JPH06168724A - Nonaquous electrolyte secondary battery - Google Patents

Nonaquous electrolyte secondary battery

Info

Publication number
JPH06168724A
JPH06168724A JP4345361A JP34536192A JPH06168724A JP H06168724 A JPH06168724 A JP H06168724A JP 4345361 A JP4345361 A JP 4345361A JP 34536192 A JP34536192 A JP 34536192A JP H06168724 A JPH06168724 A JP H06168724A
Authority
JP
Japan
Prior art keywords
carbon material
negative electrode
less
electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4345361A
Other languages
Japanese (ja)
Other versions
JP2792373B2 (en
Inventor
Shigeo Komatsu
茂生 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18376084&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06168724(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4345361A priority Critical patent/JP2792373B2/en
Publication of JPH06168724A publication Critical patent/JPH06168724A/en
Application granted granted Critical
Publication of JP2792373B2 publication Critical patent/JP2792373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a high capacity carbon negative electrode by using highly crystalline carbon material for the negative electrode, and setting a charge quantity of the carbon material in a range of 0.9g/cm<3> or more and 1.6g/cm<3> or less. CONSTITUTION:A secondary battery is provided with a positive electrode capable of repeated charges and discharges, nonaqueous electrolyte including alkali metal ions, and a negative electrode comprising carbon material capable of storage and emission of the alkali metal ions. A spacing (d002) of a surface (002) by an X-ray wide angle diffraction method in the carbon material is set to be less than 0.337nm, and a charging density of the carbon material to the negative electrode is set to be 0.9g/cm<3> or more and 1.6g/cm<3> or less. In the case of the negative electrode which is applied as paste of the carbon material and binder formed by organic solvent, if a surface area of the carbon material is large, with a small grain size, a bulk density of the carbon material is low, so the charging density to the electrode is small if it is rolled. A high capacity can thus be achieved by using this negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池の
改良に関するもので、高容量の炭素負極を使用した非水
電解液二次電池を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a non-aqueous electrolyte secondary battery, and provides a non-aqueous electrolyte secondary battery using a high capacity carbon negative electrode.

【0002】[0002]

【従来の技術】非水電解液二次電池の正極活物質には、
二硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。中でも、リチウムコバルト複合酸化物( LixC
oO2 ) およびスピネル型リチウムマンガン酸化物(LixMn
2 O4 ) は、リチウムに対して4V以上のきわめて貴な電
位で充放電を行うため、正極として用いることで高い放
電電圧を有する電池が実現する。
2. Description of the Related Art Positive electrode active materials for non-aqueous electrolyte secondary batteries include
Various substances such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been investigated. Among them, lithium cobalt composite oxide (LixC
oO 2 ) and spinel type lithium manganese oxide (LixMn
Since 2 O 4 ) charges and discharges lithium at an extremely noble potential of 4 V or more, it can be used as a positive electrode to realize a battery having a high discharge voltage.

【0003】非水電解液は、非プロトン性の有機溶媒に
電解質となる金属塩を溶解させたものが用いられてい
る。例えば、リチウム塩に関しては、 LiClO4 、LiP
F6 、LiBF4 、 LiAsF6 、LiCF3 SO3 、等をプロピレン
カーボネート、エチレンカーボネート、1,2-ジメトキシ
エタン、γ- ブチロラクトン、ジオキソラン、2-メチル
テトラヒドロフラン、ジエチルカーボネート、ジメチル
カーボネート、スルホラン等の単独溶媒あるいは、混合
溶媒に溶解させたものが使用されている。これら非水電
解液は、電池容器に注入されて使用されるが、多孔質の
セパレータに含浸したり、高分子量の樹脂を添加して高
粘性にしたり、ゲル化させて流動性をなくした状態で使
用されることもある。
As the non-aqueous electrolytic solution, a solution in which a metal salt serving as an electrolyte is dissolved in an aprotic organic solvent is used. For example, for lithium salts, LiClO 4 , LiP
F 6, LiBF 4, LiAsF 6 , LiCF 3 SO 3, propylene carbonate and the like, ethylene carbonate, 1,2-dimethoxyethane, .gamma.-butyrolactone, dioxolane, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, alone sulfolane What is dissolved in a solvent or a mixed solvent is used. These non-aqueous electrolytes are used by injecting into a battery container, but impregnated into a porous separator, added high molecular weight resin to make it highly viscous, or gelled to lose fluidity. Sometimes used in.

