JPH0617057A - Method for converting heavy oil into light oil - Google Patents

Method for converting heavy oil into light oil

Info

Publication number
JPH0617057A
JPH0617057A JP19466892A JP19466892A JPH0617057A JP H0617057 A JPH0617057 A JP H0617057A JP 19466892 A JP19466892 A JP 19466892A JP 19466892 A JP19466892 A JP 19466892A JP H0617057 A JPH0617057 A JP H0617057A
Authority
JP
Japan
Prior art keywords
oil
hydrogen
petroleum
heavy oil
hydrogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19466892A
Other languages
Japanese (ja)
Inventor
Junichi Kubo
純一 久保
Chuichi Yamashita
忠一 山下
Osamu Kato
攻 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP19466892A priority Critical patent/JPH0617057A/en
Priority to US08/081,981 priority patent/US5395511A/en
Priority to EP93109997A priority patent/EP0576982A1/en
Priority to CA002099713A priority patent/CA2099713A1/en
Publication of JPH0617057A publication Critical patent/JPH0617057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To remarkably reduce the formation of carbonaceous substances, prolong the period of continuous running, and increase the yield of a light liq. product in the process for converting a heavy oil into a light oil. CONSTITUTION:100 pts.wt. heavy oil is mixed with 0.1-50 pts.wt. at least one hydrogen-donating substance selected from the group consisting of a hydrogenated oil which is obtd. by subjecting an oil boiling at 200 deg.C or higher and obtd. by the thermal cracking of petroleum at 430-600 deg.C to nuclear hydrogenation to a degree of nuclear hydrogenation of 20-90% and another hydrogenated oil which is obtd. by thermally treating at 430-600 deg.C an oil boiling at 200 deg.C or higher and obtd. by the catalytic cracking or reformation of petroleum and subjecting the resulting oil boiling at 200 deg.C or higher to nuclear hydrogenation to a degree of nuclear hydrogenation of 20-90%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は重質油の軽質化方法に関
するものであり、さらに詳しくは炭素質の生成を抑制し
た熱分解方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for lightening heavy oil, and more particularly to a thermal decomposition method in which the production of carbonaceous matter is suppressed.

【0002】[0002]

【従来技術】従来から、熱分解法は重質油軽質化の主要
な一つの方法であるが、その欠点は炭素質の生成が著し
く、また液状生成物の収率が比較的少ないことにある。
すなわち、熱分解法は高い圧力も必要とせず、比較的安
価な軽質化方法であるが、炭素質の生成が著しいため、
連続運転期間が制約され、また高い分解率の達成が困難
である。このため、軽質化された液状生成物の収率が比
較的低いという問題点がある。
2. Description of the Related Art Conventionally, a thermal cracking method has been one of the main methods for lightening heavy oil, but its disadvantages are that carbonaceous matter is remarkably produced and the yield of liquid product is relatively low. .
That is, the pyrolysis method does not require high pressure and is a relatively inexpensive lightening method, but since carbonaceous matter is remarkably produced,
The continuous operation period is restricted, and it is difficult to achieve a high decomposition rate. Therefore, there is a problem that the yield of the lightened liquid product is relatively low.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑み、重質油を熱分解により軽質化するに際して、炭
素質の生成を著しく軽減し、連続運転期間の延長を達成
し、且つ軽質化された液状生成物の収率を向上すること
を目的とする。
In view of the above problems, the present invention significantly reduces the production of carbonaceous substances when lightening heavy oil by pyrolysis, and achieves extension of the continuous operation period, and The purpose is to improve the yield of the lightened liquid product.

【0004】[0004]

【課題を解決するための手段】従来から、重質油の熱分
解に際して水素供与性物質を添加することは公知であ
る。例えばすでに Oil & Gas Journa
l,July 13,84(1987)に報告されてい
るように、接触分解の際の分解生成物の一部を水素化
し、この水素化物を添加する方法などがある。しかし、
従来の方法においては、添加する物質の水素供与性が十
分でないために多量の添加物を必要とし、原料重質油に
対し30重量%から数倍に至る添加物を加えるのが普通
である。
It has been conventionally known to add a hydrogen donating substance in the thermal cracking of heavy oil. For example, already Oil & Gas Journal
1, Jul. 13, 84 (1987), there is a method of hydrogenating a part of a decomposition product at the time of catalytic decomposition and adding this hydride. But,
In the conventional method, a large amount of the additive is required because the hydrogen donating property of the substance to be added is not sufficient, and it is usual to add the additive in an amount of 30% by weight to several times with respect to the heavy oil feedstock.

