section 36. In this way, the heat of the fluidized medium 31 that has flowed into the heat recovery unit 36 is recovered by heat exchange with the boiler water pipe group 35. Then, in the hopper portion 38 of the heat recovery portion 36, the pressure of the lower portion is increased by the inflowing fluid medium 31, and the lower portion of the fluid medium 31 tries to recirculate from the outlet portion 45 at the lower portion of the hopper portion 38 to the combustion portion 34 side. However, since the bottom of the hopper 38 and the outlet end are shaped so as to form an angle of repose or an angle slightly smaller than that, the fluid medium 31 therein has the outlet 45 at the bottom of the hopper 38.
Does not spontaneously flow out to the combustion section 34 side.

【0012】ここで、管24の開口部43から空気を噴射さ
せ、この噴射空気は、上向きに傾斜した仕切壁37の傾斜
面42により流動層側に流動媒体31とともに流れて、これ
によるホッパ部38下部における流動媒体31の出口部45へ
の動きによってホッパ部38内部の流動媒体31もボイラ水
管35群を通過して熱交換しながらホッパ部38下部に流下
する。これにより、ホッパ部38の上面位置は下がる。こ
のホッパ部38の上面位置の低下により流動層高さEが相
対的に上がって、燃焼部34から熱回収部36に燃焼によっ
て温度が上がった流動媒体31が再び移行してくる。この
流入した流動媒体31の熱は、ボイラ水管35群との熱交換
によって再び熱回収されることになってこれが繰り返さ
れる。
Here, air is jetted from the opening 43 of the pipe 24, and the jetted air flows to the fluidized bed side together with the fluidized medium 31 by the slanted surface 42 of the partition wall 37 which is slanted upward. By the movement of the fluidized medium 31 to the outlet portion 45 in the lower portion of the 38, the fluidized medium 31 inside the hopper portion 38 also passes through the group of boiler water pipes 35 and flows down to the lower portion of the hopper portion 38 while exchanging heat. As a result, the upper surface position of the hopper portion 38 is lowered. Due to the lowering of the upper surface position of the hopper portion 38, the fluidized bed height E relatively rises, and the fluidized medium 31 whose temperature has risen due to combustion again transfers from the combustion portion 34 to the heat recovery portion 36. The heat of the inflowing fluid medium 31 is recovered again by heat exchange with the boiler water pipe group 35, and this is repeated.

【0013】このとき、開口部43から出口部45を介して
流動層側に流す空気量をバルブ26で制御してホッパ部38
内部の流動媒体31の流下のオン/オフを行うとともにそ
の流下度合も制御しながら、流動媒体31からの熱を吸収
したりしなかったりしてボイラ水管35群で熱交換される
吸熱量をより正確に制御し、流動媒体31を燃焼部34と熱
回収部36の間を強制還流させるため、ベッド温度一定で
炉をより良好に制御することができる。また、噴出空気
の出口である開口部43に対向する天井面は流動層内側に
上向き傾斜としており、ホッパ部38側には流動化空気が
流れないため、流動媒体31によるボイラ水管35群の摩耗
を最小限に押さえることができる。
At this time, the amount of air flowing from the opening 43 to the fluidized bed side through the outlet 45 is controlled by the valve 26 to control the hopper 38.
While turning on / off the flow of the internal fluid medium 31 and controlling the degree of the flow, the amount of heat exchanged by the boiler water pipes 35 group may be improved by absorbing or not absorbing the heat from the fluid medium 31. Since the fluidized medium 31 is forcibly refluxed between the combustion section 34 and the heat recovery section 36 with accurate control, the furnace can be better controlled with the bed temperature kept constant. Further, the ceiling surface facing the opening 43, which is the outlet of the jetted air, is inclined upward toward the inside of the fluidized bed, and since fluidized air does not flow to the hopper portion 38 side, wear of the boiler water pipes 35 group by the fluidized medium 31 occurs. Can be minimized.