【0004】非水電解液二次電池の負極活物質として、
従来より様々な物質が検討されてきたが、高エネルギー
密度が期待されるものとして、リチウム系の負極が注目
を浴びている。
As a negative electrode active material for a non-aqueous electrolyte secondary battery,
Although various substances have been studied so far, lithium-based negative electrodes have been attracting attention because they are expected to have high energy density.

【0005】リチウムは高い起電力を有し、高エネルギ
ー密度が期待できるが、その高い反応性のために、電池
の安全性に問題があり、また、充電反応において微粒子
状の金属リチウムが発生しやすく、内部短絡や充放電効
率の低下が起こるという大きな問題があり、これを同時
に解決するものとして、リチウムイオンを保持するホス
ト物質として、例えば特開昭61-111907 号公報に記載さ
れているようなカーボン材料の結晶格子の層間に、リチ
ウムイオンを吸蔵、放出することが可能な炭素材料を用
いた、リチウムイオンタイプの二次電池が開発されてい
る。
Lithium has a high electromotive force and can be expected to have a high energy density, but due to its high reactivity, there is a problem in the safety of the battery, and particulate lithium metal is generated in the charging reaction. There is a big problem that the internal short circuit and the charging / discharging efficiency are lowered, and as a solution to these problems at the same time, as a host material that holds lithium ions, for example, as described in JP-A-61-111907. A lithium ion type secondary battery using a carbon material capable of inserting and extracting lithium ions between layers of a crystal lattice of such a carbon material has been developed.

【0006】[0006]

【発明が解決しようとする課題】従来、非水電解液二次
電池の電解液としては、良好な電気電導度を得るため
に、主に環状エステルとしてプロピレンカーボネートを
用い、ジエチルカーボネート等の鎖状エステルの混合溶
媒に、電解質となるリチウム塩を溶解した有機電解液が
用いられていた関係上、負極炭素に関しては、完全に黒
鉛化したものは、プロピレンカーボネートとの反応性か
ら好ましくないとされていた。黒鉛化の程度は炭素結晶
の格子面間距離である d002 とC 軸方向の結晶子の長さ
Lcで表され、完全に黒鉛化したものは、 d002 =0.3354n
m 、Lc=100nm以上であるが、たとえば特開昭62-122066
、特開昭63-26953、特開昭63-69154、特開昭63-114056
、特開昭63-276873 など、 d002 =0.337nm以上、Lc=15
nm 以下と黒鉛化の充分でないもののほうが好ましい特
性を示すとされていた。しかし、これらの炭素材料は、
リチウムインターカレーション時の侵入サイトである六
角網状構造が発達していないために、放電容量は、150
〜200mAh/gしか得られず高容量化に対し問題があった。
Conventionally, in order to obtain good electric conductivity, propylene carbonate has been mainly used as a cyclic ester as a liquid electrolyte of a non-aqueous electrolyte secondary battery, and a chain structure such as diethyl carbonate has been used. Since the organic solvent in which a lithium salt serving as an electrolyte was dissolved was used as the mixed solvent of the ester, regarding the negative electrode carbon, a completely graphitized one was not preferable because of its reactivity with propylene carbonate. It was The degree of graphitization is the distance between lattice planes of the carbon crystal, d 002, and the length of the crystallite in the C-axis direction.
It is represented by Lc and is fully graphitized: d 002 = 0.3354n
m, Lc = 100 nm or more, for example, JP-A-62-122066
, JP-A-63-26953, JP-A-63-69154, JP-A-63-114056
, JP-A-63-276873, d 002 = 0.337 nm or more, Lc = 15
It was said that those having a particle size of not more than nm and having insufficient graphitization exhibited more preferable properties. However, these carbon materials
The discharge capacity was 150 because the hexagonal network structure, which is an invasion site during lithium intercalation, was not developed.
Only ~ 200mAh / g was obtained, which was a problem for higher capacity.

