JPH06170244A - Device for recovering magnetic catalyst particles - Google Patents

Device for recovering magnetic catalyst particles

Info

Publication number
JPH06170244A
JPH06170244A JP34975192A JP34975192A JPH06170244A JP H06170244 A JPH06170244 A JP H06170244A JP 34975192 A JP34975192 A JP 34975192A JP 34975192 A JP34975192 A JP 34975192A JP H06170244 A JPH06170244 A JP H06170244A
Authority
JP
Japan
Prior art keywords
magnets
catalyst particles
magnetic catalyst
magnetic
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34975192A
Other languages
Japanese (ja)
Inventor
Susumu Takada
進 高田
Tamotsu Minagawa
保 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP34975192A priority Critical patent/JPH06170244A/en
Publication of JPH06170244A publication Critical patent/JPH06170244A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a device for recovering magnetic catalyst particles where at the time of recovering magnetic catalyst particles, the strong magnetic field is effectively generated and the recovery efficiency of magnetic catalyst particles is increased in a system for performing reaction using magnetic catalyst particles. CONSTITUTION:Magnets 6a to 6d for recovering magnetic catalyst particles are installed outside a passage constituting body 4 through which fluid after reaction is passed and simultaneously these magnets are arranged so that the surfaces opposite to the passage constituting body of the adjacent magnets 6a, 6c and 6b, 6d may have the polarity reverse to each other. And they are arranged so that the opposite surfaces of magnets 6a, 6b and 6c, 6d facing each other across the passage constituting body 4 may have the same polarity as each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微生物や酵素等の触媒
を固定した磁性粒子を食品、薬剤、化学製品等の原料、
あるいは、下水、廃水等に接触させて反応を促進させ、
所望の生成物あるいは廃棄物とするシステムにおいて、
反応終了後に磁性触媒粒子を回収する装置に関する。
FIELD OF THE INVENTION The present invention relates to magnetic particles having catalysts such as microorganisms and enzymes fixed, as raw materials for foods, drugs, chemical products, etc.
Alternatively, contact with sewage, wastewater, etc. to accelerate the reaction,
In the system of the desired product or waste,
The present invention relates to a device for collecting magnetic catalyst particles after the reaction is completed.

【0002】[0002]

【従来の技術】微生物や酵素等の触媒を磁性粒子に固定
してなる磁性触媒粒子を、食品等の原料、あるいは浄化
すべき下水、廃水等に混合し、反応させて所望の生成物
あるいは処理物済の排水等を得るシステムにおいて、触
媒の再使用を図るために、反応槽から流出させる反応後
の液から粒子を分離回収してタンク内に戻す技術が開発
され、例えば特開昭61−257180号公報あるいは
特開平2−95496号公報にこの旨の記述がある。
2. Description of the Related Art Magnetic catalyst particles obtained by fixing catalysts such as microorganisms and enzymes on magnetic particles are mixed with raw materials such as foods, sewage or waste water to be purified, and reacted to obtain a desired product or treatment. In a system for obtaining spent wastewater and the like, in order to reuse the catalyst, a technique has been developed in which particles are separated and collected from a liquid after the reaction flowing out from a reaction tank and returned to the tank, for example, Japanese Patent Laid-Open No. 61- No. 257180 or Japanese Patent Laid-Open No. 2-95496 has a description to this effect.

【0003】[0003]

