JPH06172801A - Production of r-fe-b permanent magnet alloy - Google Patents

Production of r-fe-b permanent magnet alloy

Info

Publication number
JPH06172801A
JPH06172801A JP4330288A JP33028892A JPH06172801A JP H06172801 A JPH06172801 A JP H06172801A JP 4330288 A JP4330288 A JP 4330288A JP 33028892 A JP33028892 A JP 33028892A JP H06172801 A JPH06172801 A JP H06172801A
Authority
JP
Japan
Prior art keywords
alloy
alloy powder
permanent magnet
powder
consisting essentially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4330288A
Other languages
Japanese (ja)
Inventor
Kagehiro Kageyama
景弘 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4330288A priority Critical patent/JPH06172801A/en
Publication of JPH06172801A publication Critical patent/JPH06172801A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce an R-Fe-B permanent magnet alloy having a low content of oxygen and with the dispersibility of the R-rich phase improved by mixing an alloy powder produced by the reductiondiffusion method and consisting essentially of an R2-Fe14-B phase and an alloy powder produced by the melting method and consisting essentially of R and Fe, forming and then sintering the mixture. CONSTITUTION:An alloy powder produced by the reduction-diffusion method and consisting essentially of an R2-Fe14-B (R is at least one kind among rare- earth elements including Y) is mixed with an alloy powder produced by the melting method and consisting essentially of R and Fe. The alloy consisting essentially of an R2-Fe14-B consists of 25-28wt.% R, 0.6-15wt.% B and the balance Fe with inevitable impurities, and the R content of the alloy cosisting essentially of R and Fe is preferably controlled to 35-55wt.%. The mixture is then crushed to about 3-20mu average grain diameter, formed in a magnetic field, sintered and then heat-treated. An R-Fe-B permanent magnet alloy having a low content of oxygen and a high energy product is obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、還元拡散法によりR2
−Fe14−B相を主相とする合金粉末と、溶解法により
製造したRrichなR−(Fe,Co)合金粉末を混
合させた後製造するR−Fe−B系永久磁石合金に関す
る。
The present invention relates to R 2 by a reduction diffusion method.
And alloy powder -fe 14 -B phase as a main phase, Rrich of R- (Fe, Co) produced by the dissolution method relating R-Fe-B permanent magnet alloy produced after mixing the alloy powder.

【0002】[0002]

【従来の技術】R−Fe−B系永久磁石合金を製造する
には、例えば特開昭60−63304号公報に記載され
るように合金を溶解してインゴットを製造したのちこれ
を粉砕して得た合金粉末を成形・焼結する溶解法と、例
えば特開昭59−219404号公報に記載されるよう
に希土類酸化物、Fe粉等を用いて、還元・拡散しこれ
を粉砕して得た粉末を成形・焼結する還元拡散法があ
る。
2. Description of the Related Art In order to produce an R-Fe-B system permanent magnet alloy, for example, as described in JP-A-60-63304, an alloy is melted to produce an ingot, which is then crushed. Obtained by a melting method in which the obtained alloy powder is molded and sintered, and reduction / diffusion using a rare earth oxide, Fe powder, etc. as described in JP-A-59-219404 and pulverization thereof. There is a reduction-diffusion method for molding and sintering powder.

【0003】[0003]