【0007】炭素材料を高容量化するためには、リチウ
ムのインターカレーションサイトの増大のため、炭素六
角網状構造を発達させる必要があり、炭素の結晶パラメ
ータであるX線広角回折法による(002) 面の面間隔(d
002 ) が0.337nm 未満で、C 軸方向の結晶子長さ(Lc)が
100nm 以上である必要がある。
In order to increase the capacity of a carbon material, it is necessary to develop a carbon hexagonal network structure due to an increase in lithium intercalation sites, which is determined by the X-ray wide angle diffraction method which is a crystal parameter of carbon (002 ) Face spacing (d
002 ) is less than 0.337 nm and the crystallite length (Lc) in the C-axis direction is
It must be 100 nm or more.

【0008】しかし、炭素六角網状構造を発達させた高
結晶性炭素材料に、電解液溶媒の環状エステルとしてプ
ロピレンカーボネートを用いると、充電時に炭素表面で
電解液の分解反応が起こり、リチウムのインターカレー
ションが進みにくくなり、容量が低下する。このため、
高容量の炭素材料の発見が遅れた。反応性の低いエチレ
ンカーボネート等と炭素六角網状構造を発達させた高結
晶性炭素を組み合わせることで300mAh/g以上の高容量を
得ることができる。
[0008] However, when propylene carbonate is used as a cyclic ester of a solvent for an electrolyte in a highly crystalline carbon material having a carbon hexagonal network structure, a decomposition reaction of the electrolyte occurs on the carbon surface during charging, and an intercalation of lithium occurs. Option becomes difficult to proceed and the capacity decreases. For this reason,
The discovery of high-capacity carbon materials was delayed. A high capacity of 300 mAh / g or more can be obtained by combining low-reactivity ethylene carbonate or the like with highly crystalline carbon having a developed hexagonal carbon network structure.

【0009】また、上記炭素材料と合成樹脂バインダー
の混合物を金属基板に塗布、圧延し、電極作製したとこ
ろ、従来の結晶性が低い炭素材料を用いた場合よりも低
い放電容量しか得ることができなかった。
Further, when a mixture of the above carbon material and a synthetic resin binder is applied to a metal substrate and rolled to produce an electrode, a discharge capacity lower than that obtained when a conventional carbon material having low crystallinity is used can be obtained. There wasn't.

【0010】本発明は、このような従来の問題を解決
し、高容量の非水電解液二次電池を提供するものであ
る。
The present invention solves such conventional problems and provides a high capacity non-aqueous electrolyte secondary battery.

【0011】[0011]

【課題を解決するための手段】これらの課題を解決する
ために、本発明は、繰り返し充放電可能な正極と、アル
カリ金属イオンを含む非水電解液と、アルカリ金属イオ
ンを吸蔵放出することが可能な炭素材料より成る負極を
具備した非水電解液二次電池において、前記炭素材料の
X線広角回折法による(002) 面の面間隔(d002 ) が0.33
7nm 未満で、かつ炭素材料の負極への充填密度が、0.9
g/cm3 以上 1.6g/cm3 以下であることを特徴とする非水
電解液二次電池を提供するものである。
In order to solve these problems, according to the present invention, it is possible to repeatedly charge and discharge a positive electrode, a non-aqueous electrolyte solution containing alkali metal ions, and store and release alkali metal ions. In a non-aqueous electrolyte secondary battery having a negative electrode made of a possible carbon material, the carbon material has a (002) plane spacing (d 002 ) of 0.33 according to the X-ray wide angle diffraction method.
Less than 7 nm, and the packing density of the carbon material in the negative electrode is 0.9
The non-aqueous electrolyte secondary battery is characterized in that it is g / cm 3 or more and 1.6 g / cm 3 or less.