【0014】なお、本実施例では、管24の開口部43と対
向する仕切壁37の傾斜面42は、開口部43から空気が噴射
したときに出口部45を介して流動層側に噴出空気ととも
に流動媒体31が流れるように上向きに傾斜させている
が、図2に示すように、管51の開口部52を流動層53側に
対向するように、キャスタ外壁21の傾斜部28の下部に設
けて、ホッパ部38側に流動化空気が流れないように流動
層53側に向けて空気を噴出する構成としてもよい。
In the present embodiment, the inclined surface 42 of the partition wall 37 facing the opening 43 of the pipe 24 is blown to the fluidized bed through the outlet 45 when the air is jetted from the opening 43. In addition, the fluid medium 31 is inclined upward so that the fluid medium 31 flows, but as shown in FIG. 2, the pipe 52 is provided below the inclined portion 28 of the caster outer wall 21 so that the opening 52 of the pipe 51 faces the fluidized bed 53 side. A structure may be provided in which air is jetted toward the fluidized bed 53 side so that the fluidized air does not flow to the hopper portion 38 side.

【0015】また、本実施例では、開口部43からの噴出
空気量によりホッパ部38内部の流動媒体31の流下度合を
制御してボイラ水管35群で熱交換される吸熱量を制御し
たが、図3に示すように、特に丸型炉の場合、キャスタ
外壁61を貫通する管62の噴出空気の開口部63を設ける位
置を、周部に沿って複数に分けたエリア(たとえば8分
割した場合、F1〜F8)毎に複数設け、複数のエリア
F1〜F8の番号順に追加空気を炉周方向の流動媒体流
下位置のバランスを取りながら噴出させていくことで、
複数のホッパ部64内部の流動媒体の流下をバルブ65で制
御してボイラ水管66群で熱交換される吸熱量を制御して
もよい。
Further, in the present embodiment, the amount of air blown from the opening 43 is used to control the degree of flow of the fluid medium 31 inside the hopper 38 to control the amount of heat absorbed by the boiler water pipes 35. As shown in FIG. 3, particularly in the case of a round furnace, the position where the opening 63 of the jet air of the pipe 62 penetrating the caster outer wall 61 is provided is divided into a plurality of areas along the circumference (for example, when divided into eight). , F1 to F8), a plurality of areas F1 to F8 are provided in the order of the numbers, and the additional air is ejected while balancing the flowing medium flowing position in the furnace circumferential direction.
The flow amount of the fluidized medium inside the plurality of hopper portions 64 may be controlled by the valve 65 to control the amount of heat absorbed by the boiler water pipes 66.

【0016】さらに、本実施例に加えて、図4に示すよ
うに、キャスタ外壁21の傾斜部28に、ホッパ部38側に向
けて垂直方向に開口する弱い流動化空気噴出用の管46を
別途設けてもよい。この場合、管46の開口部47からの弱
い流動化空気により流動媒体31が移動し、この流動媒体
31によるボイラ水管35群の摩耗は増すが、この弱い流動
化空気によりボイラ水管35群との熱交換による吸熱量は
増加し、熱エネルギーの利用効率が向上する。したがっ
て、ボイラ水管35群の摩耗度合いと熱交換による吸熱量
の増加度合いを勘案して、支障のない程度でボイラ水管
35群の摩耗における多少の犠牲は覚悟の上に弱い流動化
空気量を設定すれば、この弱い流動化空気により熱エネ
ルギーの利用効率を良好に設定することができるととも
に、ボイラ水管35群の摩耗も支障のない程度に抑えるこ
とができる。48は供給風量調節用のバルブである。
In addition to this embodiment, as shown in FIG. 4, a pipe 46 for jetting a weak fluidizing air, which is vertically opened toward the hopper 38 side, is provided on the inclined portion 28 of the caster outer wall 21. It may be provided separately. In this case, the fluidizing medium 31 is moved by the weak fluidizing air from the opening 47 of the pipe 46,
Although the wear of the group 35 of boiler water pipes due to 31 increases, the weak fluidized air increases the amount of heat absorbed by heat exchange with the group 35 of boiler water pipes, thereby improving the utilization efficiency of thermal energy. Therefore, taking into consideration the degree of wear of the group of boiler water pipes 35 and the degree of increase in the amount of heat absorption due to heat exchange, the boiler water pipes should be at a level that does not interfere.
If a small amount of fluidizing air is set with a certain sacrifice in wear of group 35, the utilization efficiency of thermal energy can be set well by this weak fluidizing air, and wear of boiler water pipe group 35 Can be suppressed to a level that does not hinder. 48 is a valve for adjusting the supply air volume.