【発明が解決しようとする課題】前記システムにおい
て、磁性触媒粒子を磁石を用いて回収する場合、磁性触
媒粒子の回収率を上げることは、触媒および磁性粒子の
損失を少なくし、また生成物あるいは廃棄物中の磁性粒
子等の混入率を低下させる意味で重要である。しかしな
がら、前記特開昭61−257180号公報において
は、磁気分離装置なる記述があるだけで、具体的な記載
はない。また、特開平2−95496号公報に記載のも
のは、ドラム内面に円環状に配置した電磁石を反応後の
液中に浸漬し、着磁、消磁を繰り返して磁性触媒粒子を
回収する構成となっており、磁石の配置については全く
検討されていない。一般に強い磁石を用いれば、高い回
収率が得られ、目的を達成できることは自明であるが、
装置が大きくなった場合、磁石の強さには限界があり、
所望の回収率が得られなくなる。
In the above system, when recovering the magnetic catalyst particles by using a magnet, increasing the recovery rate of the magnetic catalyst particles reduces the loss of the catalyst and the magnetic particles, and This is important in the sense of reducing the mixing rate of magnetic particles and the like in waste. However, in the above-mentioned Japanese Patent Laid-Open No. 61-257180, there is only a description of a magnetic separation device and no specific description. Further, the one described in Japanese Patent Laid-Open No. 2-95496 has a structure in which an electromagnet arranged in an annular shape on the inner surface of a drum is immersed in a liquid after the reaction, and magnetization and demagnetization are repeated to collect magnetic catalyst particles. However, no consideration has been given to the arrangement of magnets. Generally, if a strong magnet is used, a high recovery rate can be obtained, and it is obvious that the purpose can be achieved.
When the device gets bigger, there is a limit to the strength of the magnet,
The desired recovery rate cannot be obtained.

【0004】本発明は、上記した点に鑑み、磁性触媒粒
子を用いて反応を行わせるシステムにおいて、磁性触媒
粒子の回収を行う場合に大きな磁場購買を発生させるこ
とができ、磁性触媒粒子の回収効率を上げることが可能
となる磁性触媒粒子の回収装置を提供することを目的と
する。
In view of the above points, the present invention can generate a large magnetic field purchase when recovering the magnetic catalyst particles in the system in which the reaction is performed using the magnetic catalyst particles. It is an object of the present invention to provide a magnetic catalyst particle recovery device capable of increasing efficiency.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するため、反応後の流体を通す配管等の流路構成体の
外側に、前記磁性触媒粒子回収用磁石を設けると共に、
隣り合う粒子回収用磁石の流路構成体に対向する面が相
互に逆磁性となるようにこれらの磁石を配置したことを
特徴とする。さらに好ましくは、前記粒子回収用磁石
を、流路構成体を挟んで対向する磁石の対向面が相互に
同極性をなすように配置する。
In order to achieve the above object, the present invention provides the magnet for recovering magnetic catalyst particles on the outside of a flow path forming body such as a pipe through which a fluid after reaction is passed,
It is characterized in that these magnets are arranged so that the surfaces of the adjacent particle collecting magnets that face the flow path constituting body have mutually opposite magnetism. More preferably, the particle collecting magnets are arranged so that the facing surfaces of the magnets facing each other with the flow path forming body interposed therebetween have the same polarity.

【0006】[0006]

【作用】上述のように、粒子回収用磁石を配置すること
により、回収部の磁場勾配が大きくなり、磁性触媒粒子
を強い吸着力で効率よく回収できる。
As described above, by disposing the magnet for collecting particles, the magnetic field gradient of the collecting section becomes large, and the magnetic catalyst particles can be efficiently collected with a strong adsorption force.

【0007】[0007]

