JPH061729A - Production of alkyl chloride - Google Patents

Production of alkyl chloride

Info

Publication number
JPH061729A
JPH061729A JP17884692A JP17884692A JPH061729A JP H061729 A JPH061729 A JP H061729A JP 17884692 A JP17884692 A JP 17884692A JP 17884692 A JP17884692 A JP 17884692A JP H061729 A JPH061729 A JP H061729A
Authority
JP
Japan
Prior art keywords
water
alkyl
hydrochloric acid
chloride
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17884692A
Other languages
Japanese (ja)
Inventor
Ryuichiro Nagai
隆一郎 永井
Koji Seki
浩二 関
Masakatsu Sato
正勝 佐藤
Tadahisa Yanagihara
忠久 柳原
Mitsuru Noda
満 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP17884692A priority Critical patent/JPH061729A/en
Publication of JPH061729A publication Critical patent/JPH061729A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/16Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide a production method for alkyl chlorides raised in reaction rate with the inclusion of much water into the synthetic system avoided. CONSTITUTION:The production method is characterized by that reaction A is made continuously between a 4-8C alkyl alcohol and hydrogen chloride in the presence or absence of a catalyst, and the reaction product distilled off is separated B into an aqueous layer and an organic layer consisting mainly of an alkyl chloride followed by adding water to the aqueous layer in a hydrochloric acid concentration regulating tank C to regulate the hydrochloric acid concentration based on the water at <=21wt.% followed by distillation D to obtain a water containing up to 21wt.% of hydrochloric acid as bottoms and a mixture of water and an alkyl alcohol as overhead product; the alkyl alcohol is then put to phase separation E from the water and returned, together with a batch of fresh alkyl alcohol, to the synthetic system, and the water is circulated to a distillation column, while the organic layer consisting mainly of the alkyl chloride is washed with water; the washings is then introduced into the tank C, while the resultant organic layer is dehydrated I, and purified J, K, thus obtaining the aimed alkyl chloride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩化アルキルの製造方
法に関する。更に詳しくは、炭素数4から8のアルキル
アルコールと塩化水素とを無触媒あるいは触媒存在下で
連続的に反応させて、生成する塩化アルキルを直ちに気
相で系外へ留出させることによる塩化アルキルの製造方
法における改良された後処理方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing alkyl chloride. More specifically, an alkyl chloride obtained by continuously reacting an alkyl alcohol having 4 to 8 carbon atoms with hydrogen chloride in the absence of a catalyst or in the presence of a catalyst to immediately distill the produced alkyl chloride out of the system in a gas phase. The present invention relates to an improved post-treatment method in the manufacturing method of.

【0002】[0002]

【従来の技術】塩化アルキルは、アルキルアルコールと
塩化水素を適当な反応温度で無触媒、有利には触媒の存
在下で反応させることによって製造することができる。
Alkyl chlorides can be prepared by reacting an alkyl alcohol with hydrogen chloride at a suitable reaction temperature in the absence of a catalyst, preferably in the presence of a catalyst.

【0003】特開平2−292231号公報には、炭素
数3から4のモノアルカノールを高めた温度でまた場合
によっては触媒の存在下で連続的に反応させることによ
って製造される混合物の後処理方法が記載されている。
該公報に記載された方法によれば、蒸気状の反応生成物
を凝縮し、軽い有機層と重い水層とに分離し、重い水層
を直接蒸留し、塩化水素を最高21%含む反応水を塔底
生成物としてまた塩化水素及び水を含むアルコール流を
塔頂生成物として得、アルコール流を新鮮なアルコール
と一緒に合成系に戻し、軽い有機層を水で洗浄し、水を
中和し、溶解した有機成分を除去するためにストリッピ
ング処理し、系から排除し、アルキルクロリドを自体公
知の方法で単離する。
Japanese Unexamined Patent Publication No. 2-292231 discloses a method for post-treating a mixture produced by continuously reacting a monoalkanol having 3 to 4 carbon atoms at an elevated temperature and optionally in the presence of a catalyst. Is listed.
According to the method described in the publication, vaporized reaction products are condensed and separated into a light organic layer and a heavy water layer, the heavy water layer is directly distilled, and reaction water containing up to 21% of hydrogen chloride is obtained. As a bottom product and an alcohol stream containing hydrogen chloride and water as a top product, returning the alcohol stream with fresh alcohol to the synthetic system, washing the light organic layer with water and neutralizing the water. The solution is stripped to remove dissolved organic components, eliminated from the system, and the alkyl chloride is isolated by a method known per se.