【0017】さらに、本実施例では、流動媒体31の流下
方向に対してボイラ水管35群の配管方向を直角方向とし
たが、図5に示すように、熱回収部71内部の流動媒体72
の流下方向に対してボイラ水管73群の配管方向を同一方
向とすれば、流動媒体31の流下、および管74の開口部75
からの弱い流動化空気による流動媒体72の移動によるボ
イラ水管73群の摩耗も軽減される。
Further, in the present embodiment, the piping direction of the boiler water pipes 35 is set to the direction perpendicular to the flowing direction of the fluid medium 31, but as shown in FIG. 5, the fluid medium 72 inside the heat recovery section 71 is used.
If the piping directions of the group of boiler water pipes 73 are the same with respect to the flow direction of, the flow medium 31 flows down and the opening 75 of the pipe 74
The wear of the boiler water pipe 73 group due to the movement of the fluidizing medium 72 due to the weak fluidized air from is also reduced.

【0018】[0018]

【発明の効果】以上のように本発明によれば、耐熱性外
壁内周部との間に熱回収部を有するように区分する仕切
部材を、上部容積が大きくなる耐熱性外壁内周部の段部
上方に設け、この段部と仕切部材の間に熱回収部の底部
と燃焼部を連通させる出口部の流動媒体を燃焼部に強制
還流させる流動化ガス噴出部を耐熱性外壁内周部に設
け、流動化ガス噴出部に接続される管部に流動化ガスの
供給量を制御可能な流動化ガス量制御部を設けたことに
より、焼却物の発熱量がよく変動する場合にも、ベッド
温度一定で炉をより良好に制御することができるととも
に、たとえば、床への冷却水投入の代わりにボイラ蒸気
などとして回収するなど、焼却物の燃焼エネルギーを熱
回収して利用することで省エネルギーとすることができ
る。また、熱回収部側に流動化ガスをできる限り流さな
いようにすれば、摩耗のより少ない層内温度調整用の伝
熱管群の可変伝熱面を得ることができる。
As described above, according to the present invention, the partition member for partitioning the heat-resistant outer wall inner peripheral portion so as to have the heat recovery portion is provided in the heat-resistant outer wall inner peripheral portion having a large upper volume. The fluidized gas jetting part, which is provided above the step part and forcibly recirculates the fluidized medium at the outlet part for communicating the bottom part of the heat recovery part and the combustion part between the step part and the partition member, to the combustion part In the case where the calorific value of the incineration product fluctuates well by providing the fluidizing gas amount control unit capable of controlling the supply amount of the fluidizing gas in the pipe portion connected to the fluidizing gas ejection unit, The furnace can be better controlled at a constant bed temperature, and energy can be saved by recovering and using the combustion energy of the incinerator, for example, recovering it as boiler steam instead of supplying cooling water to the floor. Can be Further, if the fluidizing gas is prevented from flowing to the heat recovery section side as much as possible, it is possible to obtain a variable heat transfer surface of the heat transfer tube group for in-layer temperature adjustment that causes less wear.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の流動床燃焼炉の一部構成を
示す縦断面図
FIG. 1 is a vertical sectional view showing a partial configuration of a fluidized bed combustion furnace according to an embodiment of the present invention.

【図2】図1の流動床燃焼炉の一部構成における流動化
ガス噴出部の設置位置の他の実施例を示す炉の一部構成
を示す縦断面図
FIG. 2 is a vertical cross-sectional view showing a partial configuration of the furnace showing another embodiment of the installation position of the fluidizing gas injection part in the partial configuration of the fluidized bed combustion furnace of FIG.

