JPH06167438A - Measuring equipment for particle size distribution of granular substance - Google Patents

Measuring equipment for particle size distribution of granular substance

Info

Publication number
JPH06167438A
JPH06167438A JP4320883A JP32088392A JPH06167438A JP H06167438 A JPH06167438 A JP H06167438A JP 4320883 A JP4320883 A JP 4320883A JP 32088392 A JP32088392 A JP 32088392A JP H06167438 A JPH06167438 A JP H06167438A
Authority
JP
Japan
Prior art keywords
particle size
size distribution
conveyor
signal
granular substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4320883A
Other languages
Japanese (ja)
Inventor
Shigeki Yoshida
成樹 吉田
Shuichi Taniyoshi
修一 谷吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4320883A priority Critical patent/JPH06167438A/en
Publication of JPH06167438A publication Critical patent/JPH06167438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To furnish equipment enabling accurate and continuous measurement of the particle size distribution of a granular substance without depending on the shape of the surface of a material and, moreover, on-line. CONSTITUTION:A pulse generator 4 is connected to a belt wheel 3 of a belt conveyor 2 and supplies an arithmetic device 5 with a signal being proportional to a speed of conveyance. A laser distance meter 6 is installed above the course of passing of a belt 2a running above and it measures the indentation of the surface of a granular substance 1 as a change of the distance and supplies the arithmetic device 5 with the signal of the change continuously. The arithmetic device 5 computes a waveform signal W differentially, subjects it to a threshold processing to extract a prescribed differential pulse, multiplies the extracted differential waveform signal by the speed of movement of the granular substance 1 and thereby calculates the particle size distribution of the granular substance 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼結鉱,コークス,振
動造粒等のばら物からなる粒状性物体の粒度分布を、コ
ンベヤで搬送される間に、非接触方式で測定する粒状性
物体の粒度分布測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact method for measuring the particle size distribution of a granular object composed of loose particles such as sinter, coke and vibration granulation while being conveyed by a conveyor. The present invention relates to a particle size distribution measuring device for an object.

【0002】[0002]

【従来の技術】製銑工程での焼結鉱やコークス等の原料
粒度のばらつきは、設備の安定操業や製造された製品品
質などに影響を与える。例えば、高炉に装入する原料の
粒度は、炉内のガス流分布に影響を及ぼすので、高炉炉
況の安定を図る要因の一つになっている。この高炉炉況
の安定を図るためには、炉内のガス流分布を装入原料の
粒度によってダイレクトに制御する必要があり、順次、
送られてくる原料の粒度分布を測定し、装入する原料の
粒度を把握する必要がある。
2. Description of the Related Art Variations in the particle size of raw materials such as sinter and coke in the ironmaking process affect stable operation of equipment and quality of manufactured products. For example, the particle size of the raw material charged into the blast furnace affects the gas flow distribution in the furnace, and is thus one of the factors for stabilizing the blast furnace furnace condition. In order to stabilize the blast furnace furnace condition, it is necessary to directly control the gas flow distribution in the furnace by the particle size of the charging raw material.
It is necessary to measure the particle size distribution of the raw material that is sent and to understand the particle size of the raw material that is charged.

【0003】従来、この焼結鉱等の粒状性物体の粒度分
布を把握するために、例えば、特開昭58−51250
号公報等に記載されているような篩を利用した方法があ
る。この篩を利用した方法は、例えば3mm,5mm,10
mm,・・・,30mm,50mmの篩目を有する篩を予め準
備しておき、コンベヤで搬送されてくる粒状性物体から
試料をサンプリングし、そのサンプリングした試料を篩
目の最も小さい3mmの篩から50mmの篩まで順次,篩い
分け、続けて、篩い分けられて分類された各試料の重量
から、3mm以下,3〜5mm,5〜10mm,・・・,50
mm以上の夫々の原料の重量比を求めることで、該粒状性
物体の粒度分布としている。
Conventionally, in order to grasp the particle size distribution of granular objects such as sinter or the like, for example, JP-A-58-51250.
There is a method using a sieve as described in Japanese Patent Publication No. The method using this sieve is, for example, 3 mm, 5 mm, 10
mm, ..., 30 mm, 50 mm sieves are prepared in advance, a sample is sampled from the granular material conveyed by the conveyor, and the sampled sample is the smallest 3 mm sieve. To 50 mm sieve in sequence, and subsequently, from the weight of each sample classified by sieving, 3 mm or less, 3 to 5 mm, 5 to 10 mm, ..., 50
The particle size distribution of the granular material is obtained by determining the weight ratio of each raw material of mm or more.