【0004】[0004]

【発明が解決しようとする課題】上記の方法において
は、未反応アルコールを回収する際、重い水層を直接蒸
留することにより回収しているため、回収物は未反応ア
ルコール、水、塩化水素の均一相の混合物で、多量の水
も一緒に合成系に戻している。しかし合成系に多量の水
が存在すると原料アルコールが水との共沸により速やか
に多量に系外へ留出するあるいは生成する塩化アルキル
と水との最低共沸により反応温度が低下するなどの理由
により、反応速度が著しく減少し目的物の生産性が大幅
に低下する。
In the above method, when the unreacted alcohol is recovered, the heavy water layer is directly distilled so that the recovered product is composed of unreacted alcohol, water and hydrogen chloride. It is a mixture of homogeneous phase, and a large amount of water is also returned to the synthetic system together. However, when a large amount of water is present in the synthesis system, the raw material alcohol rapidly distills out of the system due to azeotropy with water, or the reaction temperature decreases due to the minimum azeotrope of the produced alkyl chloride and water. As a result, the reaction rate is significantly reduced and the productivity of the target product is significantly reduced.

【0005】また上記方法では、塩化アルキルを主成分
とする軽い有機層を水で洗浄しているが、炭素数4から
8のアルキルアルコールの水に対する溶解度が小さいた
め未反応アルコールを完全に取り除くためには大量の洗
浄水を必要とする。
In the above method, the light organic layer containing alkyl chloride as a main component is washed with water. However, since the solubility of the alkyl alcohol having 4 to 8 carbon atoms in water is small, unreacted alcohol is completely removed. Requires a large amount of wash water.

【0006】[0006]

【課題を解決するための手段】この課題は本発明によれ
ば、留出した反応生成物を軽い有機層と重い水層に分離
し、この重い水層を塩酸濃度調整槽において水を加える
ことによって水に対する塩化水素の濃度を21%以下に
調整し、蒸留することによって塩化水素を最高21%含
む水を塔底生成物として、また水とアルキルアルコール
の混合物を塔頂生成物として得、アルキルアルコールを
水から層分離して新鮮なアルコールと一緒に合成系に戻
し、水は蒸留塔へ循環し、塩化アルキルを主成分とする
軽い有機層を水で洗浄し、使用した洗浄水は塩酸濃度調
整槽へ導入するあるいは塩化アルキルを主成分とする軽
い有機層を洗浄するに際し、まず塩酸により洗浄し、そ
の後アルカリ水、水で洗浄し、洗浄に用いた塩酸、アル
カリ水、水を塩酸濃度調整槽へ導入することによって解
決される。
According to the present invention, this object is to separate the distilled reaction product into a light organic layer and a heavy aqueous layer, and to add water to the heavy aqueous layer in a hydrochloric acid concentration adjusting tank. The concentration of hydrogen chloride with respect to water is adjusted to 21% or less by distillation, and water containing up to 21% of hydrogen chloride is obtained as a bottom product and a mixture of water and alkyl alcohol is obtained as a top product by distillation. The alcohol layer is separated from the water and returned to the synthesis system together with fresh alcohol.The water is circulated to the distillation column, and the light organic layer containing alkyl chloride as the main component is washed with water. When introducing into the adjusting tank or washing the light organic layer containing alkyl chloride as the main component, first wash with hydrochloric acid, then wash with alkaline water and water, and use the hydrochloric acid used for washing, alkaline water and water with hydrochloric acid. It is solved by introducing into degrees adjustment tank.