【図3】図1の流動床燃焼炉を丸型とし、開口部からの
噴出空気によりホッパ部内部の流動媒体の流下制御に対
する他の実施例を示す炉の横断面図
FIG. 3 is a transverse cross-sectional view of a furnace in which the fluidized bed combustion furnace shown in FIG. 1 is a round type, and another embodiment for controlling the flow-down of the fluidized medium inside the hopper by the air blown out from the opening.

【図4】図1の流動床燃焼炉の一部構成における流動化
ガス噴出部をさらに別途設けた場合の実施例を示す炉の
一部構成を示す縦断面図
FIG. 4 is a vertical cross-sectional view showing a partial configuration of the furnace showing an embodiment in which a fluidized gas injection part is additionally provided in the partial configuration of the fluidized bed combustion furnace of FIG.

【図5】図4の流動床燃焼炉の一部構成を簡略化すると
ともに流動媒体の流下方向に対してボイラ水管群の配管
方向を一致させた場合の実施例を示す炉の一部構成を示
す縦断面図
5 is a partial configuration of a furnace showing an embodiment in which a partial configuration of the fluidized bed combustion furnace of FIG. 4 is simplified and a piping direction of a boiler water pipe group is made to coincide with a flowing direction of a fluid medium. Vertical section view

【図6】従来の流動床燃焼炉の構成を示す縦断面図FIG. 6 is a vertical sectional view showing the structure of a conventional fluidized bed combustion furnace.

【符号の説明】[Explanation of symbols]

21,61 キャスタ外壁 23 段部 24,46,51,62,74 管 26,48,65 バルブ 27 空気供給装置 31,72 流動媒体 33 流動化空気 34 燃焼部 35,66,73 ボイラ水管 36,71 熱回収部 37 仕切壁 38,64 ホッパ部 43,47,52,63,75 開口部 45 出口部 53 流動層 21, 61 Caster outer wall 23 Steps 24, 46, 51, 62, 74 Pipes 26, 48, 65 Valve 27 Air supply device 31, 72 Fluid medium 33 Fluidized air 34 Combustion part 35, 66, 73 Boiler water pipe 36, 71 Heat recovery part 37 Partition wall 38, 64 Hopper part 43, 47, 52, 63, 75 Opening part 45 Outlet part 53 Fluidized bed

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F23G 5/50 ZAB E 7815−3K (72)発明者 佐野 順一 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 中井 誠一 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical display location F23G 5/50 ZAB E 7815-3K (72) Inventor Junichi Sano 5 Nishikujo, Nishinoko-ku, Osaka-shi, Osaka 3-28, Hitachi Shipbuilding Co., Ltd. (72) Seiichi Nakai 5--3-28, Nishikujo Nishikonohana-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流動媒体に流動化ガスを供給して前記流動
媒体を流動化させるとともに燃焼物が供給されて燃焼さ
れる燃焼部と、前記燃焼部から流入する流動媒体から伝
熱管群を介して熱を吸収してベッド温度を制御する熱回
収部を有する流動床燃焼炉であって、上部容積が大きく
なる段部を耐熱性外壁内周部に設け、前記耐熱性外壁内
周部との間に前記熱回収部を有するように区分する仕切
部材を前記段部上方に設け、前記熱回収部の底部と前記
燃焼部を連通させる出口部を前記段部と仕切部材の間に
設け、前記出口部の流動媒体を前記燃焼部側に強制還流
させる流動化ガス噴出部を前記耐熱性外壁内周部に設
け、前記流動化ガス噴出部に接続される管部に流動化ガ
スの供給量を制御可能な流動化ガス量制御部材を設けた
流動床燃焼炉。
1. A combusting section in which a fluidizing gas is supplied to a fluidized medium to fluidize the fluidized medium and at the same time a combustion product is supplied and burned, and a fluidized medium flowing from the combusting section through a heat transfer tube group. In a fluidized bed combustion furnace having a heat recovery unit that absorbs heat to control the bed temperature, a step portion having a large upper volume is provided on the heat-resistant outer wall inner peripheral portion, and the heat-resistant outer wall inner peripheral portion A partition member for partitioning the heat recovery section is provided above the step section, and an outlet section for communicating the bottom section of the heat recovery section and the combustion section is provided between the step section and the partition member. A fluidizing gas jetting portion for forcibly refluxing the fluidized medium of the outlet portion to the combustion portion side is provided in the inner peripheral portion of the heat resistant outer wall, and the supply amount of the fluidizing gas is supplied to the pipe portion connected to the fluidizing gas jetting portion. A fluidized bed combustion furnace provided with a controllable fluidized gas amount control member.
JP4325857A 1992-12-07 1992-12-07 Fluidized bed combustion furnace Expired - Fee Related JP2953890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4325857A JP2953890B2 (en) 1992-12-07 1992-12-07 Fluidized bed combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4325857A JP2953890B2 (en) 1992-12-07 1992-12-07 Fluidized bed combustion furnace