【0005】本発明者らは、石油を原料として、非常に
優れた水素供与性を有する物質を製造し得ることを見い
だし、この物質を利用することにより少量の添加によっ
て従来の方法を凌ぐ効果が得られることを明らかにし本
発明を完成させた。
The present inventors have found that it is possible to produce a substance having a very excellent hydrogen donating property from petroleum as a raw material, and by utilizing this substance, the addition of a small amount of the substance has an effect over the conventional method. It was clarified that it was obtained and the present invention was completed.

【0006】すなわち、本発明は重質油を熱分解により
軽質化するに際し、(A)重質油100重量部に対し、
(B)(I)石油を430〜600℃で熱分解して得ら
れる沸点200℃以上の油を核水素化率20〜90%の
範囲で核水素化した水素化油からなる水素供与性物質及
び(II)石油を接触分解又は接触改質して得られる沸点
200℃以上の油を430〜600℃で熱処理して得ら
れる沸点200℃以上の生成油を核水素化率20〜90
%の範囲で核水素化した水素化油からなる水素供与性物
質から選ばれる少なくとも1種の物質を0.1〜50重
量部添加することを特徴とする重質油の軽質化方法に関
する。
That is, according to the present invention, when lightening a heavy oil by thermal decomposition, (A) 100 parts by weight of the heavy oil,
(B) (I) A hydrogen-donating substance consisting of hydrogenated oil obtained by thermally decomposing petroleum at 430 to 600 ° C. and having a boiling point of 200 ° C. or higher in a nuclear hydrogenation range of 20 to 90%. And (II) a product having a boiling point of 200 ° C or higher obtained by heat-treating an oil having a boiling point of 200 ° C or higher obtained by catalytic cracking or catalytic reforming of petroleum at 430 to 600 ° C has a nuclear hydrogenation rate of 20 to 90.
% Of at least one substance selected from hydrogen-donating substances consisting of hydrogenated oil that has been nuclear hydrogenated in the range of 0.1 to 50 parts by weight.

【0007】以下に本発明の構成を詳述する。(A)の
重質油とは、沸点350℃以上の留分を50%以上含む
炭化水素油で、例えば原油を常圧蒸留して得られる常圧
蒸留残油、該常圧蒸留残油を減圧蒸留して得られる減圧
蒸留残油、あるいは石炭、オイルサンド、オイルシェー
ル、ビチューメン等から得られる油が例示される。
The structure of the present invention will be described in detail below. The heavy oil (A) is a hydrocarbon oil containing 50% or more of a fraction having a boiling point of 350 ° C. or higher. For example, an atmospheric distillation residual oil obtained by atmospheric distillation of crude oil, and an atmospheric distillation residual oil are obtained. Examples are vacuum distillation residual oil obtained by vacuum distillation, or oil obtained from coal, oil sand, oil shale, bitumen, and the like.

【0008】(B)の石油とは、原油、原油を減圧蒸留
して得られる沸点範囲300〜600℃の留出油、ナフ
サ熱分解残油、接触分解装置(FCC装置)からのサイ
クルオイル、スラリーオイル並びにデカンテットオイル
(DCO)、ナフサ接触改質残油、原油熱分解タール又
はこれらの混合物が例示される。
Petroleum (B) means crude oil, distillate oil having a boiling range of 300 to 600 ° C. obtained by distilling crude oil under reduced pressure, naphtha pyrolysis residual oil, cycle oil from catalytic cracking unit (FCC unit), slurry. Examples include oil and decanted oil (DCO), naphtha catalytic reforming residual oil, crude oil pyrolysis tar, or a mixture thereof.

【0009】(B)の水素供与性物質(I)は、石油を
430〜600℃、好ましくは450〜550℃で、1
0〜120分間熱分解して得られる沸点200℃以上、
好ましくは200〜600℃の生成油を核水素化率20
〜90%、好ましくは30〜85%の範囲で核水素化し
た水素化油である。該水素化油の沸点は350℃以上が
好ましく、さらに350〜600℃が好ましい。
The hydrogen-donating substance (I) of (B) is petroleum oil at 430 to 600 ° C., preferably 450 to 550 ° C.
Boiling point of 200 ° C. or higher obtained by thermal decomposition for 0 to 120 minutes,
Preferably, the produced oil at 200 to 600 ° C. has a nuclear hydrogenation rate of 20.
-90%, preferably 30-85% in the range of nuclear hydrogenated hydrogenated oils. The boiling point of the hydrogenated oil is preferably 350 ° C or higher, more preferably 350 to 600 ° C.