【0007】本発明によれば水層を蒸留する前に水を加
えることにより水に対する塩化水素の濃度を調整して最
高共沸組成21%以下とし、未反応アルコール回収の
際、塔頂より塩化水素が出ないようにしている。アルキ
ルアルコールは塩酸よりも水への溶解度がかなり低いこ
とから、水から層分離により高純度の未反応アルコール
を回収し合成系へ戻すことができる。
According to the present invention, the concentration of hydrogen chloride with respect to water is adjusted by adding water before distilling the aqueous layer so that the maximum azeotropic composition is 21% or less. I try not to release hydrogen. Since alkyl alcohol has considerably lower solubility in water than hydrochloric acid, it is possible to recover a high-purity unreacted alcohol by layer separation from water and return it to the synthesis system.

【0008】また本発明によれば塩化アルキルを主成分
とする軽い有機層の洗浄水は塩酸濃度調整水として利用
でき、溶解した有機成分は回収系へ戻される。更に完全
に有機層中の未反応アルコールを取り除くためには、塩
酸に対する炭素数4から8のアルキルアルコールの大き
な溶解性を利用して、まず塩酸で洗浄し、その後アルカ
リ水、水で洗浄するのが効率的であり、洗浄に用いた塩
酸、アルカリ水、水は塩酸濃度調整槽へ導入され、溶解
した有機成分は回収系へ戻される。この際使用される洗
浄用の塩酸はアルコールの溶解性を考慮すると、有利に
は37%濃塩酸である。
Further, according to the present invention, the wash water for the light organic layer containing alkyl chloride as the main component can be used as the hydrochloric acid concentration adjusting water, and the dissolved organic component is returned to the recovery system. In order to completely remove the unreacted alcohol in the organic layer, the large solubility of the alkyl alcohol having 4 to 8 carbon atoms in hydrochloric acid should be utilized to first wash with hydrochloric acid and then with alkaline water or water. Is effective, hydrochloric acid, alkaline water and water used for washing are introduced into a hydrochloric acid concentration adjusting tank, and dissolved organic components are returned to the recovery system. Considering the solubility of alcohol, the washing hydrochloric acid used here is preferably 37% concentrated hydrochloric acid.

【0009】塔底生成物として得られる最高21%の塩
酸は有機物を含まないため他の工程で使用することがで
きる。
The up to 21% hydrochloric acid obtained as bottom product is free of organic matter and can be used in other processes.

【0010】[0010]

【発明の効果】本発明によれば、合成系への多量の水の
混入は回避され、もはや反応により生成した水及び未反
応アルコールに対する溶解分の水しか合成系には存在せ
ず、反応速度は大幅に上昇し生産性の増大が可能とな
り、経済性面から工業的利用価値が大きい。また、塩化
アルキルを主成分とする軽い有機層を塩酸で洗浄するこ
とにより、有機層中の未反応アルコールを完全にしかも
効率的に取り除くことが可能となり、洗浄に用いた塩
酸、アルカリ水、水は塩酸濃度調整槽へ導入することに
より、溶解した有機成分は回収系へ戻され、分離回収工
程での負担軽減も相乗的に達成できる。
INDUSTRIAL APPLICABILITY According to the present invention, a large amount of water is avoided from entering the synthesis system, and only water produced by the reaction and water dissolved in the unreacted alcohol are present in the synthesis system. Is greatly increased, productivity can be increased, and industrial value is great from the economical aspect. Also, by washing the light organic layer containing alkyl chloride as the main component with hydrochloric acid, it becomes possible to completely and efficiently remove the unreacted alcohol in the organic layer. By introducing into the hydrochloric acid concentration adjusting tank, the dissolved organic components are returned to the recovery system, and the burden in the separation and recovery step can be reduced synergistically.

【0011】以上の事実より本発明の方法は、塩化アル
キルを工業的に製造する上で極めて有用である。
From the above facts, the method of the present invention is extremely useful for industrially producing alkyl chloride.

【0012】[0012]

【実施例】本発明方法の一実施例を図1にそのフローシ
ートで示し、以下詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method of the present invention is shown in the flow chart of FIG.

【0013】触媒溶液として塩化亜鉛濃度60〜70%
の水溶液を予め反応器Aに装入する。予め仕込まれる触
媒含有母液の量は通常原料アルコールの供給速度(1時
間当たり)に対しその塩化亜鉛の当モル以上が選ばれ
る。反応終了の母液はそのまま次回の反応へ再使用され
る。
Zinc chloride concentration of 60 to 70% as a catalyst solution
The aqueous solution of 1 is charged into the reactor A in advance. The amount of the mother liquor containing the catalyst, which is charged in advance, is usually selected at an equimolar amount or more of the zinc chloride with respect to the feed rate (per hour) of the raw material alcohol. The mother liquor after the reaction is reused as it is in the next reaction.