【実施例】図1は本発明による磁性触媒粒子の回収装置
を適用するシステムの一例を示す構成図である。図1に
おいて、1は反応槽であり、導入系統2より原料あるい
は下水等の被処理物を導入し、磁性体粒子に触媒を固定
した磁性触媒粒子をその原料に混合して撹拌装置3によ
り撹拌することにより反応させる。反応終了後は反応槽
1の出口側配管4に設けたポンプ5を作動させ、磁性触
媒回収用磁石6を周囲に配置した粒子回収箇所を通過さ
せて磁性触媒粒子を配管4の壁面に吸着させ、ポート
e、fを連通状態にしている三方弁7、配管8を通して
フィルタ9に導入し、フィルタ9により固形分(製品
等)10と排液(水)に分離し、排液は配管11と、ポ
ートh、iを連通状態にしている三方弁12、配管13
を通して排出する。このようにして1サイクルの処理が
終了した後は、磁石6を配管4から離し、三方弁7のポ
ートe、gを連通させ、かつ三方弁12のポートi、j
を連通させ、反応槽1内に配管14を通して補充液また
は水を導入し、ポンプ5を作動させて配管4、15と反
応槽1との間で液(水)を循環させることにより、粒子
を反応槽1に戻す。このような工程を繰り返して食品、
薬剤、化学製品の生産、あるいは下水、廃水等の処理を
行う。
1 is a block diagram showing an example of a system to which a magnetic catalyst particle recovery apparatus according to the present invention is applied. In FIG. 1, reference numeral 1 is a reaction tank, in which a raw material or an object to be treated such as sewage is introduced from an introduction system 2, magnetic catalyst particles having a catalyst fixed on magnetic particles are mixed with the raw material, and stirred by a stirrer 3. To react. After the completion of the reaction, the pump 5 provided in the outlet side pipe 4 of the reaction tank 1 is operated to pass the magnetic catalyst recovery magnet 6 through the particle recovery site around which the magnetic catalyst particles are adsorbed on the wall surface of the pipe 4. , The ports e, f are introduced into the filter 9 through the three-way valve 7 and the pipe 8 which are in communication with each other. , Three-way valve 12 that connects ports h and i to each other, and piping 13
Exhaust through. After the processing of one cycle is completed in this way, the magnet 6 is separated from the pipe 4, the ports e and g of the three-way valve 7 are communicated, and the ports i and j of the three-way valve 12 are connected.
By introducing a replenisher or water into the reaction tank 1 through the pipe 14 and operating the pump 5 to circulate the liquid (water) between the pipes 4 and 15 and the reaction tank 1. Return to the reaction tank 1. Repeating these steps, food,
Produce chemicals, chemical products, or treat sewage, wastewater, etc.

【0008】図2(A)は前記配管4の外側に配置する
本発明による磁石6の一部の配置を示す側面断面図、同
(B)はその横断面図であり、鎖線は磁束の流れを示
す。本例は配管4が縦に設置されている例について示し
ているが、横向きの場合もある。図2(A)、(B)に
示すように、本例においては、配管4の長手方向に隣り
合う磁石6aと6c、6bと6dは、配管4に対向する
面が逆極性となるように配置するとともに、配管4を挟
んで対向する磁石6aと6b、6cと6dの対向面は互
いに同極性となるように配置している。
FIG. 2 (A) is a side sectional view showing a part of the magnet 6 according to the present invention arranged outside the pipe 4, and FIG. 2 (B) is a lateral sectional view thereof. Indicates. Although this example shows an example in which the pipe 4 is installed vertically, it may be in a horizontal direction. As shown in FIGS. 2A and 2B, in this example, the magnets 6a and 6c, 6b and 6d adjacent to each other in the longitudinal direction of the pipe 4 are arranged so that the surfaces facing the pipe 4 have opposite polarities. The magnets 6a and 6b and 6c and 6d facing each other across the pipe 4 are arranged so that the facing surfaces thereof have the same polarity.

【0009】図2(C)は本発明の他の実施例を示す図
2(A)相当図であり、本例は配管4を挟んで対向する
磁石6aと6b、6cと6dの対向面を互いに逆極性と
なるように配置している。
FIG. 2 (C) is a view corresponding to FIG. 2 (A) showing another embodiment of the present invention. In this example, the facing surfaces of the magnets 6a and 6b and 6c and 6d facing each other with the pipe 4 interposed therebetween are shown. They are arranged so that their polarities are opposite to each other.