【0010】(B)の水素供与性物質(II)は石油を接
触分解または接触改質して得られる沸点200℃以上の
油を430〜600℃、好ましくは450〜550℃
で、10〜120分間で熱分解して得られる沸点200
℃以上、好ましくは200〜600℃の生成油を核水素
化率20〜90%、好ましくは30〜85%の範囲で核
水素化した水素化油である。該水素化油の沸点は350
℃以上が好ましく、さらに350〜600℃が好まし
い。
The hydrogen-donating substance (II) (B) is an oil having a boiling point of 200 ° C. or higher obtained by catalytic cracking or catalytic reforming of petroleum at 430 to 600 ° C., preferably 450 to 550 ° C.
And a boiling point of 200 obtained by thermal decomposition in 10 to 120 minutes.
It is a hydrogenated oil obtained by nuclear hydrogenating a produced oil at a temperature of not less than 0 ° C, preferably 200 to 600 ° C, in a nuclear hydrogenation rate of 20 to 90%, preferably 30 to 85%. The boiling point of the hydrogenated oil is 350
C. or higher is preferable, and 350 to 600.degree. C. is further preferable.

【0011】(B)の水素供与性物質(I)及び(II)
を得るための核水素化方法は任意であるが、通常水素化
機能を有する触媒の存在下で水素ガスにより水素化する
方法が用いられる。水素化機能を有する触媒としては特
に制限はなく、石油留分の水素化処理に用いる公知の触
媒が使用できる。具体的には、周期律表第V〜第VIII族
から選ばれた少なくとも一種の金属元素、特にニッケ
ル、コバルト、モリブデン、バナジウム及びタングステ
ンから選ばれる少なくとも一種の金属元素の硫化物、酸
化物などをアルミナ、シリカ−アルミナ、カチオン置換
ゼオライト等の無機質担体に担持させたものが使用され
る。また、芳香環水素化触媒、例えばニッケル、酸化ニ
ッケル、ニッケル−銅、白金、酸化白金、白金−ロジウ
ム、白金−リチウム、ロジウム、パラジウム、コバル
ト、ラミーコバルト、ルテニウム等の金属を活性炭、ア
ルミナ、シリカ−アルミナ、けいそう土及びゼオライト
等の無機質担体に担持させたものが例示される。
Hydrogen-donating substances (I) and (II) of (B)
The nuclear hydrogenation method for obtaining the compound is arbitrary, but usually a method of hydrogenating with hydrogen gas in the presence of a catalyst having a hydrogenation function is used. The catalyst having a hydrogenating function is not particularly limited, and a known catalyst used for hydrotreating petroleum fractions can be used. Specifically, at least one metal element selected from Group V to Group VIII of the Periodic Table, particularly a sulfide or oxide of at least one metal element selected from nickel, cobalt, molybdenum, vanadium and tungsten. Those supported on an inorganic carrier such as alumina, silica-alumina, or cation-substituted zeolite are used. In addition, aromatic ring hydrogenation catalysts, for example, nickel, nickel oxide, nickel-copper, platinum, platinum oxide, platinum-rhodium, platinum-lithium, rhodium, palladium, cobalt, ramie cobalt, ruthenium and other metals such as activated carbon, alumina, silica. Examples include those supported on an inorganic carrier such as alumina, diatomaceous earth and zeolite.

【0012】上記(I)及び(II)において、水素化条
件は使用触媒が石油留分の水素化処理用触媒である場合
には、300℃〜400℃、30気圧〜150気圧が好
ましく、使用触媒が芳香環水素化触媒の場合には150
℃〜300℃、30気圧〜150気圧であることが望ま
しい。
In the above (I) and (II), the hydrogenation conditions are preferably 300 ° C. to 400 ° C. and 30 atm to 150 atm when the catalyst used is a hydrotreating catalyst for petroleum fractions. 150 when the catalyst is an aromatic ring hydrogenation catalyst
It is desirable that the temperature is from 300 to 300 ° C. and from 30 to 150 atm.