【0014】原料アルコールを導管1を介して、場合に
よっては図示されていない廃ガス洗浄器に通して、導管
10からの回収アルコール及び導管2からの塩化水素と
一緒に(モル比1:1)反応器Aに供給する。反応器A
内の反応温度は90〜140℃の範囲から選ばれるが、
その都度製造すべき塩化アルキルの収率に応じて調整す
る。塩化アルキル、水、副生物、未反応のアルコール及
び塩化水素からなる反応生成物を蒸気状で反応器Aから
導管3を介して搬出し、凝縮し、分離器B中で塩化アル
キルを主成分とする軽い有機層と重い水層とに分離す
る。分離器Bから発生する塩化水素廃ガスは廃ガス洗浄
器(図示されていない)内で新鮮な原料アルコールによ
り吸収され、再び合成系へ戻される。
The feed alcohol is passed through conduit 1, optionally through a waste gas scrubber not shown, together with the recovered alcohol from conduit 10 and hydrogen chloride from conduit 2 (molar ratio 1: 1). Feed to reactor A. Reactor A
The reaction temperature inside is selected from the range of 90 to 140 ° C.,
It adjusts according to the yield of the alkyl chloride which should be manufactured each time. The reaction product consisting of alkyl chloride, water, by-products, unreacted alcohol and hydrogen chloride is carried out in vapor form from reactor A via conduit 3 and condensed, and in the separator B alkyl chloride is the main component. It separates into a light organic layer and a heavy aqueous layer. The hydrogen chloride waste gas generated from the separator B is absorbed by fresh raw material alcohol in a waste gas scrubber (not shown) and is returned to the synthesis system again.

【0015】重い水層を導管5を介して塩酸濃度調整槽
Cに移送し、導管6から水を加えることによって水に対
する塩化水素の濃度を21%以下に調整し、導管7を介
して未反応アルコール回収蒸留器Dに供給する。ここで
塔底から最高21%の塩酸を導管9を通して取りだし、
他の工程で再利用する。重い水層中に含まれる他のすべ
ての成分、未反応アルコール、塩化アルキル、共沸水は
塔頂生成物として分離され、導管8を介して分離器Eへ
移送する。ここで層分離された未反応アルコール(上
層)は回収未反応アルコールとして導管10を介して新
鮮な原料アルコールと一緒に再び合成系に装入される。
また共沸水(下層)は未反応アルコール回収蒸留器Dに
循環される。
The heavy water layer is transferred to the hydrochloric acid concentration adjusting tank C via the conduit 5, and the concentration of hydrogen chloride with respect to water is adjusted to 21% or less by adding water from the conduit 6, and unreacted via the conduit 7. Supply to alcohol recovery distiller D. Here, up to 21% of hydrochloric acid is taken out from the bottom of the column through the conduit 9,
Reuse in other process. All other components contained in the heavy water layer, unreacted alcohol, alkyl chlorides, azeotropic water are separated off as overhead products and transferred via line 8 to separator E. The unreacted alcohol (upper layer) separated into layers here is again charged into the synthesis system as fresh unreacted alcohol together with fresh raw material alcohol via the conduit 10.
The azeotropic water (lower layer) is circulated to the unreacted alcohol recovery distiller D.

【0016】分離器Bからの粗製塩化アルキルは導管4
を介して未反応アルコール洗浄器Fに供給され、導管1
2からの塩酸で洗浄される。更に塩化アルキルをアルカ
リ洗浄器G、水洗浄器Hに導き、それぞれ導管14、1
6を介してアルカリ水、水で洗浄する。洗浄に用いた塩
酸、アルカリ水、水はそれぞれ導管22、21、20を
介して塩酸濃度調整槽Cへ導入し、溶解した有機成分は
未反応アルコール回収蒸留器Dにより回収される。
The crude alkyl chloride from separator B is fed to conduit 4
Is supplied to the unreacted alcohol cleaner F through the conduit 1
Wash with hydrochloric acid from 2. Further, the alkyl chloride is introduced into an alkali cleaner G and a water cleaner H, and conduits 14 and 1, respectively.
Wash with alkaline water, water through 6. The hydrochloric acid, alkaline water, and water used for cleaning are introduced into the hydrochloric acid concentration adjusting tank C via conduits 22, 21, and 20, respectively, and the dissolved organic component is recovered by the unreacted alcohol recovery distiller D.