【発明が解決しようとする課題】従来の製造方法のうち
溶解法は、鋳塊の粉砕工程における酸化防止は容易であ
るが、鋳造時にFe初晶が発生しやすく、Rリッチ相が
大きく偏析するため、インゴットの熱処理が必要とな
り、工程が増加してしまうとともに、インゴットの熱処
理を行っても、Rリッチ相の偏析は完全には解消でき
ず、磁石特性を低下させる要因を含んでいる。還元拡散
法は、R2−Fe14−B主相の周囲にRリッチ相がとり
囲んだ状態で作成され、またRリッチ相の大きさは溶解
法と比較して小さくかつ分散性がよいので、磁石特性を
向上させる利点がある。しかしR2−Fe14−B相の周
囲を取り囲んだRリッチ相は酸化しやすく、磁石製造工
程中での酸化により磁石特性のバラツキを生むという問
題点があった。そこで本発明は、酸素含有量が低く、か
つRリッチ相の分散性がよいR−Fe−B系永久磁石合
金の製造方法を提供することを課題とする。
Among the conventional manufacturing methods, the melting method is easy to prevent oxidation in the ingot crushing process, but Fe primary crystals are easily generated during casting, and the R-rich phase is largely segregated. Therefore, heat treatment of the ingot is required, and the number of steps is increased. Further, even if the heat treatment of the ingot is performed, segregation of the R-rich phase cannot be completely eliminated, which includes a factor that deteriorates the magnet characteristics. Reduction diffusion method, is created in a state enclosed taken by R-rich phase surrounding the R 2 -Fe 14 -B main phase, and since R size of the rich phase is small and good dispersibility as compared with the dissolution method There is an advantage of improving the magnet characteristics. However, there is a problem that the R-rich phase surrounding the R 2 —Fe 14 —B phase is easily oxidized, and the magnet characteristics vary due to the oxidation during the magnet manufacturing process. Therefore, it is an object of the present invention to provide a method for producing an R-Fe-B based permanent magnet alloy having a low oxygen content and good dispersibility of an R-rich phase.

【0004】[0004]

【課題を解決するための手段】本発明者は、R2−Fe
14−B相を主体とする合金粉末を還元拡散法で製造し、
一方Rリッチな合金粉末を溶解法により製造し、この2
種の合金粉末を混合、成形焼結すれば前記課題を解決で
きることを見い出した。すなわち本発明は、還元拡散法
により製造したR2−Fe14−Bを主体とする合金粉末
(但しRはYを含む希土類元素のうち少なくとも1種)
と、R(但しRはYを含む希土類元素のうち少なくとも
1種)とFeを主体とする溶解法により製造した合金粉
末とを混合、成形した後に焼結することを特徴とするR
−Fe−B系永久磁石合金の製造方法である。
The present inventor has found that R 2 -Fe
Producing alloy powder mainly composed of 14- B phase by reduction diffusion method,
On the other hand, R-rich alloy powder is manufactured by a melting method,
It has been found that the above-mentioned problems can be solved by mixing alloy powders of different kinds and molding and sintering. That is, the present invention provides an alloy powder mainly composed of R 2 —Fe 14 —B produced by a reduction diffusion method (where R is at least one of rare earth elements including Y).
And R (where R is at least one of rare earth elements including Y) and an alloy powder mainly composed of Fe and manufactured by a melting method, mixed, shaped, and then sintered.
It is a manufacturing method of a -Fe-B system permanent magnet alloy.

【0005】以下本発明を詳述する。本発明は還元拡散
法によるR2−Fe14−B相を主体とする合金粉末と、
溶解法によるRとFeを主体とする合金粉末を混合する
点に特徴がある。すなわち、還元拡散法による粉末をR
リッチ相の発生を極力減らしたR2−Fe14−B相を主
体としたため酸素含有量が低減し、一方Rリッチ相は酸
素低減容易な溶解法により製造し、これらを混合するた
めRリッチ相の分散性も向上するのである。
The present invention will be described in detail below. The present invention relates to an alloy powder mainly composed of R 2 —Fe 14 —B phase by a reduction diffusion method,
It is characterized in that the alloy powder mainly composed of R and Fe by the melting method is mixed. That is, the powder obtained by the reduction diffusion method is R
The oxygen content is reduced because the R 2 —Fe 14 —B phase, which minimizes the generation of the rich phase, is used as the main component, while the R rich phase is produced by a dissolution method that facilitates oxygen reduction, and the R rich phase is mixed to mix them. The dispersibility of is also improved.