【0013】(B)の水素供与性物質の添加量は重質油
(A)に対して0.1〜50重量部、好ましくは0.3
〜30重量部である。その添加方法は重質油(A)に混
入させるのが普通であるが、熱分解時に(A)及び
(B)が十分混ざり合った状態で共存すれば特に制限は
ない。
The amount of the hydrogen-donating substance (B) added is 0.1 to 50 parts by weight, preferably 0.3, based on the heavy oil (A).
~ 30 parts by weight. The addition method is usually to mix with the heavy oil (A), but there is no particular limitation as long as (A) and (B) coexist in a sufficiently mixed state during thermal decomposition.

【0014】(B)の水素供与性物質の製造は熱分解装
置と分離された装置で製造し、いわゆる添加剤として添
加することも可能であり、また熱分解装置の一部として
組み込み、熱分解生成物を用いて製造することも可能で
ある。またこの際、(B)の水素供与性物質の製造装置
において、重質油の熱分解生成物を再度熱処理した後水
素化することもできる。反応装置についても特に制限は
なく、一般の固定床反応装置または反応槽を用いて実施
することができる。
The hydrogen donating substance (B) can be produced by a device separated from the thermal decomposition device and added as a so-called additive, or can be incorporated as a part of the thermal decomposition device to be thermally decomposed. It is also possible to manufacture using the product. Further, at this time, the thermal decomposition product of the heavy oil may be heat-treated again and then hydrogenated in the apparatus (B) for producing a hydrogen-donating substance. The reaction apparatus is also not particularly limited, and it can be carried out using a general fixed bed reaction apparatus or reaction tank.

【0015】核水素化率は次式によって定義されるもの
であり、式中の芳香族環炭素数とはASTM D−21
40−66で示されるものである。
The nuclear hydrogenation rate is defined by the following equation, and the number of aromatic ring carbon atoms in the equation is ASTM D-21.
40-66.

【0016】[0016]

【数1】 [Equation 1]

【0017】本発明において水素供与性物質とは、下記
の方法で水素供与性を評価した時に、水素受容体(アン
トラセン)への水素移行量が350℃において少なくと
も0.1水素原子/mol−アントラセンである物質を
いう。
In the present invention, the hydrogen donating substance means that when the hydrogen donating property is evaluated by the following method, the hydrogen transfer amount to the hydrogen acceptor (anthracene) is at least 0.1 hydrogen atom / mol-anthracene at 350 ° C. Refers to a substance that is.

【0018】(水素供与性の評価法)所定量の試料およ
びアントラセン(試料/アントラセン=1/2)を撹拌
機付きオートクレーブに収容し、表1に示した条件で反
応させた。
(Evaluation Method of Hydrogen Donating Property) A predetermined amount of sample and anthracene (sample / anthracene = 1/2) were placed in an autoclave equipped with a stirrer and reacted under the conditions shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】反応終了後、生成物中の9,10−ジヒド
ロアントラセン、1,4,5,8−テトラヒドロアント
ラセン、1,4,5,8,9,10−ヘキサヒドロアン
トラセン,1,2,3,4,5,6,7,8,−オクタ
ヒドロアントラセン並びに残存アントラセンの量をガス
クロマトグラフィーで分析した。
After completion of the reaction, 9,10-dihydroanthracene, 1,4,5,8-tetrahydroanthracene, 1,4,5,8,9,10-hexahydroanthracene, 1,2,3,3 in the product is obtained. , 4,5,6,7,8-octahydroanthracene and the amount of residual anthracene were analyzed by gas chromatography.

【0021】アントラセンの水素化物を生成するのに要
する水素は、水素供与性を有する炭化水素類から供給さ
れるので、当該炭化水素類からアントラセンに移行した
水素の量(水素原子/mol−アントラセン)を上記水
素化物の生成量から算出し、これを水素供与性として測
定した。なお、この方法はYokono T.,Mar
sh H.& Yokono M.,Fuel.60,
607(1981)に記載されている方法に準じたもの
である。
Since hydrogen required for producing a hydride of anthracene is supplied from a hydrocarbon having a hydrogen donating property, the amount of hydrogen transferred from the hydrocarbon to anthracene (hydrogen atom / mol-anthracene). Was calculated from the amount of the above-mentioned hydride produced, and this was measured as the hydrogen donating property. This method is described by Yokono T. , Mar
sh H. & Yokono M. , Fuel. 60,
It is based on the method described in 607 (1981).