【0012】[0012]

【作用】低結晶性の炭素材料の結晶状態は、炭素六角網
状平面が積層した黒鉛構造を有した部分と、層が乱れた
アモルファス部分が混在しているため、圧延により充填
密度を高めようとしてもても、アモルファス部分の影響
で、1.3 g/cm3 程度と低い充填密度しか得られないた
め、重量あたりの放電容量は、圧延による影響を受けな
いが、その反面、高い充填密度が得られない。また、重
量当たりの放電容量も低いことから、高容量の負極には
成り得ない。しかし、高結晶性炭素材料の真密度は、2.
2 〜2.3 g/cm3 であることから、圧延等により高い密度
充填が可能であるが、高密度になると、炭素六角網状平
面が電極集電体に対し平行に配向し、リチウムの侵入サ
イトの減少、電極の内部抵抗が増大により、重量当たり
の放電容量が減少することが考えられる。そこで、高結
晶性炭素材料の充填密度と電極容積当たりの放電容量の
関係について検討を行った結果、負極体積当たりの炭素
材料充填量が、0.9 g/cm3 以上1.6 g/cm3 以下の範囲に
したときに、高容量の負極が得られることを見い出し
た。
[Function] The crystalline state of the low-crystalline carbon material is such that a portion having a graphite structure in which carbon hexagonal net planes are laminated and an amorphous portion in which the layers are disordered are mixed, so that the packing density is increased by rolling. Due to the influence of the amorphous part, only a low packing density of about 1.3 g / cm 3 can be obtained, so the discharge capacity per weight is not affected by rolling, but on the other hand, a high packing density can be obtained. Absent. Further, since the discharge capacity per weight is low, it cannot be a high capacity negative electrode. However, the true density of highly crystalline carbon materials is 2.
Since it is 2 ~2.3 g / cm 3, although it is capable of high density packing by rolling or the like, at a high density, the carbon hexagonal net planes are oriented parallel to the electrode current collector, the lithium entry site It is conceivable that the discharge capacity per unit weight is decreased due to the decrease and the internal resistance of the electrode. Therefore, as a result of investigating the relationship between the packing density of the highly crystalline carbon material and the discharge capacity per electrode volume, the carbon material packing amount per anode volume was in the range of 0.9 g / cm 3 or more and 1.6 g / cm 3 or less. It was found that a high-capacity negative electrode was obtained when the

【0013】負極に高結晶性炭素材料を使用し、炭素材
料の充填量が、0.9 g/cm3 以上1.6g/cm3 以下の範囲に
することにより、高容量の炭素負極が可能となった。
By using a highly crystalline carbon material for the negative electrode and setting the filling amount of the carbon material in the range of 0.9 g / cm 3 or more and 1.6 g / cm 3 or less, a high-capacity carbon negative electrode becomes possible. .

【0014】また、実施例で示すような炭素材料とバイ
ンダーを有機溶剤でペースト状にして塗布する負極の場
合、均一に塗布するためには、炭素粒子の粒子径と表面
積が重要な因子となる。炭素材料の表面積が大きく、粒
子径が小さい場合は、炭素材料のかさ密度が低くなり、
圧延しても電極への充填密度が小さくなる。また粒子径
が大きくなりすぎると均一に塗布することが困難にな
る。炭素材料の平均粒子径は5 μm 以上50μm 以下、表
面積は4m2 /g以上、 20m2 /g以下が好ましい。
Further, in the case of a negative electrode obtained by applying a carbon material and a binder in the form of a paste with an organic solvent as shown in Examples, the particle size and surface area of carbon particles are important factors for uniform application. . If the surface area of the carbon material is large and the particle size is small, the bulk density of the carbon material will be low,
Even if rolled, the packing density in the electrode becomes small. Further, if the particle size becomes too large, it becomes difficult to apply it uniformly. The carbon material preferably has an average particle size of 5 μm or more and 50 μm or less and a surface area of 4 m 2 / g or more and 20 m 2 / g or less.

【0015】[0015]

【実施例】以下に、好適な実施例をもちいて本発明を説
明する。 [実施例1]実施例に使用した負極は次のように作製し
た。重量比で、高結晶性炭素材料(X線回折による d
002 =0.336nm,Lc=100nm 以上、平均粒子径25μm 、BET
法による表面積= 9m2 /g)88部と、結着剤のポリフッ化
ビニリデン12部と溶剤のN-メチル-2- ピロリドン150 部
を混練してペースト状にし、厚さ 20 μm の銅箔に塗布
した後、乾燥し、厚さ 0.60mm の電極基板を作製した。
この電極を、打ち抜いて、幅14mm、長さ52mmの短冊状と
したのち、圧延条件をかえて充填密度の異なる負極板を
得た。負極1 枚当たりの炭素材料の重量は0.20g であっ
た。また、比較例として、低結晶性炭素材料(X線回折
による d002 =0.351nm,Lc=4nm 、BET 法による表面積=1
2m2 /g)についても同様の方法で負極板を作製した。
EXAMPLES The present invention will be described below with reference to preferred examples. [Example 1] The negative electrode used in the examples was prepared as follows. By weight ratio, the highly crystalline carbon material (d by X-ray diffraction
002 = 0.336nm, Lc = 100nm or more, average particle size 25μm, BET
Surface area by the method = 9 m 2 / g) 88 parts, polyvinylidene fluoride 12 parts as a binder and 150 parts N-methyl-2-pyrrolidone as a solvent are kneaded to form a paste, and a 20 μm thick copper foil is formed. After coating, it was dried to prepare an electrode substrate having a thickness of 0.60 mm.
This electrode was punched out into a strip shape having a width of 14 mm and a length of 52 mm, and the rolling conditions were changed to obtain negative electrode plates having different packing densities. The weight of the carbon material per one negative electrode was 0.20 g. As a comparative example, a low crystalline carbon material (d 002 = 0.351 nm, Lc = 4 nm by X-ray diffraction, surface area by BET method = 1)
A negative electrode plate was prepared by the same method for 2 m 2 / g).

【0016】この負極板の単極特性を測定した。対極と
してリチウムを使用し、1 モル濃度のLiPF6 を溶解した
エチレンカーボネートとジエチルカーボネートの等量混
合液中で充放電試験を行った。電流15mAで、リチウム電
位に対して0Vまで充電した後、同じ15mAの電流で放電し
た。図1に、放電容量と炭素材料の負極容積当たりの充
填密度との関係について比較例と共に示す。充填密度が
1.0 g/cm3 以上 1.5g/cm3 以下の範囲で、高いエネルギ
ー密度が得られた。 [実施例2]実施例に使用した負極は次のように作製し
た。重量比で、高結晶性炭素材料88部と、結着剤のポリ
フッ化ビニリデン12部と溶剤のN-メチル-2- ピロリドン
150部を混練してペースト状にし、厚さ 20 μm の銅箔
に塗布した後、乾燥、圧延、を施して、厚さ 0.20mm の
電極基板を作製した。この電極を打ち抜いて、幅14mm、
長さ52mmの短冊状の負極板を得た。負極1 枚当たりの炭
素材料の重量は0.20gで、充填密度は、1.37g/cm3 であ
った。炭素材料は人造黒鉛を使用し、X線回折法により
求めた物性値は、結晶層間距離 d002 =0.336nm、Lc=100
nm以上のものを用いた。上記負極板の単極特性を実施例
1と同様の方法で測定した。表1に、実施例に係る炭素
材料の物性値と単極での放電容量測定結果について示
す。
The unipolar characteristics of this negative electrode plate were measured. Using lithium as a counter electrode, a charge / discharge test was conducted in an equal volume mixture of ethylene carbonate and diethyl carbonate in which 1 molar LiPF 6 was dissolved. The battery was charged to 0 V with respect to the lithium potential at a current of 15 mA and then discharged at the same current of 15 mA. FIG. 1 shows the relationship between the discharge capacity and the packing density of the carbon material per negative electrode volume together with a comparative example. Packing density
High energy density was obtained in the range of 1.0 g / cm 3 or more and 1.5 g / cm 3 or less. Example 2 The negative electrode used in the example was manufactured as follows. By weight ratio, 88 parts of highly crystalline carbon material, 12 parts of polyvinylidene fluoride as a binder and N-methyl-2-pyrrolidone as a solvent.
150 parts of the mixture was kneaded to form a paste, which was applied to a copper foil having a thickness of 20 μm, dried and rolled to prepare an electrode substrate having a thickness of 0.20 mm. Punch out this electrode, width 14mm,
A strip-shaped negative electrode plate having a length of 52 mm was obtained. The weight of the carbon material per negative electrode was 0.20 g, and the packing density was 1.37 g / cm 3 . The artificial carbon is used as the carbon material, and the physical properties obtained by X-ray diffractometry are as follows: Crystal interlayer distance d 002 = 0.336 nm, Lc = 100
The thickness of nm or more was used. The unipolar characteristics of the negative electrode plate were measured by the same method as in Example 1. Table 1 shows the physical property values of the carbon materials according to the examples and the measurement results of the discharge capacity at a single electrode.

【0017】[0017]

【表1】 [実施例3]図2は、本発明の一実施例である角形電池
の要部断面図である。1 はステンレス鋼製の角形容器で
あり、その内部に負極2 と、セパレータ3 、正極4 を収
納している。負極2 は、銅箔に炭素材料を実施例2と同
様の方法で塗布し、作製したものであり、負極1 枚で65
mAh の放電が可能である。非水電解液を含浸したポリプ
ロピレン製の多孔質セパレータ3 を介して、 LiCoO2
極と交互に挿入されている。5は容器蓋であり、容器1
の開口部に周縁部で溶接されている。容器蓋5の中央部
にはガスケット6 を介してはとめ7 が固定されており、
正極端子9 が溶接されている。8 は正極端子9 の内部に
固定された安全弁であり、はとめ7 の開口部を封止して
いる。10は、電池の異常時に内部圧力が上昇し、安全弁
8 が作動した時の排気口である。11は、負極2 の上部に
設けた負極リードであり、電池蓋5 の内面に接続されて
いる。12は、正極4 の上部に設けた正極リードであり、
正極接続片13を介してはとめ7 と接続している。
[Table 1] [Embodiment 3] FIG. 2 is a cross-sectional view of an essential part of a prismatic battery according to an embodiment of the present invention. Reference numeral 1 is a rectangular container made of stainless steel, in which a negative electrode 2, a separator 3 and a positive electrode 4 are housed. Negative electrode 2 was prepared by applying a carbon material to a copper foil in the same manner as in Example 2, and one negative electrode was used.
It is possible to discharge mAh. The LiCoO 2 positive electrodes are alternately inserted through the porous separator 3 made of polypropylene impregnated with the non-aqueous electrolyte. 5 is a container lid, and container 1
Is welded at the peripheral edge to the opening. A stopper 7 is fixed to the center of the container lid 5 via a gasket 6,
Positive terminal 9 is welded. A safety valve 8 is fixed inside the positive electrode terminal 9 and seals the opening of the eyelet 7. 10 indicates that the internal pressure rises when the battery is abnormal and the safety valve
This is the exhaust port when 8 is activated. Reference numeral 11 denotes a negative electrode lead provided on the negative electrode 2 and is connected to the inner surface of the battery lid 5. 12 is a positive electrode lead provided on the positive electrode 4,
It is connected to the eyelet 7 via the positive electrode connecting piece 13.

【0018】正極は、次のように作製した。重量比で正
極活物質である LiCoO2 を87部と、導電助剤のアセチレ
ンブラック 1.5部と、結着剤のポリフッ化ビニリデン1
1.5部を溶剤のN-メチル-2- ピロリドン100 部を混練し
てペースト状にし、厚さ 20 μm のアルミニウム箔に塗
布した後、乾燥、圧延、を施して、厚さ 0.40mm の正極
基板を作製した。この基板を打ち抜いて、幅14mm、長さ
52mmの短冊状の正極を得た。正極1枚で、75mAh の放電
が可能である。
The positive electrode was manufactured as follows. 87 parts by weight of the positive electrode active material LiCoO 2 , 1.5 parts of conductive aid acetylene black, and the binder of polyvinylidene fluoride 1
1.5 parts of 100 parts of N-methyl-2-pyrrolidone as a solvent is kneaded to form a paste, which is applied on an aluminum foil with a thickness of 20 μm, dried and rolled to form a positive electrode substrate with a thickness of 0.40 mm. It was made. This board is punched out, width 14mm, length
A 52 mm strip-shaped positive electrode was obtained. A single positive electrode can discharge 75 mAh.

【0019】正極 6枚、負極 7枚で、二次電池を構成し
た。セパレータとして、厚さ0.10mm、目付け50 g/m2
ポリプロピレン不織布を用い、正極板を被覆し、周囲を
ヒートシールした。非水電解液として、エチレンカーボ
ネートとジエチルカーボネートの1:1 混合溶媒に、LiPF
6 1 モル/リットルの割合で溶解したものを使用した。
実施例電池の寸法は、厚さ6mm 、幅16mm、高さ65mmであ
る。
A secondary battery was composed of 6 positive electrodes and 7 negative electrodes. As the separator, a polypropylene non-woven fabric having a thickness of 0.10 mm and a basis weight of 50 g / m 2 was used, the positive electrode plate was covered, and the periphery was heat-sealed. As a non-aqueous electrolyte, use LiPF in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate.
What was melt | dissolved in the ratio of 61 mol / liter was used.
The dimensions of the example battery are 6 mm thick, 16 mm wide, and 65 mm high.

【0020】実施例電池を80mAの電流で端子電圧が4.1V
を示すまで充電した後、同じく80mAの電流で放電した。
表2に、試作した電池の初期の1 サイクル目の放電容量
とエネルギー密度を示す。本発明の電池は、高いエネル
ギー密度を有していることが確認された。
The battery of the example has a terminal voltage of 4.1 V at a current of 80 mA.
After being charged up to the point of, the same was discharged at a current of 80 mA.
Table 2 shows the discharge capacity and energy density at the initial first cycle of the prototype battery. It was confirmed that the battery of the present invention has a high energy density.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明によれば、繰り返し充放電可能な
正極と、アルカリ金属イオンを含む非水電解液と、アル
カリ金属イオンを吸蔵放出することが可能な炭素材料よ
り成る負極を具備した非水電解液二次電池において、前
記炭素材料のX線広角回折法による(002) 面の面間隔(d
002 ) が0.337nm 未満で、かつ炭素材料の負極への充填
密度が、0.9 g/cm3 以上1.6 g/cm3 以下にした負極を使
用することにより、高容量の非水電解液二次電池を提供
することが可能となった。
According to the present invention, a non-aqueous electrolyte comprising a positive electrode capable of repeated charging and discharging, a non-aqueous electrolyte containing alkali metal ions, and a negative electrode made of a carbon material capable of inserting and extracting alkali metal ions. In the water electrolyte secondary battery, the interplanar spacing of the (002) plane (d
002 ) is less than 0.337 nm and the packing density of the carbon material in the negative electrode is 0.9 g / cm 3 or more and 1.6 g / cm 3 or less. It has become possible to provide.

【0023】尚、実施例では、負極集電体に銅箔を用い
たが、ニッケルあるいはニッケル−銅合金、銀、鉄、ス
テンレス鋼等、使用するアルカリ金属に耐食性のある金
属であれば使用でき、形状は箔に限らず、発泡金属、金
属繊維フエルト、穿孔板などが使用できる。
In the examples, copper foil was used for the negative electrode current collector, but any metal having corrosion resistance to the alkali metal used, such as nickel or nickel-copper alloy, silver, iron, stainless steel, etc., can be used. The shape is not limited to foil, and foam metal, metal fiber felt, perforated plate, etc. can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電容量と炭素材料の負極容積当たりの充填密
度との関係について示すした図。
FIG. 1 is a diagram showing a relationship between a discharge capacity and a packing density of a carbon material per negative electrode volume.

【図2】本発明の実施例における電池の構造を示す断面
図。
FIG. 2 is a cross-sectional view showing the structure of the battery in the example of the present invention.

【符号の説明】[Explanation of symbols]

1 容器 2 負極 3 セパレータ 4 正極 5 容器蓋 6 ガスケット 7 はとめ 8 安全弁 9 正極端子 10 排気孔 11 負極リード 12 正極リード 13 正極接続片 DESCRIPTION OF SYMBOLS 1 container 2 negative electrode 3 separator 4 positive electrode 5 container lid 6 gasket 7 stop 8 safety valve 9 positive electrode terminal 10 exhaust hole 11 negative electrode lead 12 positive electrode lead 13 positive electrode connecting piece