【0010】図3(A)〜(C)は図2に対する比較例
として示す他の磁石配置例であり、(A)は配管4の長
手方向に隣り合う磁石6aと6c、6bと6dの配管4
の対向面が互いに同極性となるように配置し、対向磁石
6aと6b、6cと6dの対向面が同極性となるように
配置している。(B)は配管4の長手方向に隣り合う磁
石のうち、一方の磁石6aと6cの配管4の対向面を同
極性、他方の磁石6bと6dの配管4の対向面が互いに
逆極性となるように配置し、対向する磁石のうち一方の
磁石6aと6bの対向面を逆極性、他方の磁石6cと6
dの対向面を同極性としている。また、(C)は配管4
の長手方向に隣り合うと磁石6aと6c、6bと6dの
配管4の対向面が互いに同極性となるように配置し、対
向磁石6aと6b、6cと6dの対向面を逆極性として
いる。
3A to 3C show another example of magnet arrangement shown as a comparative example with respect to FIG. 2, and FIG. 3A shows pipes of magnets 6a and 6c, 6b and 6d adjacent to each other in the longitudinal direction of the pipe 4. Four
Are arranged so that the opposite surfaces thereof have the same polarity, and the opposite surfaces of the opposite magnets 6a and 6b and 6c and 6d have the same polarity. (B) of the magnets adjacent to each other in the longitudinal direction of the pipe 4, the opposing faces of the one magnet 6a and 6c of the pipe 4 have the same polarity, and the opposing faces of the other magnets 6b and 6d of the pipe 4 have the opposite polarities. The magnets 6a and 6b of opposite magnets have opposite polarities and the other magnets 6c and 6b have opposite polarities.
The opposing surfaces of d have the same polarity. Also, (C) is the piping 4
When the magnets 6a and 6c are adjacent to each other in the longitudinal direction, the opposing surfaces of the pipe 4 of the magnets 6a and 6c and 6b and 6d have the same polarity, and the opposing surfaces of the opposing magnets 6a and 6b and 6c and 6d have the opposite polarities.

【0011】このような各磁石配置例につき、各磁石6
a〜6dに磁力4kGのサマリウムコバルト系のものを
用い、配管4の対向部の縦横の寸法を16 mm ×16m
m、配管4の半径方向の幅を8mm、各磁石6a〜6dの
配管4の長手方向の間隔を2mm、配管4の内径を14m
m、外径を18mmとし、また磁性粒子をニッケルフェラ
イト、平均粒径を2ミクロン、磁性粒子の濃度を0.6
g/l、処理液の総量を0.5リットル、流速を0.0
7リットル/min 、流速を3.5cm/sとした場合、配
管4の長手方向(y方向)の磁場勾配dB/dy、配管
4の半径方向(x方向)の磁場勾配dB/dx、これら
の勾配の積算値(dB/dy)*(dB/dx)、回収
率はそれぞれ表1に示す値であった。
For each of such magnet arrangement examples, each magnet 6
Use a samarium-cobalt type with a magnetic force of 4 kG for a to 6 d, and measure the vertical and horizontal dimensions of the facing portion of the pipe 4 to 16 mm × 16 m.
m, the radial width of the pipe 4 is 8 mm, the distance between the magnets 6a to 6d in the longitudinal direction of the pipe 4 is 2 mm, and the inner diameter of the pipe 4 is 14 m.
m, the outer diameter is 18 mm, the magnetic particles are nickel ferrite, the average particle size is 2 microns, and the magnetic particle concentration is 0.6.
g / l, total amount of processing solution 0.5 liter, flow rate 0.0
When the flow rate is 7 liters / min and the flow rate is 3.5 cm / s, the magnetic field gradient dB / dy in the longitudinal direction (y direction) of the pipe 4, the magnetic field gradient dB / dx in the radial direction (x direction) of the pipe 4, The integrated value of the gradient (dB / dy) * (dB / dx) and the recovery rate were the values shown in Table 1, respectively.

【0012】[0012]

【表1】 表1から分かるように、図2(A)、(B)のようにい
ずれの磁石6a〜6dについても、隣り合う磁石6aと
6c、6bと6dの磁極が逆極性となる配置とすること
により、前記磁場勾配dB/dy、dB/dxが図3の
各例よりも大きくなり、その積も大きくなるから、回収
率も大きくなる。また、図2(A)の例、すなわち配管
4を介して対向する磁石の対向面を同極性にした場合の
方が図2(C)の例に比較し、配管の長手方向の磁場勾
配dB/dyやdB/dxとの積算値が大きくなり、回
収率が増大する。100%に近い回収率を得るには、磁
石の数を増やして回収部の長さも所望の回収率が得られ
る長さに設定すればよいが、この場合、磁場勾配を大き
くして回収率を大とすれば、磁石個数や回収部の配管長
を低減できる。
[Table 1] As can be seen from Table 1, for all the magnets 6a to 6d as shown in FIGS. 2A and 2B, the magnetic poles of the adjacent magnets 6a and 6c, 6b and 6d have opposite polarities. , The magnetic field gradients dB / dy and dB / dx are larger than those in the respective examples of FIG. 3, and the product thereof is also large, so that the recovery rate is also large. In addition, the magnetic field gradient dB in the longitudinal direction of the pipe in the example of FIG. 2A, that is, in the case where the facing surfaces of the magnets facing each other via the pipe 4 have the same polarity, is compared to the example of FIG. 2C. The integrated value of / dy and dB / dx increases, and the recovery rate increases. In order to obtain a recovery rate close to 100%, the number of magnets may be increased and the length of the recovery section may be set to a length at which a desired recovery rate can be obtained. In this case, the magnetic field gradient is increased to increase the recovery rate. If it is large, the number of magnets and the length of the pipe of the recovery unit can be reduced.

【0013】次に図2(A)に示したものにおいて、図
4(A)に示すように、磁石6aと6c、6bと6dの
配管4の長手方向についての間隔Hと回収率との関係に
ついて実験により求めた結果を表2に示す。実験におい
ては、処理液の初期濃度を2g/lとし、他の条件は前
記表1における場合と同じにした。
Next, in the structure shown in FIG. 2A, as shown in FIG. 4A, the relationship between the interval H and the recovery rate of the magnets 6a and 6c, 6b and 6d in the longitudinal direction of the pipe 4. Table 2 shows the results obtained by the experiment. In the experiment, the initial concentration of the treatment liquid was set to 2 g / l, and the other conditions were the same as those in Table 1 above.

【0014】[0014]

【表2】 表2の結果から明らかなように、回収率を向上させるに
は磁石の間隔は狭いことな好ましい。図4(B)はこの
実験結果に基づいて構成した磁石集合体であり、多数の
磁石6a〜6jにより磁石の集合体を、対向する磁石の
対向面が同極性となり、隣り合う磁石の配管対向面が逆
極性となり、磁石間の間隔がゼロとなるように組み合わ
せたものである。
[Table 2] As is clear from the results in Table 2, it is preferable that the magnets are spaced closely to improve the recovery rate. FIG. 4 (B) shows a magnet assembly constructed based on the results of this experiment. The magnet assembly is made up of a large number of magnets 6a to 6j. The surfaces are opposite in polarity and the gap between the magnets is zero.

【0015】図4(C)は磁石6k、6mの形状を直方
体ではなく、弧状に形成し、半径方向に着磁したもの
で、この構造によれば、磁石6k、6mの磁場を粒子に
有効に作用させることができるという利点がある。図4
(D)は配管4に配置する磁石6n〜6tの周方向に隣
接するものを逆極性に形成したものである。
FIG. 4C shows that the magnets 6k and 6m are not rectangular parallelepiped but arcuate and are magnetized in the radial direction. According to this structure, the magnetic fields of the magnets 6k and 6m are effective for the particles. There is an advantage that it can act on. Figure 4
(D) shows magnets 6n to 6t arranged in the pipe 4 that are adjacent to each other in the circumferential direction and are formed to have opposite polarities.