【0022】[0022]

【実施例】本発明を実施例によりさらに詳細に説明す
る。
EXAMPLES The present invention will be described in more detail by way of examples.

【0023】実施例1 内容積1Lの内部撹拌式オートクレーブを用い、表2に
性状を示す中東系減圧残油を420℃で1時間加熱し、
分解した(気相は窒素)。このとき添加物として次の物
質を重質油100重量部に対して10重量部添加した。
すなわち、原油を減圧蒸留して得られる沸点350℃〜
580℃の留分を470℃で30分間加熱し、加熱後固
形物を除去し、さらに蒸留により軽質分(350℃以
下)を除いたのち、残りの液状生成物をコバルトーモリ
ブデン触媒(担体アルミナ)の存在下で380℃、11
5気圧、LHSV 0.12で水素化した。水素化後の
反応生成物を蒸留し、軽質分を除去し、沸点330℃以
上の液状生成物を得た。この液状生成物はH1−NM
R、C13−NMRによる分析の結果、核水素化率は65
%であった。また、この物質の水素供与性を前述した方
法により測定した結果、アントラセンへの水素の移行量
は0.8水素原子/molーアントラセンであった。
Example 1 A Middle East type vacuum residual oil whose properties are shown in Table 2 was heated at 420 ° C. for 1 hour using an internal stirring type autoclave having an internal volume of 1 L.
Decomposed (nitrogen vapor). At this time, 10 parts by weight of the following substances were added as additives to 100 parts by weight of heavy oil.
That is, a boiling point of 350 ° C. obtained by distilling crude oil under reduced pressure
The fraction at 580 ° C is heated at 470 ° C for 30 minutes, the solid matter is removed after heating, and the light components (350 ° C or less) are removed by distillation, and the remaining liquid product is converted to a cobalt-molybdenum catalyst (supported alumina). ) In the presence of
It was hydrogenated at 5 atm and LHSV 0.12. The reaction product after hydrogenation was distilled to remove light components, and a liquid product having a boiling point of 330 ° C. or higher was obtained. This liquid product is H 1 -NM
As a result of analysis by R, C 13 -NMR, the nuclear hydrogenation rate was 65.
%Met. As a result of measuring the hydrogen donating property of this substance by the method described above, the amount of hydrogen transferred to anthracene was 0.8 hydrogen atom / mol-anthracene.

【0024】比較例1 添加物を加えないことを除いては、実施例1と同一原料
を同一装置、同一条件で分解した。実施例1及び比較例
1の分解生成物を比較して表3に示した。
Comparative Example 1 The same raw material as in Example 1 was decomposed in the same apparatus and under the same conditions except that no additive was added. The decomposition products of Example 1 and Comparative Example 1 are compared and shown in Table 3.

【0025】実施例2 実施例1ならびに比較例1に用いた内容積1Lの内部撹
拌式オートクレーブを用い、表2に性状を示す中東系減
圧残油を430℃で1時間加熱し分解した(気相は窒
素)。このとき、添加物として次の物質を重質油100
重量部に対し5重量部添加した。すなわち、石油の流動
接触分解装置(FCC)から得られるDCO(デカント
オイル)を480℃で10分間加熱し、加熱後固形物を
除去し、さらに蒸留により軽質分(350℃以下)を除
いたのち、残りの液状生成物を市販脱硫触媒(ニッケル
ーモリブデンーアルミナ)の存在下で370℃、100
気圧、LHSV 0.10で水素化した。水素化後の反
応生成物を蒸留し、軽質分を除去し、沸点350℃以上
の液状生成物を得た。この液状生成物はH1−NMR、
13ーNMRによる分析の結果、核水素化率は57%で
あった。また、この物質を前述した方法により測定した
結果、アントラセンへの水素の移行量は1.20水素原
子/mol−アントラセンであった。
Example 2 Using the internally stirred autoclave having an internal volume of 1 L used in Example 1 and Comparative Example 1, the Middle Eastern vacuum residual oil having the properties shown in Table 2 was heated at 430 ° C. for 1 hour for decomposition (gas). Phase is nitrogen). At this time, the following substances were added as additives to the heavy oil 100:
5 parts by weight was added to parts by weight. That is, DCO (decant oil) obtained from a petroleum fluid catalytic cracker (FCC) is heated at 480 ° C. for 10 minutes, solids are removed after heating, and light components (350 ° C. or less) are removed by distillation. The remaining liquid product in the presence of a commercial desulfurization catalyst (nickel-molybdenum-alumina) at 370 ° C., 100
Hydrogenated at atmospheric pressure, LHSV 0.10. The reaction product after hydrogenation was distilled to remove light components, and a liquid product having a boiling point of 350 ° C or higher was obtained. The liquid product is H 1 -NMR,
As a result of analysis by C 13 -NMR, the nuclear hydrogenation rate was 57%. Further, as a result of measuring this substance by the above-mentioned method, the amount of hydrogen transferred to anthracene was 1.20 hydrogen atom / mol-anthracene.