【0017】導管17を介して搬出される水洗後の塩化
アルキル中の水分は脱水蒸留器I内で共沸的に分離する
ことができる。更に、この脱水された塩化アルキルは製
品品質に応じて、2基の連続して運転される蒸留器、す
なわち低沸点物蒸留器J及び高沸点物蒸留器K中で公知
方法により蒸留精製される。
The water in the alkyl chloride after washing with water, which is carried out via the conduit 17, can be azeotropically separated in the dehydrator-distiller I. Further, the dehydrated alkyl chloride is distilled and purified by known methods in two continuously operated stills, namely a low-boiling-point distillation unit J and a high-boiling-point distillation unit K, depending on the product quality. .

【0018】次の実施例は本発明の方法を具体的に説明
するものである。
The following example illustrates the method of the present invention.

【0019】実施例1 500mlのセパラブルフラスコに触媒溶液として塩化
亜鉛濃度70%の水溶液194.7g(1.00mo
l)を装入した。内温を105℃に昇温した後、n−ブ
チルアルコール28.80g/hr(0.39mol/
hr)、塩化水素(無水)23.96g/hr(0.6
6mol/hr)及び未反応アルコール回収蒸留器から
の回収未反応アルコール15.84g/hrを連続的に
供給した。同時にフラスコの頭部から反応生成物68.
60g/hrを蒸気状で取りだし凝縮した。反応生成物
を搬出し、分離器内で軽い有機層35.60g/hr及
び重い水層31.11g/hrに分離し、別々に次の工
程に導いた。
Example 1 194.7 g (1.00 mo) of an aqueous solution having a zinc chloride concentration of 70% was used as a catalyst solution in a 500 ml separable flask.
l) was charged. After raising the internal temperature to 105 ° C., n-butyl alcohol 28.80 g / hr (0.39 mol /
hr), hydrogen chloride (anhydrous) 23.96 g / hr (0.6
6 mol / hr) and 15.84 g / hr of unreacted alcohol recovered from the unreacted alcohol recovery distiller were continuously fed. At the same time, the reaction product 68.
60 g / hr was taken out as a vapor and condensed. The reaction product was carried out and separated into a light organic layer of 35.60 g / hr and a heavy aqueous layer of 31.11 g / hr in a separator, which were separately led to the next step.

【0020】重い水層を攪拌機を取り付けた500ml
のセパラブルフラスコへ導入するが、ここへは軽い有機
層の洗浄に利用した35%塩酸、5%炭酸ナトリウム水
溶液、水が各々13.26g/hrずつ及び水27.3
9g/hrが導入されている。ここで水に対する塩化水
素の濃度は21%以下に調整される。未反応アルコール
回収蒸留器へこの調整水層を連続的に72.25g/h
rの速度で供給し、塔頂温度93.5℃、塔底温度11
0℃で蒸留することにより、塔頂からは水−アルコール
共沸留出液20.92g/hrが、また塔底からは21
%塩酸51.33g/hrが生じるように分離した。水
−アルコール共沸留出液は分離器から上層の回収アルコ
ールを15.84g/hrで反応フラスコへ戻し、下層
の水は蒸留塔へ循環した。
500 ml of heavy water layer with stirrer
Is introduced into a separable flask of 35% hydrochloric acid, 5% aqueous solution of sodium carbonate used for washing the light organic layer, 13.26 g / hr of water and 27.3 of water, respectively.
9 g / hr has been introduced. Here, the concentration of hydrogen chloride with respect to water is adjusted to 21% or less. To the unreacted alcohol recovery distiller, continuously prepare this adjusted water layer at 72.25 g / h.
It is supplied at a rate of r, the tower top temperature is 93.5 ° C, and the tower bottom temperature is 11
By distilling at 0 ° C., 20.92 g / hr of water-alcohol azeotropic distillate was obtained from the top of the column and 21 from the bottom of the column.
Separated to yield 51.33 g / hr of hydrochloric acid. In the water-alcohol azeotropic distillation liquid, the recovered alcohol in the upper layer was returned to the reaction flask at 15.84 g / hr from the separator, and the lower layer water was circulated to the distillation column.