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】繰り返し充放電可能な正極と、アルカリ金
属イオンを含む非水電解液と、アルカリ金属イオンを吸
蔵放出することが可能な炭素材料より成る負極を具備し
た非水電解液二次電池において、前記炭素材料のX線広
角回折法による(002) 面の面間隔(d002 ) が0.337nm 未
満で、かつ炭素材料の負極への充填密度が、 0.9g/cm3
以上 1.6g/cm3 /cm3以下であることを特徴とする非水電
解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode that can be repeatedly charged and discharged, a non-aqueous electrolytic solution containing alkali metal ions, and a negative electrode made of a carbon material that can store and release alkali metal ions. In the above-mentioned carbon material, the interplanar spacing (d 002 ) of the (002) plane by the X-ray wide-angle diffraction method is less than 0.337 nm, and the packing density of the carbon material in the negative electrode is 0.9 g / cm 3
Above 1.6g / cm 3 / c m3 nonaqueous electrolyte secondary batteries, characterized by less.
JP4345361A 1992-11-30 1992-11-30 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2792373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4345361A JP2792373B2 (en) 1992-11-30 1992-11-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4345361A JP2792373B2 (en) 1992-11-30 1992-11-30 Non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9369447A Division JPH10199534A (en) 1997-12-26 1997-12-26 Nonaqueous electrolyte lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH06168724A true JPH06168724A (en) 1994-06-14
JP2792373B2 JP2792373B2 (en) 1998-09-03

Family

ID=18376084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4345361A Expired - Lifetime JP2792373B2 (en) 1992-11-30 1992-11-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2792373B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008263A1 (en) * 1996-08-22 1998-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell and its cathode
WO1998054779A1 (en) * 1997-05-30 1998-12-03 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO1998054780A1 (en) * 1997-05-30 1998-12-03 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same
US6268086B1 (en) 1995-04-10 2001-07-31 Hitachi, Ltd. Non-aqueous secondary battery and a method of manufacturing graphite powder
US7273681B2 (en) 1995-04-10 2007-09-25 Hitachi, Ltd. Non-aqueous secondary battery having negative electrode including graphite powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPS617567A (en) * 1984-06-22 1986-01-14 Hitachi Ltd Secondary battery and manufacture of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPS617567A (en) * 1984-06-22 1986-01-14 Hitachi Ltd Secondary battery and manufacture of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268086B1 (en) 1995-04-10 2001-07-31 Hitachi, Ltd. Non-aqueous secondary battery and a method of manufacturing graphite powder
US6383467B1 (en) 1995-04-10 2002-05-07 Hitachi, Ltd. Non-aqueous secondary battery and a method of manufacturing graphite powder
US6835215B2 (en) 1995-04-10 2004-12-28 Hitachi, Ltd. Non-aqueous secondary battery and a method of manufacturing graphite powder
US7273681B2 (en) 1995-04-10 2007-09-25 Hitachi, Ltd. Non-aqueous secondary battery having negative electrode including graphite powder
WO1998008263A1 (en) * 1996-08-22 1998-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell and its cathode
US6627352B1 (en) 1996-08-22 2003-09-30 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and its negative electrode
WO1998054779A1 (en) * 1997-05-30 1998-12-03 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO1998054780A1 (en) * 1997-05-30 1998-12-03 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same
US6403259B1 (en) 1997-05-30 2002-06-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery comprising carbon particles with a plural-layer structure
US6455199B1 (en) 1997-05-30 2002-09-24 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same

Also Published As

Publication number Publication date
JP2792373B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR101829528B1 (en) Electrode, nonaqueous electrolyte battery and battery pack
US20110064980A1 (en) Cathodic active material , cathode, and nonaqueous secondary battery
JP2012104290A (en) Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
EP3404751B1 (en) Positive electrode
JP5245201B2 (en) Negative electrode, secondary battery
JP6571284B2 (en) Electrode, non-aqueous electrolyte battery and battery pack
WO2014010476A1 (en) Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
US20140011083A1 (en) Electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery including the same
JP5781219B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP2014154317A (en) Electrode, nonaqueous electrolyte battery and battery pack
JPWO2020110260A1 (en) Electrodes, batteries, and battery packs
WO2017094163A1 (en) Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and battery pack
JP2792373B2 (en) Non-aqueous electrolyte secondary battery
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP2010170867A (en) Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery
US11271265B2 (en) Low-polarization lithium oxygen battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2012084554A (en) Anode, secondary battery, and method for manufacturing anode
JP2942911B2 (en) Non-aqueous electrolyte secondary battery
JP2022077319A (en) Anode active material
JP3833331B2 (en) Non-aqueous secondary battery
JPH10199534A (en) Nonaqueous electrolyte lithium secondary battery