【0026】比較例2 添加物を加えないことを除いては、実施例2と同一原料
を同一装置、同一条件で分解した。実施例2および比較
例2の分解生成物を比較して表3に示した。
Comparative Example 2 The same raw material as in Example 2 was decomposed in the same apparatus and under the same conditions except that no additives were added. The decomposition products of Example 2 and Comparative Example 2 are compared and shown in Table 3.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】表から明らかなように、トルエン不溶分生
成抑制に対する添加剤に効果は顕著である。従来から重
質油の熱分解に際し、水素供与性物質の添加が有効なこ
とは知られているが、僅か5重量部の添加によってこの
ような顕著な効果が得られるのは、本発明の添加物の水
素供与性が従来のものに比べて優れているためである。
As is clear from the table, the effect of the additive on the suppression of toluene insoluble matter formation is remarkable. It has been conventionally known that the addition of a hydrogen-donating substance is effective in the thermal decomposition of heavy oil, but the addition of only 5 parts by weight produces such a remarkable effect. This is because the hydrogen donating property of the product is superior to the conventional one.

【0030】[0030]

【発明の効果】本発明により、炭素質の生成が著しく軽
減される。重質油の熱分解において、最も深刻な問題は
炭素質の生成とそれによる連続運転期間の制限である。
ある程度(数カ月)の連続運転期間を確保するためには
分解率を抑える必要が生じ、このために軽質化液状生成
物の収率が制約される。さらに、炭素質の堆積によって
運転を停止するが、停止期間中に堆積した炭素質の除去
作業(バーニング)が必要である。この作業は非常に繁
雑であり、できるだけ回数を減らすことが好ましい。本
発明の炭素質生成抑制効果により、同一反応条件におい
ては連続運転期間が2〜20倍に延長され、上記炭素質
除去作業が大幅に軽減される。
According to the present invention, the production of carbonaceous matter is remarkably reduced. In the thermal cracking of heavy oils, the most serious problem is the production of carbonaceous matter and the resulting limitation of continuous operation.
In order to secure a certain period (several months) of continuous operation, it is necessary to suppress the decomposition rate, which limits the yield of the lightened liquid product. Further, although the operation is stopped due to the deposition of carbonaceous matter, it is necessary to remove the carbonaceous matter accumulated during the suspension period (burning). This work is very complicated and it is preferable to reduce the number of times as much as possible. Due to the effect of suppressing the generation of carbonaceous matter of the present invention, the continuous operation period is extended 2 to 20 times under the same reaction conditions, and the above-mentioned carbonaceous matter removing work is greatly reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重質油を熱分解により軽質化するに際し、
(A)重質油100重量部に対し、(B)(I)石油を
430〜600℃で熱分解して得られる沸点200℃以
上の油を核水素化率20〜90%の範囲で核水素化した
水素化油からなる水素供与性物質及び(II)石油を接触
分解又は接触改質して得られる沸点200℃以上の油を
430〜600℃で熱処理して得られる沸点200℃以
上の生成油を核水素化率20〜90%の範囲で核水素化
した水素化油からなる水素供与性物質から選ばれる少な
くとも1種の物質を0.1〜50重量部添加することを
特徴とする重質油の軽質化方法。
1. When lightening heavy oil by pyrolysis,
(A) 100 parts by weight of heavy oil, (B) (I) petroleum having a boiling point of 200 ° C. or higher obtained by pyrolyzing petroleum at 430 to 600 ° C. is nucleated at a nuclear hydrogenation rate of 20 to 90%. Hydrogen-donating substance consisting of hydrogenated hydrogenated oil and (II) Oil having a boiling point of 200 ° C or higher obtained by catalytic cracking or catalytic reforming of petroleum and having a boiling point of 200 ° C or higher obtained by heat treatment at 430 to 600 ° C. It is characterized by adding 0.1 to 50 parts by weight of at least one substance selected from hydrogen-donating substances consisting of hydrogenated oil obtained by nuclear hydrogenating produced oil in the range of 20 to 90%. How to lighten heavy oil.
JP19466892A 1992-06-30 1992-06-30 Method for converting heavy oil into light oil Pending JPH0617057A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19466892A JPH0617057A (en) 1992-06-30 1992-06-30 Method for converting heavy oil into light oil
US08/081,981 US5395511A (en) 1992-06-30 1993-06-23 Process for converting heavy hydrocarbon oil into light hydrocarbon fuel
EP93109997A EP0576982A1 (en) 1992-06-30 1993-06-23 Process for converting heavy hydrocarbon oil into light hydrocarbon fuel
CA002099713A CA2099713A1 (en) 1992-06-30 1993-06-29 Process for converting heavy hydrocarbon oil into light hydrocarbon fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19466892A JPH0617057A (en) 1992-06-30 1992-06-30 Method for converting heavy oil into light oil