【0006】本発明において還元拡散法によるR2−F
14−Bを主相とする合金粉末を製造する場合、その組
成をR25〜28wt.%、B0.6〜15wt.%、残
部Fe及び不可避的不純物とするのが望ましい。Rを2
5〜28wt.%とするのは、Rが25wt%未満では
R、Bの拡散しない残留鉄部が存在し、また28wt%
を超えるとRリッチ相が増加し含有酸素が増加するため
である。なお、RとはYを含む希土類元素のうち少なく
とも1種以上をいう。また、Bを0.6〜15wt.%と
するのは、Bが0.6wt%未満では高い保磁力が得ら
れず、15wt%を超えると残留磁束密度が低下するた
めである。Feの一部はCoまたはNiの1種または2
種と置換することができるが、過度に置換すると保磁力
の低下につながるため、置換する場合はCoは8wt%
以下、Niは3wt%以下とすべきである。以上の還元
拡散法による合金粉末は以下のようにして製造すること
ができる。すなわち、R酸化物粉末と、フェロボロン粉
末、フェロニッケル粉末、フェロコバルト粉末、鉄粉
末、コバルト粉末、ニッケル粉末のうち少なくとも一種
を所定組成になるように混合し、この混合粉末に金属C
a等の還元剤を混合たし後、不活性ガス中で900〜1
200℃の温度範囲で還元、拡散を行い、得られた生成
物を水中に投入して反応副生成物を除去することにより
得ることができる。
In the present invention, R 2 -F by the reduction diffusion method is used.
When producing an alloy powder for the main phase of the e 14 -B, its composition R25~28wt.%, B0.6~15wt.%, it is desirable to balance being Fe and unavoidable impurities. 2 for R
5 to 28 wt.% Means that if R is less than 25 wt%, there is a residual iron part in which R and B do not diffuse, and 28 wt%
This is because the R-rich phase increases and the oxygen content increases when the ratio exceeds. In addition, R means at least 1 sort (s) or more among rare earth elements containing Y. Further, the reason why B is set to 0.6 to 15 wt.% Is that a high coercive force cannot be obtained when B is less than 0.6 wt%, and the residual magnetic flux density decreases when it exceeds 15 wt%. Part of Fe is one of Co or Ni or 2
Although it can be replaced with a seed, if it is replaced excessively, the coercive force will be reduced.
Hereafter, Ni should be 3 wt% or less. The alloy powder by the above reduction diffusion method can be manufactured as follows. That is, R oxide powder and at least one of ferroboron powder, ferronickel powder, ferrocobalt powder, iron powder, cobalt powder, and nickel powder are mixed so as to have a predetermined composition, and this mixed powder is mixed with metal C
After mixing a reducing agent such as a, 900-1 in an inert gas
It can be obtained by reducing and diffusing in a temperature range of 200 ° C. and adding the obtained product to water to remove a reaction by-product.

【0007】溶解法による合金粉末の組成はRリッチ相
が形成されるものであればよい。しかし、35wt%未
満では焼結時の液相の発現が十分でない。また、組織微
細化を図り磁気特性を向上するために熱間加工を施すこ
とが有効で、特に加工率70〜90%の場合その効果は
顕著となるが、R量が55wt%を超えると熱間加工の
際溶けてしまうため、熱間加工を施す場合にはRは55
wt.%以下とすることが望まれる。溶解法による合金
粉末は残部を実質的にFeとするが、Co、Ni、N
b、およびAlの1種または2種以上の元素で置換する
ことができる。ただし、CoおよびNiの過度の置換は
保磁力の低下を招くので置換する場合はそれぞれCo8
wt.%以下、Ni3wt.%以下とする。また、Nbお
よびAlの過度の置換は磁石のエネルギ−積を低下させ
るので、置換する場合はそれぞれNb5wt.%以下、
Al1wt.%以下とする。以上の2種の粉末は混合
後、粉砕し平均粒径3〜20μmの微粉末とし、これを
磁場中成形の後、焼結、熱処理を加える事によってR−
Fe−B系永久磁石合金を得ることができる。
The composition of the alloy powder by the melting method may be any as long as it forms an R-rich phase. However, if it is less than 35 wt%, the manifestation of the liquid phase during sintering is not sufficient. In addition, it is effective to perform hot working in order to refine the structure and improve the magnetic characteristics. Particularly, when the working ratio is 70 to 90%, the effect becomes remarkable, but when the R amount exceeds 55 wt%, the heat working is performed. Since it melts during hot working, R is 55 when hot working.
It is desirable that the content be less than wt.%. The balance of the alloy powder produced by the melting method is substantially Fe, but Co, Ni, N
It can be substituted with one or more elements of b and Al. However, since excessive replacement of Co and Ni causes a decrease in coercive force, when replacing Co8, Co8 is used.
wt.% or less and Ni 3 wt.% or less. Moreover, since excessive replacement of Nb and Al lowers the energy product of the magnet, when replacing, Nb is 5 wt.% Or less, respectively.
Al 1 wt.% Or less. The above-mentioned two kinds of powders are mixed and then pulverized into a fine powder having an average particle diameter of 3 to 20 μm.
An Fe-B based permanent magnet alloy can be obtained.