Publications (2)

Publication Number Publication Date
JPH06174201A true JPH06174201A (en) 1994-06-24
JP2953890B2 JP2953890B2 (en) 1999-09-27

Family

ID=18181399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4325857A Expired - Fee Related JP2953890B2 (en) 1992-12-07 1992-12-07 Fluidized bed combustion furnace

Country Status (1)

Country Link
JP (1) JP2953890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269828A (en) * 1994-03-30 1995-10-20 Kawasaki Heavy Ind Ltd Method and apparatus for expediting mixture of fluidized substance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108576B1 (en) * 2013-09-10 2020-05-07 한국전력공사 Circulating fluidized bed boiler equipped with heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290402A (en) * 1989-04-28 1990-11-30 Ebara Corp Heat recovery control method for fluidized bed boiler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290402A (en) * 1989-04-28 1990-11-30 Ebara Corp Heat recovery control method for fluidized bed boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269828A (en) * 1994-03-30 1995-10-20 Kawasaki Heavy Ind Ltd Method and apparatus for expediting mixture of fluidized substance

Also Published As

Publication number Publication date
JP2953890B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
US4823740A (en) Thermal reactor
US5121700A (en) Method and apparatus for improving fluid flow and gas mixing in boilers
JPS58104631A (en) Plate of fluidized bed distributor
JPH06174201A (en) Fluidized-bed combustion furnace
TW323328B (en)
EP0028458B1 (en) Fluidised-bed boilers
GB2093724A (en) Fluidised bed combustion
KR100194702B1 (en) Fluidized Bed Heat Recovery Unit
KR100229763B1 (en) Fluidized bed with nozzle structure
JPH01203801A (en) Fluidized bed boiler having vertical heat transfer pipe and fluidized bed hot water boiler employing said boiler
JP2775586B2 (en) Method and apparatus for promoting mixing of fluid substances
JP2972631B2 (en) Fluidized bed boiler and heat exchange method thereof
KR200172323Y1 (en) Air spray nozzle of incinerator
JP2989783B2 (en) Heat recovery device from fluidized bed
JPH02290403A (en) Fluidized bed heat recovery device and diffusion device thereof
JPS6017679Y2 (en) Fluidized bed furnace
JP2785041B2 (en) Fluidized bed plant
JP2528711B2 (en) Double bed fluidized bed boiler
JP2905082B2 (en) Fluid material circulation method and apparatus
JPS62272089A (en) Method and apparatus for retrieving heat from fluidized bed
KR100403157B1 (en) Clinker prevention and air dispersion device for cyclone seperator
JPS6346389A (en) Partition wall in fluidized bed heat recovering device
JP2758167B2 (en) Fluidized bed boiler
JPS5827201Y2 (en) Renewable boiler
JP2721872B2 (en) Method and apparatus for recovering heat from a fluidized bed

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees