JPH06167601A - Production of porous antireflection film - Google Patents

Production of porous antireflection film

Info

Publication number
JPH06167601A
JPH06167601A JP43A JP34311192A JPH06167601A JP H06167601 A JPH06167601 A JP H06167601A JP 43 A JP43 A JP 43A JP 34311192 A JP34311192 A JP 34311192A JP H06167601 A JPH06167601 A JP H06167601A
Authority
JP
Japan
Prior art keywords
film
water
substrate
naf
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Atsumichi Ishikura
淳理 石倉
Minoru Otani
実 大谷
Hidehiko Fujimura
秀彦 藤村
Mitsuharu Sawamura
光治 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP43A priority Critical patent/JPH06167601A/en
Publication of JPH06167601A publication Critical patent/JPH06167601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To form a porous antireflection film which has the high resistance to a laser and is small in absorption. CONSTITUTION:The film forming surface of a substrate consisting of quartz is cleaned by an etching treatment and a film mixture is deposited by evaporation on the film forming surface of the substrate in such a manner that the volumetric mixing ratio of SiO2 and NaF is a 1 to 3 range. The porous antireflection film is produced by executing a water treatment immersing the substrate deposited with the film mixture by evaporation for 20 minutes into water kept at 80 deg.C water temp. while stirring the water in a water tank. The refractive index and absorption are small and the film thickness is large if the volumetric mixing ratio of the NaF to the SiO2 is within a 1 to 3 range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー用光学素子等
に用いられるレーザー耐力の高い多孔質反射防止膜を製
造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous antireflection film having a high laser resistance, which is used for an optical element for laser and the like.

【0002】[0002]

【従来の技術】従来、レーザー耐力の高い多孔性薄膜の
製造方法としては、次に説明する(イ)の方法がある。
2. Description of the Related Art Conventionally, as a method of manufacturing a porous thin film having a high laser resistance, there is a method (a) described below.

【0003】(イ)基板上に蒸着によってSiO2 とN
aFからなる混合膜を生成し、前記混合膜を水または水
溶液で水処理してNaFだけを溶かし、SiO2 からな
る多孔性薄膜を形成する多孔性薄膜の製造方法(特開昭
61−170702号公報)。
(A) SiO 2 and N are deposited on the substrate by vapor deposition.
A method for producing a porous thin film in which a mixed film made of aF is formed, and the mixed film is treated with water or an aqueous solution to dissolve only NaF to form a porous thin film made of SiO 2 (JP-A-61-170702). Gazette).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の技術では、蒸着された混合膜を水処理した場合、混
合膜におけるSiO2 に対するNaFの混合比が大きす
ぎると、NaFとともにSiO2 も基板上よりはがれ落
ち、逆に、混合比が小さすぎるとNaFが残り吸収が大
きくなる。また、多孔性薄膜のレーザー耐力の大きさも
不十分であるという問題点があった。
However, in the above conventional technique, when the vapor-deposited mixed film is treated with water, if the mixing ratio of NaF to SiO 2 in the mixed film is too large, not only NaF but also SiO 2 are deposited on the substrate. If the mixing ratio is too small, NaF remains and the absorption increases. There is also a problem that the laser resistance of the porous thin film is insufficient.

【0005】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであって、レーザー耐力が高く、
しかも吸収が小さい多孔質反射防止膜を製造することが
できる多孔質反射防止膜の製造方法を実現することを目
的とするものである。
The present invention has been made in view of the above problems of the prior art, and has high laser resistance,
Moreover, it is an object of the present invention to realize a method for producing a porous antireflection film capable of producing a porous antireflection film having small absorption.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の多孔質反射防止膜の製造方法は、基板の成
膜面をエッチングしたのち、前記成膜面にSiO2 に対
するNaFの体積混合比が1乃至3の範囲内の混合膜を
蒸着し、ついで、前記混合膜を水または水溶液で水処理
することを特徴とするものである。
In order to achieve the above object, in the method for producing a porous antireflection film of the present invention, after the film-forming surface of the substrate is etched, NaF to SiO 2 is formed on the film-forming surface. It is characterized in that a mixed film having a volume mixing ratio of 1 to 3 is vapor-deposited, and then the mixed film is treated with water or an aqueous solution.

【0007】[0007]

【作用】SiO2 とNaFからなる混合膜を基板上に蒸
着する前に、予め前記基板の成膜面をエッチングしてお
くと基板に付着しているゴミ、研磨剤および成膜面の変
質層等が除去されるため、蒸着により成膜された前記混
合膜に不純物が混らずレーザー耐力が高くなる。
When the film-forming surface of the substrate is etched in advance before the mixed film of SiO 2 and NaF is vapor-deposited on the substrate, the dust, the abrasive, and the altered layer on the film-forming surface adhered to the substrate. Since impurities are removed, impurities are not mixed in the mixed film formed by vapor deposition, and the laser resistance is increased.

【0008】また、SiO2 に対するNaFの体積混合
比を1乃至3の範囲内にすることにより、基板上に蒸着
されたSiO2 とNaFからなる混合膜を水処理する際
に膜はがれが少なくなるとともに、製造された多孔質反
射防止膜の吸収が小さくなる。
Further, by setting the volume mixing ratio of NaF to SiO 2 within the range of 1 to 3, film peeling is reduced when the mixed film of SiO 2 and NaF deposited on the substrate is treated with water. At the same time, the absorption of the manufactured porous antireflection film is reduced.

【0009】[0009]

【実施例】本発明の一実施例について説明する。EXAMPLE An example of the present invention will be described.

【0010】石英からなる基板の成膜面をエッチング処
理して、前記基板の成膜面に付着しているゴミ、研磨剤
および成膜面の変質層等を除去して清浄化する。このエ
ッチング処理は、公知の特開平1−104760号公報
に開示されたドライエッチング等により行う。
The film-forming surface of the substrate made of quartz is subjected to an etching treatment to remove dust, an abrasive, and an altered layer on the film-forming surface of the substrate for cleaning. This etching treatment is performed by dry etching or the like disclosed in the publicly known Japanese Patent Laid-Open No. 1-104760.

【0011】そののち、清浄化された前記基板の成膜面
にSiO2 とNaFの体積混合比が1乃至3の範囲内と
なるように混合膜を蒸着する。
After that, a mixed film is vapor-deposited on the cleaned film-forming surface of the substrate so that the volume mixing ratio of SiO 2 and NaF is within the range of 1 to 3.

【0012】混合膜の蒸着は、基板温度300℃、真空
槽の真空度10-4torr、蒸着速度2.5Å/sから
7.5Å/s、蒸着源として、SiO2 は電子銃、Na
Fは抵抗加熱とし、膜厚制御は2個の水晶振動子を用い
各々別々に制御する。
The vapor deposition of the mixed film is carried out at a substrate temperature of 300 ° C., a vacuum degree in the vacuum chamber of 10 −4 torr, a vapor deposition rate of 2.5 Å / s to 7.5 Å / s, and SiO 2 is an electron gun or Na as a vapor deposition source.
F is resistance heating, and the film thickness is controlled separately using two crystal oscillators.

【0013】SiO2 の蒸着速度は、7.5Å/sから
5Å/sまで徐々に下げていき、NaFの蒸着速度は
2.5Å/sから5Å/sまで徐々に上げ、両方の蒸着
速度が合計で10Å/sとなるように調整しながら蒸着
する。
The deposition rate of SiO 2 is gradually decreased from 7.5 Å / s to 5 Å / s, and the deposition rate of NaF is gradually increased from 2.5 Å / s to 5 Å / s. Deposition is performed while adjusting the total to 10Å / s.

【0014】ついで、混合膜を蒸着した基板を水槽中の
水をかくはんしながら水温80℃に保ち、前記水槽中に
20分間浸す水処理を行う。水温はこれ以下でもよい
が、20℃よりも低いとNaFが残り吸収が大きくな
る。
Then, the substrate on which the mixed film is vapor-deposited is kept at a water temperature of 80 ° C. while stirring the water in the water tank, and is immersed in the water tank for 20 minutes for water treatment. The water temperature may be lower than this, but if it is lower than 20 ° C, NaF remains and absorption becomes large.

【0015】本実施例に対する比較例として、SiO2
に対するNaFの体積混合比を1乃至3の範囲外のサン
プルを製造し、本実施例のサンプルと比較例のサンプル
とについて、屈折率、吸収、膜厚を測定した結果を図1
に示す。ここで吸収は波長(λ)=400nmの値であ
る。
As a comparative example to this embodiment, SiO 2
Samples having a volumetric mixing ratio of NaF to the sample of 1 to 3 outside the range of 1 to 3 were manufactured, and the results of measuring the refractive index, absorption, and film thickness of the sample of this example and the sample of the comparative example are shown in FIG.
Shown in. Here, the absorption is the value at the wavelength (λ) = 400 nm.

【0016】図1から明らかなように、SiO2 に対す
るNaFの体積混合比が1乃至3の範囲内では屈折率お
よび吸収が小さく、膜厚は大きいのに対し、体積混合比
が1以下の場合は、屈折率および吸収が大きく、逆に体
積混合比が3以上の場合は、屈折率および吸収が大き
く、水処理後の膜厚も薄くなっており、水処理によりN
aFとともにSiO2 まではがれ落ちていることがわか
る。
As is apparent from FIG. 1, when the volume mixture ratio of NaF to SiO 2 is in the range of 1 to 3, the refractive index and absorption are small, and the film thickness is large, whereas when the volume mixture ratio is 1 or less. Has a large refractive index and absorption, and conversely, when the volume mixing ratio is 3 or more, the refractive index and absorption are large, and the film thickness after water treatment is thin.
It can be seen that peeled off until the SiO 2 with aF.

【0017】本実施例のSiO2 の蒸着速度を7.5Å
/sから5Å/s、NaFの蒸着速度を2.5Å/sか
ら5.0Å/sに徐々に変えて膜厚方向に、SiO2
対するNaFの体積混合比を1から3まで変化させた膜
を製作し、水処理したものについて分光特性を実測し、
この実測値とシミュレーションによる値と比較した結果
を図2に示す。
In this embodiment, the deposition rate of SiO 2 is 7.5Å
/ S to 5Å / s, the deposition rate of NaF was gradually changed from 2.5Å / s to 5.0Å / s, and the volume mixing ratio of NaF to SiO 2 was changed from 1 to 3 in the film thickness direction. Was manufactured, and the spectral characteristics of the water-treated product were measured,
The result of comparison between this measured value and the value by simulation is shown in FIG.

【0018】また、混合膜の膜厚に対する屈折率の変化
を図3に示す。
FIG. 3 shows the change in the refractive index with respect to the thickness of the mixed film.

【0019】さらに、石英およびBKからなる基板それ
ぞれについて前記実施例と同様に製造した実施例のサン
プルに対して、比較として混合膜の蒸着前に基板をエッ
チングしないこと以外は同様に製造した比較例のサンプ
ルとについて、Nd:YAGレーザーに対するレーザー
損傷しきい値を測定した結果を表1に示す。
Further, as a comparison, a comparative example manufactured in the same manner except that the substrate was not etched before vapor deposition of the mixed film, as a comparison, with respect to the samples of the examples manufactured in the same manner as in the above-mentioned examples for each of the substrates made of quartz and BK. Table 1 shows the results of measuring the laser damage threshold value for the Nd: YAG laser of the sample No.

【0020】[0020]

【表1】 表1から明らかなように、本実施例のサンプルの多孔質
反射防止膜は比較例のサンプルと比較してレーザー損傷
しきい値が1.4〜2.0倍向上し、レーザー耐力が高
くなっている。
[Table 1] As is clear from Table 1, the porous antireflection coating of the sample of this example has a laser damage threshold value improved by 1.4 to 2.0 times and the laser resistance is higher than that of the sample of the comparative example. ing.

【0021】[0021]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0022】従来例に比較してレーザー耐力が高く、し
かも屈折率および吸収が小さく膜厚の大きな多孔質反射
防止膜を製造することができる。
It is possible to manufacture a porous antireflection film having a high laser resistance, a small refractive index and a small absorption, and a large film thickness as compared with the conventional example.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のサンプルと比較例のサンプル
とについての屈折率、吸収、膜厚を測定した結果を示す
グラフである。
FIG. 1 is a graph showing the results of measuring the refractive index, absorption, and film thickness of a sample of an example of the present invention and a sample of a comparative example.

【図2】本発明の実施例のサンプルについての分光特性
を示すグラフである。
FIG. 2 is a graph showing spectral characteristics of samples of examples of the present invention.

【図3】本発明に係る多孔質反射防止膜の膜厚に対する
屈折率の変化を示す説明図である。
FIG. 3 is an explanatory diagram showing changes in the refractive index with respect to the film thickness of the porous antireflection film according to the present invention.