【0008】[0008]

【実施例】【Example】

(実施例1)Nd23(98%)296g,DyO
3(99%)20g,Fe−B(B含有量19.1%)
55g,Fe粉(99%)681g,金属Ca(99
%)163gを混合し、SUS製品器内に挿入し、Ar
気中にて1100℃×4hrの条件にてCa還元、拡散
を行った。その後、生成混合物を粗砕の後水洗いし、不
要Ca分を取り除いた。得られた粉末をアルコールで水
置換の後、真空中で加熱乾燥し、約1000gの原料粉
末を得た。得られた粉末はNd24.6wt%,Pr
0.3wt%,Dy1.6wt%,B1.0wt%残部
Feの組成で含有酸素量2300ppmであり、SEM
にて観察したところ、大部分がNd2Fe14Bであっ
た。 Rリッチな金属粉末は、溶解にてNd43wt
%,Pr0.5wt%,Dy1.3wt%,B1.0w
t%,Nb3.3wt%,Al3.3wt%,Co1
1.8wt%残部Feからなる組成で、850℃,Ar
雰囲気にて熱間加工の後、水素粉砕を常温で行い、その
後ランデルミルにかけ粗粉を得た。還元拡散法による粉
末8割、Rリッチ粉末2割の割合で混合後、ボールミル
にて平均粒度4μmの微粉にし、この微粉を9KOeの
磁界中、磁界と直角方向に約1.6ton/cm2の圧
力で成形し、この成形体を1100℃×4hrの真空中
にて焼結の後、熱処理を900℃×1hr行った。得ら
れた磁石の特性はBr:13.0KG、(BH)max
42.3MGOe、iHc13.5KOeで、含有酸素
量は5200ppmであった。 (実施例2)実施例1と同様の方法で表1に示す合金粉
末を還元拡散法、溶解法で製造し、これを用い表2に示
す粉末配合とし実施例1と同様の方法で磁石を得た。得
られた磁石の酸素量、磁気特性を表2に併せてしめす。
(Example 1) Nd 2 O 3 (98%) 296 g, DyO
3 (99%) 20 g, Fe-B (B content 19.1%)
55 g, Fe powder (99%) 681 g, metallic Ca (99
%) 163 g are mixed and inserted into a SUS product container, and Ar
Ca reduction and diffusion were performed in air under the condition of 1100 ° C. × 4 hr. Then, the product mixture was roughly crushed and then washed with water to remove unnecessary Ca. After the obtained powder was replaced with alcohol with water, it was heated and dried in a vacuum to obtain about 1000 g of raw material powder. The obtained powder is Nd24.6wt%, Pr
0.3 wt%, Dy1.6 wt%, B1.0 wt% The balance Fe composition is 2300 ppm oxygen content, SEM
As a result, most of it was Nd 2 Fe 14 B. R-rich metal powder melts Nd43wt
%, Pr0.5wt%, Dy1.3wt%, B1.0w
t%, Nb 3.3 wt%, Al 3.3 wt%, Co1
1.8 wt% balance Fe composition, 850 ° C., Ar
After hot working in an atmosphere, hydrogen pulverization was performed at room temperature and then subjected to a Randell mill to obtain coarse powder. After mixing at a ratio of 80% of powder by the reduction diffusion method and 20% of R-rich powder, it was made into a fine powder having an average particle size of 4 μm with a ball mill, and this fine powder was subjected to a magnetic field of 9 KOe at a rate of about 1.6 ton / cm 2 in the direction perpendicular to the magnetic field. After molding under pressure, the molded body was sintered in a vacuum of 1100 ° C. × 4 hr, and then heat-treated at 900 ° C. × 1 hr. The characteristics of the obtained magnet are Br: 13.0KG, (BH) max.
It was 42.3MGOe and iHc13.5KOe, and the oxygen content was 5200 ppm. (Example 2) The alloy powders shown in Table 1 were manufactured by the reduction diffusion method and the melting method in the same manner as in Example 1, and the powders were mixed with the alloy powders shown in Table 2 in the same manner as in Example 1 to obtain magnets. Obtained. Table 2 also shows the oxygen content and magnetic properties of the obtained magnets.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【発明の効果】本発明によれば、直接還元拡散法にてR
リッチ相の少ないR2Fe14B相に近い組成で合金粉末
を作成し、また溶解法によりRリッチ相に近い合金粉末
を作成し、これらを混合粉砕し、これを磁場中成形し、
焼結、熱処理して金属磁石合金を作成する事により、含
有酸素量の少ない、高エネルギー積の金属磁石合金を得
ることができる。
According to the present invention, R is obtained by the direct reduction diffusion method.
An alloy powder having a composition close to the R 2 Fe 14 B phase with a small amount of rich phase is prepared, and an alloy powder close to the R rich phase is prepared by a melting method, mixed and pulverized, and molded in a magnetic field.
By producing a metal magnet alloy by sintering and heat treatment, it is possible to obtain a metal magnet alloy having a low energy content and a high energy product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 還元拡散法により製造したR2−Fe14
−B相を主体とする合金粉末(但しRはYを含む希土類
元素のうち少なくとも1種)と、溶解法によるR(但し
RはYを含む希土類元素のうち少なくとも1種)とFe
を主体とする合金粉末とを混合、成形した後に焼結する
ことを特徴とするR−Fe−B系永久磁石合金の製造方
法。
1. R 2 —Fe 14 produced by a reduction diffusion method.
-Alloy powder mainly composed of B phase (where R is at least one kind of rare earth element containing Y), R by melting method (however, R is at least one kind of rare earth element containing Y) and Fe
A method for producing an R-Fe-B based permanent magnet alloy, which comprises mixing with an alloy powder mainly composed of, shaping and sintering.
【請求項2】 R2−Fe14−B相を主体とする合金粉
末は、R25〜28wt.%、B0.6〜15wt%、残
部Fe及び不可避的不純物からなる請求項1に記載のR
−Fe−B系永久磁石合金の製造方法。
2. The R according to claim 1, wherein the alloy powder mainly composed of R 2 —Fe 14 —B phase is composed of R 25 to 28 wt.%, B 0.6 to 15 wt%, balance Fe and inevitable impurities.
-Method for producing Fe-B based permanent magnet alloy.
【請求項3】 溶解法によるR(但しRはYを含む希土
類元素のうち少なくとも1種)とFeを主体とする合金
粉末のR量が35〜55wt%である請求項1または2
に記載のR−Fe−B系永久磁石合金の製造方法。
3. The R amount of R by the melting method (where R is at least one of rare earth elements including Y) and the alloy powder mainly composed of Fe are 35 to 55 wt%.
The method for producing the R-Fe-B based permanent magnet alloy according to 1.
JP4330288A 1992-12-10 1992-12-10 Production of r-fe-b permanent magnet alloy Pending JPH06172801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4330288A JPH06172801A (en) 1992-12-10 1992-12-10 Production of r-fe-b permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4330288A JPH06172801A (en) 1992-12-10 1992-12-10 Production of r-fe-b permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPH06172801A true JPH06172801A (en) 1994-06-21