【0021】軽い有機層は連続的に未反応アルコール洗
浄塔(20mmφ×600mmのガラスカラムにラシヒ
リング(高さ6mm×外径6mm×内径3mm)を50
0mmの長さに充填したもの)の塔底部に35.60g
/hrの速度で供給し、塔頂より35%塩酸13.26
g/hrを供給して塩酸で処理した。引き続き同型のア
ルカリ洗浄塔、水洗浄塔に導き、5%炭酸ナトリウム水
溶液、水各々13.26g/hrで処理し、アルコー
ル、塩を含まない粗製n−ブチルクロライドを得た。こ
の粗製n−ブチルクロライドを更に脱水、低沸物、高沸
物蒸留器に導き蒸留処理に付し、純度99.81%のn
−ブチルクロライド34.06g/hrを得た。
The light organic layer is continuously washed with an unreacted alcohol washing tower (20 mmφ × 600 mm glass column and Raschig rings (height 6 mm × outer diameter 6 mm × inner diameter 3 mm) 50).
35.60 g at the bottom of the column (filled to a length of 0 mm)
/ Hr at a rate of 35% hydrochloric acid from the top of the column of 13.26
It was supplied with g / hr and treated with hydrochloric acid. Subsequently, the solution was introduced into the same type of alkali washing tower and water washing tower, and treated with 5% sodium carbonate aqueous solution and water at 13.26 g / hr, respectively, to obtain crude n-butyl chloride containing no alcohol or salt. The crude n-butyl chloride was further dehydrated, introduced into a low-boiling and high-boiling distiller, and subjected to a distillation treatment to obtain n having a purity of 99.81%.
-Butyl chloride 34.06 g / hr was obtained.

【0022】尚、各々の工程における生成物の組成を滴
定、ガスクロマトグラフィーにより分析した結果を表1
に示す。
The composition of the product in each step was analyzed by titration and gas chromatography.
Shown in.

【0023】[0023]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例フローシートで示した図
である。
FIG. 1 is a diagram showing a flow sheet of an embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

A…反応器 B…分離器 C…塩酸濃度調整槽 D…未反応アルコール回収蒸留器 E…分離器 F…未反応アルコール洗浄器 G…アルカリ洗浄器 H…水洗浄器 I…脱水蒸留器 J…低沸点物蒸留器 K…高沸点物蒸留器 A ... Reactor B ... Separator C ... Hydrochloric acid concentration adjusting tank D ... Unreacted alcohol recovery distiller E ... Separator F ... Unreacted alcohol cleaning device G ... Alkaline cleaning device H ... Water cleaning device I ... Dehydrating distillation device J ... Low boiling point distiller K ... High boiling point distiller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素数4から8のアルキルアルコールと塩
化水素とを無触媒あるいは触媒の存在下で連続的に反応
させて、生成する塩化アルキルを直ちに気相で系外へ留
出させる塩化アルキルの製造方法において、 留出した反応生成物を塩化アルキルを主成分とする有
機層と水層に分離し、 塩酸濃度調整槽において水層に水を加えることによっ
て水に対する塩化水素の濃度を21%以下に調整し、 蒸留することによって塩化水素を最高21%含む水を
塔底生成物として、水とアルキルアルコールの混合物を
塔頂生成物としてそれぞれ得、 アルキルアルコールを水から層分離して新鮮なアルコ
ールと一緒に合成系に戻し、水は蒸留塔へ循環し、 塩化アルキルを主成分とする有機層は水で洗浄し、使
用した洗浄水は塩酸濃度調整槽へ導入し、水洗浄した有
機層を脱水、精製し、塩化アルキルを得る 工程からなることを特徴とする塩化アルキルの製造方
法。
1. An alkyl chloride in which an alkyl alcohol having 4 to 8 carbon atoms and hydrogen chloride are continuously reacted in the absence of a catalyst or in the presence of a catalyst, and the resulting alkyl chloride is immediately distilled out of the system in a gas phase. In the method for producing, the distilled reaction product is separated into an organic layer containing alkyl chloride as a main component and an aqueous layer, and water is added to the aqueous layer in a hydrochloric acid concentration adjusting tank so that the concentration of hydrogen chloride in water is 21%. By adjusting to the following and distilling, water containing up to 21% of hydrogen chloride was obtained as the bottom product and a mixture of water and alkyl alcohol was obtained as the top product. The alkyl alcohol was separated from the water to obtain a fresh product. It is returned to the synthesis system together with alcohol, water is circulated to the distillation column, the organic layer mainly containing alkyl chloride is washed with water, and the used washing water is introduced into the hydrochloric acid concentration adjusting tank and Dehydrated Kiyoshi organic layer, was purified, the production method of the alkyl chlorides, characterized in that it consists of obtaining a alkyl chloride.
【請求項2】塩化アルキルを主成分とする有機層を洗浄
するに際して、まず塩酸により洗浄し、その後アルカリ
水、水で洗浄し、洗浄に用いた塩酸、アルカリ水、を塩
酸濃度調整槽へ導入する請求項1記載の製造方法。
2. When washing an organic layer containing alkyl chloride as a main component, it is first washed with hydrochloric acid, then with alkaline water and water, and the hydrochloric acid and alkaline water used for washing are introduced into a hydrochloric acid concentration adjusting tank. The manufacturing method according to claim 1.
JP17884692A 1992-06-15 1992-06-15 Production of alkyl chloride Pending JPH061729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17884692A JPH061729A (en) 1992-06-15 1992-06-15 Production of alkyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17884692A JPH061729A (en) 1992-06-15 1992-06-15 Production of alkyl chloride