【符号の説明】[Explanation of symbols]

1 多孔質反射防止膜 2 基板 1 Porous antireflection film 2 Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢村 光治 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Sawamura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の成膜面をエッチングしたのち、前
記成膜面にSiO2に対するNaFの体積混合比が1乃
至3の範囲内の混合膜を蒸着し、ついで、前記混合膜を
水または水溶液で水処理することを特徴とする多孔質反
射防止膜の製造方法。
1. After etching a film-forming surface of a substrate, a mixed film having a volume mixing ratio of NaF to SiO 2 in the range of 1 to 3 is vapor-deposited on the film-forming surface, and then the mixed film is mixed with water or water. A method for producing a porous antireflection film, which comprises performing water treatment with an aqueous solution.
JP43A 1992-11-30 1992-11-30 Production of porous antireflection film Pending JPH06167601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06167601A (en) 1992-11-30 1992-11-30 Production of porous antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06167601A (en) 1992-11-30 1992-11-30 Production of porous antireflection film

Publications (1)

Publication Number Publication Date
JPH06167601A true JPH06167601A (en) 1994-06-14

Family

ID=18359028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06167601A (en) 1992-11-30 1992-11-30 Production of porous antireflection film

Country Status (1)

Country Link
JP (1) JPH06167601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018981A1 (en) * 2000-08-29 2002-03-07 Japan Science And Technology Corporation Method of forming optical thin film
JP2008076726A (en) * 2006-09-21 2008-04-03 Mitsubishi Cable Ind Ltd Method for manufacturing porous thin film, optical member having the porous thin film, and method for manufacturing the film
US7619821B2 (en) 2006-01-11 2009-11-17 Hoya Corporation Optical element having anti-reflection coating
DE102011054427A1 (en) * 2011-10-12 2013-04-18 Carl Zeiss Laser Optics Gmbh Method for manufacturing optic element e.g. lens, in UV wavelength range, involves attaching porous layer by commonly applying two inorganic materials, and removing one of materials so that pores are formed in unremoved material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018981A1 (en) * 2000-08-29 2002-03-07 Japan Science And Technology Corporation Method of forming optical thin film
US6805903B2 (en) 2000-08-29 2004-10-19 Japan Science And Technology Corporation Method of forming optical thin film
US7619821B2 (en) 2006-01-11 2009-11-17 Hoya Corporation Optical element having anti-reflection coating
JP2008076726A (en) * 2006-09-21 2008-04-03 Mitsubishi Cable Ind Ltd Method for manufacturing porous thin film, optical member having the porous thin film, and method for manufacturing the film
DE102011054427A1 (en) * 2011-10-12 2013-04-18 Carl Zeiss Laser Optics Gmbh Method for manufacturing optic element e.g. lens, in UV wavelength range, involves attaching porous layer by commonly applying two inorganic materials, and removing one of materials so that pores are formed in unremoved material

Similar Documents

Publication Publication Date Title
US4539744A (en) Semiconductor planarization process and structures made thereby
US4436797A (en) X-Ray mask
US5605776A (en) Phase-shifting photomask blank, phase-shifting photomask, and method of manufacturing them
EP1022614B1 (en) Photomask blank, photomask, methods of manufacturing the same, and method of forming micropattern
JPS62501586A (en) Device manufacturing method using spin-on glass resin and device formed thereby
JPS5916978A (en) Method for selectively etching metal coating
JPS6045137B2 (en) Method for producing durable glass with porous anti-reflective layer
JP3594659B2 (en) Phase shift photomask blank manufacturing method, phase shift photomask blank, and phase shift photomask
CN100384086C (en) Method for manufacturing surface acoustic wave device
JP2001291661A (en) Method of manufacturing reflection type mask
JPH06167601A (en) Production of porous antireflection film
EP1116998A2 (en) Blank for halftone phase shift photomask and halftone phase shift photomask
US2461840A (en) Method of forming low-reflecting surfaces on optical elements
JP2637508B2 (en) Method for forming vapor-phase synthetic diamond crystal and substrate having diamond crystal
JPH10171096A (en) Phase shift mask and phase shift mask blank
JPH049847A (en) Photomask blank and photomask
CN102081172A (en) Method of producing an optical device
JPH1020471A (en) Production of exposure mask
JPH07150356A (en) Production of optical thin film
JPH10139480A (en) Silica glass coated by alumina, its production and part for producing apparatus of semiconductor
JPH11142604A (en) Optical thin film and its production
JP2002071926A (en) Lattice pattern forming method on glass substrate
JP2001305716A (en) Photomask blank, photomask and method for manufacturing the same
Lee et al. Investigation of masking materials for high-ion-density plasma etching of GaAs
JPH0650388B2 (en) Photomask and manufacturing method thereof