【0016】図5は本発明のさらに他の実施例を示す斜
視図であり、本実施例は、前記配管4の途中に、あるい
は配管4として断面形状が長方形の回収部4Aを設け、
その両側に磁石6a〜6d、6w〜6zを設けたもので
ある。この場合、回収部4Aの同面に対面させる同高の
隣り合う磁石6aと6w、6bと6y等は、回収部4A
の対面部が逆極性になり、他の部分は図2(A)の構造
と同じに構成している。この構造によれば磁石間の間隔
を狭くすることができ、磁石により発生する磁場を粒子
回収に有効に利用できる。このような回収部4Aの容積
を大きくすれば、流体を流さない状態で粒子を回収する
事も可能である。
FIG. 5 is a perspective view showing still another embodiment of the present invention. In this embodiment, a collecting section 4A having a rectangular cross section is provided in the middle of the pipe 4 or as the pipe 4.
Magnets 6a to 6d and 6w to 6z are provided on both sides thereof. In this case, the magnets 6a and 6w, 6b and 6y, which are adjacent to each other and have the same height and face the same surface of the recovery unit 4A, are the same as those of the recovery unit 4A.
The facing portion has a reverse polarity, and the other portions have the same structure as the structure of FIG. According to this structure, the distance between the magnets can be narrowed, and the magnetic field generated by the magnets can be effectively used for particle recovery. If the volume of the recovery unit 4A is increased, it is possible to recover the particles without flowing the fluid.

【0017】[0017]

【発明の効果】請求項1によれば、磁石により発生する
磁場を有効に利用でき、磁性触媒粒子の回収率を上げる
ことができる。また、大きな磁場勾配が得られるため、
磁性触媒粒子の回収装置の小型化が可能となる。
According to the first aspect, the magnetic field generated by the magnet can be effectively used, and the recovery rate of the magnetic catalyst particles can be increased. Also, since a large magnetic field gradient can be obtained,
The magnetic catalyst particle recovery device can be downsized.

【0018】請求項2によれば、さらに大きな磁場勾配
が得られる。
According to the second aspect, a larger magnetic field gradient can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁性触媒粒子の回収装置を適用す
るシステムの一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a system to which a magnetic catalyst particle recovery device according to the present invention is applied.

【図2】(A)は本発明による磁石の一部の配置例を示
す側面断面図、(B)はその横断面図、(C)は本発明
による磁石配置の他の例を示す側面断面図である。
2A is a side sectional view showing an arrangement example of a part of a magnet according to the present invention, FIG. 2B is a lateral sectional view thereof, and FIG. 2C is a side sectional view showing another example of the magnet arrangement according to the present invention. It is a figure.

【図3】(A)〜(C)は本発明の比較例である磁石の
配置例を示す側面断面図である。
3A to 3C are side sectional views showing arrangement examples of magnets which are comparative examples of the present invention.

【図4】(A)は本実施例の磁石間隔の説明図、(B)
はその応用例を示す側面断面図、(C)、(D)は本発
明の変形例を示す横断面図である。
FIG. 4A is an explanatory diagram of a magnet interval according to the present embodiment, and FIG.
Is a side sectional view showing an application example thereof, and (C) and (D) are transverse sectional views showing a modified example of the present invention.

【図5】本発明の他の実施例を示す斜視図である。FIG. 5 is a perspective view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 導入系統 3 撹拌装置 4、8、11、13 配管 5 ポンプ 6、6a〜6z 磁石 7、12 三方弁 10 固形分 DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Introduction system 3 Stirrer 4, 8, 11, 13 Piping 5 Pump 6, 6a-6z magnet 7, 12 Three-way valve 10 Solid content