Publications (1)

Publication Number Publication Date
JPH061729A true JPH061729A (en) 1994-01-11

Family

ID=16055698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17884692A Pending JPH061729A (en) 1992-06-15 1992-06-15 Production of alkyl chloride

Country Status (1)

Country Link
JP (1) JPH061729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859830B2 (en) 2009-03-05 2014-10-14 Dow Global Technologies Inc. Methods and assemblies for liquid-phase reactions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859830B2 (en) 2009-03-05 2014-10-14 Dow Global Technologies Inc. Methods and assemblies for liquid-phase reactions

Similar Documents

Publication Publication Date Title
KR100760100B1 (en) Process for the simultaneous coproduction and purification of ethyl acetate and isopropyl acetate
EP0161111B1 (en) Purification of ethylene glycol derived from ethylene carbonate
TWI547470B (en) Process for Preparing Dichloropropanol
US5393888A (en) Non-catalytic liquid phase conversion of butyrolactone and ammonia to 2-pyrrolidone product in high yield and selectivity
KR100280985B1 (en) Industrial Continuous Production Method of Dimethoxy Ethanal
JP2001002638A (en) Production of high-purity pyrrolidone compound
JPH09227498A (en) Production of high-purify fluoroalkylsulfonic anhydride
US4087623A (en) Catalyst recovery process
JPH061729A (en) Production of alkyl chloride
JP3777408B2 (en) Method for producing carboxylic acid derivative
JP3608927B2 (en) Method for producing saturated aliphatic carboxylic acid amide
JP2001002640A (en) Production of high-purity pyrrolidone compound
JPH09157233A (en) Production of carboxylic acid amide
JP2754216B2 (en) Method for producing acetaldehyde dimethyl acetal
JP3407332B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
US3978146A (en) Production of 2-chlorobutadiene-1,3
EP0398282B1 (en) Process for manufacturing high-purity o-toluic acid
JPS63132850A (en) Method for steam stripping
JP3682805B2 (en) Method for producing saturated aliphatic carboxylic acid amide
US3956074A (en) Recovery of methylglyoxal acetal by plural stage distillation with intermediate phase separation
JP4432186B2 (en) Method for purifying 1,2-dichloroethane
JP2003012646A (en) Method for distillation of 2-(4-pyridyl)ethanethiol
JPH11228498A (en) Production of methyl methacrylate
US6414204B1 (en) Process for producing allyl chloride
EP1191007A1 (en) Process for production of allyl chloride