Publications (1)

Publication Number Publication Date
JPH0617057A true JPH0617057A (en) 1994-01-25

Family

ID=16328325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19466892A Pending JPH0617057A (en) 1992-06-30 1992-06-30 Method for converting heavy oil into light oil

Country Status (1)

Country Link
JP (1) JPH0617057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501038B2 (en) 1999-12-07 2002-12-31 Fujitsu Takamisawa Component Limited Key switch and keyboard
KR101718965B1 (en) * 2015-10-19 2017-03-23 한국에너지기술연구원 A method for treating heavy crude oil using liquefied hydrocarbon oil and an apparatus for treating heavy crude oil using thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501038B2 (en) 1999-12-07 2002-12-31 Fujitsu Takamisawa Component Limited Key switch and keyboard
KR101718965B1 (en) * 2015-10-19 2017-03-23 한국에너지기술연구원 A method for treating heavy crude oil using liquefied hydrocarbon oil and an apparatus for treating heavy crude oil using thereof
US10005970B2 (en) 2015-10-19 2018-06-26 Korea Institute Of Energy Research Method and apparatus for treating heavy hydrocarbon oil using liquid phase of hydrocarbon oil

Similar Documents

Publication Publication Date Title
US4062758A (en) Process for the conversion of hydrocarbons in atmospheric crude residue
EP0921184B1 (en) Production of lubricant base oils
US10000710B2 (en) Pyrolysis tar upgrading process
CA1195638A (en) Process for the production of hydrocarbon oil distillates
JP2825570B2 (en) Method for preparing low and high sulfur coke
CA1142117A (en) Process for the preparation of gas oil
EP0082555B1 (en) Process for the production of hydrocarbon oil distillates
US4210520A (en) Unsupported catalysts in the production of olefins
Sanford Molecular approach to understanding residuum conversion
CA2099713A1 (en) Process for converting heavy hydrocarbon oil into light hydrocarbon fuel
RU2186090C2 (en) Method for production of liquid hydrocarbons by hydrogenation and demetallization of heavy oil feedstock
CA1122914A (en) Process for upgrading heavy hydrocarbonaceous oils
US2118940A (en) Destructive hydrogenation of distillable carbonaceous material
JPH0617057A (en) Method for converting heavy oil into light oil
US4344838A (en) Coal conversion catalysts
US4295954A (en) Coal conversion catalysts
JPH06248278A (en) Method for carrying out hydrocracking of heavy oil
JP4543033B2 (en) Process and composition of feedstock preparation usable for the preparation of lower olefins
US2028348A (en) Process for hydrogenating distillable carbonaceous materials
EP0082551B1 (en) Process for the production of hydrocarbon oil distillates
US1937554A (en) Production of valuable hydrocarbons
RU2788554C1 (en) Method for processing heavy oils
EP0396384A2 (en) Hydrocracking of asphaltene-rich bitumen residuums
US3407134A (en) Process for hydrocracking an asphaltic hydrocarbon feed stock in the presence of a hydrogenated hydrocarbon and hydrocaracking catalyst
JPH07316566A (en) Hydrogenation treatment of heavy oil