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原料または被処理物質に、触媒を固定した
磁性触媒粒子を流体の状態で接触させ、反応後の流体か
ら前記磁性触媒粒子を回収する装置であって、反応後の
流体を通す流路構成体の外側に、前記磁性触媒粒子回収
用磁石を設けると共に、隣り合う粒子回収用磁石の流路
構成体に対向する面が相互に逆磁性となるようにこれら
の磁石を配置したことを特徴とする磁性触媒粒子の回収
装置。
1. A device for contacting a raw material or a substance to be treated with magnetic catalyst particles having a catalyst fixed in a fluid state, and recovering the magnetic catalyst particles from a fluid after the reaction, in which the fluid after the reaction is passed. The magnetic catalyst particle recovery magnets are provided outside the flow path structure, and these magnets are arranged such that the surfaces of the adjacent particle recovery magnets facing the flow path structure have mutually opposite magnetism. A device for recovering magnetic catalyst particles.
【請求項2】請求項1において、前記粒子回収用磁石
を、流路構成体を挟んで対向する磁石の対向面が相互に
同極性をなすように配置したことを特徴とする磁性触媒
粒子の回収装置。
2. The magnetic catalyst particle according to claim 1, wherein the magnet for particle recovery is arranged such that the facing surfaces of the magnets facing each other with the flow path forming member interposed therebetween have the same polarity. Recovery device.
JP34975192A 1992-12-02 1992-12-02 Device for recovering magnetic catalyst particles Withdrawn JPH06170244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34975192A JPH06170244A (en) 1992-12-02 1992-12-02 Device for recovering magnetic catalyst particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34975192A JPH06170244A (en) 1992-12-02 1992-12-02 Device for recovering magnetic catalyst particles

Publications (1)

Publication Number Publication Date
JPH06170244A true JPH06170244A (en) 1994-06-21

Family

ID=18405858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34975192A Withdrawn JPH06170244A (en) 1992-12-02 1992-12-02 Device for recovering magnetic catalyst particles

Country Status (1)

Country Link
JP (1) JPH06170244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535802A (en) * 2000-06-16 2003-12-02 ザ ペン ステイト リサーチ ファンデーション Method and apparatus for manufacturing carbonaceous articles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535802A (en) * 2000-06-16 2003-12-02 ザ ペン ステイト リサーチ ファンデーション Method and apparatus for manufacturing carbonaceous articles
JP4896345B2 (en) * 2000-06-16 2012-03-14 ザ ペン ステイト リサーチ ファンデーション Method and apparatus for producing carbonaceous articles

Similar Documents

Publication Publication Date Title
KR100227327B1 (en) Water treatment facilities
KR101268031B1 (en) Fluid treatment method and apparatus
JP4447702B2 (en) Liquid purification reactor
US6458274B1 (en) Device for treating a fluid with ultra-high magnetic force
JPH06170244A (en) Device for recovering magnetic catalyst particles
Borghi et al. Magnetic recovery of modified activated carbon powder used for removal of endocrine disruptors present in water
JPH07809A (en) Magnetic treatment device for reforming liquid
AU2004303816B2 (en) Fluid purifier having magnetic field generation
JPH06170245A (en) Method for recovering magnetic catalyst particle
JP3680934B2 (en) Contact device and liquid treatment system
JPS61245815A (en) Apparatus for magnetizing iron component in liquid
JPH11221572A (en) Liquid reforming method using magnet and ceramic and device therefor
JPH0499473A (en) Apparatus for magnetic sterilization
JP3479690B2 (en) Magnetic separation method and magnetic separation device
JPS59139910A (en) Magnetic separation method
JPH0780491A (en) Biological treatment of waste water or the like
JP4038279B2 (en) Water treatment equipment using multipolar magnetic field
Franzreb et al. Use of magnet technology for phosphate elimination from municipal sewage
SU1263305A1 (en) Magnetic precipitator
JP2861866B2 (en) Activated sludge magnetic separator
JPH0463196A (en) Fluid treating device
JPH02265689A (en) Water treatment apparatus
JPS6253714A (en) Magnetic cleaning apparatus for fluid
JP2000312884A (en) Ion separator
JP2003251361A (en) Water treatment system and water treatment method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307