Family

ID=18230979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4330288A Pending JPH06172801A (en) 1992-12-10 1992-12-10 Production of r-fe-b permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPH06172801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300640A (en) * 2013-06-05 2019-02-01 丰田自动车株式会社 Rare-earth magnet and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300640A (en) * 2013-06-05 2019-02-01 丰田自动车株式会社 Rare-earth magnet and its manufacturing method

Similar Documents

Publication Publication Date Title
US5281250A (en) Powder material for rare earth-iron-boron based permanent magnets
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JPH06172801A (en) Production of r-fe-b permanent magnet alloy
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3020717B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0778709A (en) Manufacture of r-fe-b permanent magnet material
JP3299000B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPS6398107A (en) Manufacture of rare earth permanent magnet
JP2577373B2 (en) Sintered permanent magnet
JPH06283318A (en) Manufacture of rare-earth permanent magnet
JP3151088B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPH04110401A (en) Raw material powder for r-fe-b base permanent magnet
JPH0897022A (en) Manufacture of rare-earth magnet
JPH0583627B2 (en)
JPH08144025A (en) Raw material powder for rare earth element-iron-boron type permanent magnet and its production
JPH06290921A (en) Manufacture of rare earth permanent magnet
JPH07312321A (en) Manufacture of rare-earth permanent magnet