【0004】または、特開昭56−128443号公報
に開示されているように、光学的距離計を用いて搬送中
の粒状性物体からの反射光を検出し、その検出した信号
を振動解析して得られた周波数スペクトルと、コンベヤ
の移動速度とをもとに粒度を算出している。
Alternatively, as disclosed in Japanese Unexamined Patent Publication No. Sho 56-128443, an optical rangefinder is used to detect reflected light from a granular object being conveyed, and the detected signal is subjected to vibration analysis. The particle size is calculated based on the obtained frequency spectrum and the moving speed of the conveyor.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような篩を利用した測定では、搬送されてくる原料をサ
ンプリング装置でサンプリングした後に、篩にて各粒度
単位の重量分布をそれぞれ測定するために時間がかかり
即時性に欠けるという問題があった。また、後者の反射
信号を振動解析して得られた周波数スペクトルによって
原料の粒度を測定する方法は、粒度と検出周波数との相
関から原料の平均粒度を推定するもので、検出精度に問
題がある。また、その相関関係を求めるうえで多大なデ
ータ解析が要求されると共に、例えば、焼結鉱とコーク
スのように、表面形状が異なれば別個にデータを解析し
てその相関関係を求める必要がある。
However, in the measurement using the sieve as described above, in order to measure the weight distribution of each particle size unit with the sieve after sampling the raw material being conveyed with the sampling device. There was a problem that it took time and lacked immediacy. Further, the latter method of measuring the particle size of the raw material by the frequency spectrum obtained by vibration analysis of the reflected signal is to estimate the average particle size of the raw material from the correlation between the particle size and the detection frequency, and there is a problem in detection accuracy. . In addition, a great deal of data analysis is required to obtain the correlation, and it is necessary to analyze the data separately if the surface shapes are different, such as sinter and coke, to obtain the correlation. .

【0006】本発明は、上記のような問題点に着目して
なされたもので、原料の表面形状に依存せず、しかも、
オンラインで粒状性物体の正確な粒度分布を連続測定可
能な装置を提供することを目的としている。
The present invention has been made by paying attention to the above problems and does not depend on the surface shape of the raw material, and
It is an object of the present invention to provide an apparatus capable of continuously measuring an accurate particle size distribution of a granular object online.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の粒状性物体の粒度分布測定装置は、多数の
粒体からなる粒状性物体を搬送するコンベヤと、そのコ
ンベヤの上方に設置されて、その設置位置下方を通過す
る上記粒状性物体表面の上下方向の距離変化を連続的に
測定するレーザ距離計と、上記コンベヤの搬送速度を測
定する搬送速度測定手段と、上記レーザ距離計及び搬送
速度測定手段に接続されて、レーザ距離計から入力した
信号に微分処理,及びスレッシュホールド処理を施して
微分波形信号を求め、その微分波形信号に、搬送速度測
定手段から入力したコンベヤの搬送速度を演算して、レ
ーザ距離計の下方を通過した粒状性物体の粒度分布を算
出する演算手段と、を備えたことを特徴としている。
In order to achieve the above object, a particle size distribution measuring apparatus for a granular material according to the present invention comprises a conveyor for conveying a granular material composed of a large number of particles, and a conveyor above the conveyor. A laser distance meter that is installed and continuously measures a vertical distance change of the surface of the granular object that passes below the installation position, a transportation speed measuring unit that measures the transportation speed of the conveyor, and the laser distance. Connected to the meter and the conveying speed measuring means, the differential signal is obtained by applying the differential processing and the threshold processing to the signal input from the laser range finder, and the differential waveform signal of the conveyor input from the conveying speed measuring means. And a calculation unit that calculates a particle size distribution of the granular object that has passed below the laser range finder by calculating a transport speed.

【0008】[0008]

【作用】レーザ距離計によって、その下方を通過する粒
状性物体表面の上下方向の距離変化、即ち凹凸形状が連
続的に測定されて波形信号として出力される。このと
き、粒状性物体は複数の粒体から構成されているので、
上記測定された凹凸形状は、図8(a)に示すような、
粒体の連続した並びを測定したものと同じであり、上記
レーザ距離計から出力される波形信号の尖った凹部A
は、図8(b)に示すように、隣接した粒体間の境目を
表している。
The laser distance meter continuously measures the vertical distance change of the surface of the granular object passing therebelow, that is, the uneven shape, and outputs it as a waveform signal. At this time, since the granular object is composed of a plurality of particles,
The measured uneven shape is as shown in FIG.
It is the same as that of the continuous arrangement of the particles, and the concave portion A having a sharp waveform signal output from the laser range finder.
Represents the boundary between the adjacent grains as shown in FIG. 8 (b).

【0009】よって、上記波形信号を微分演算すること
で、波形信号の凹部、即ち各粒体の境目位置が、大きく
脈動した微分パルス信号として強調される。さらに、上
記微分パルス信号間の幅を定量的に把握するために、上
記微分処理した波形信号にスレッシュホールド処理を実
施して、所定スレッシュホールドレベルを越えた微分パ
ルスだけを抽出する。この抽出された各微分パルス幅
が、各凹部間のピッチ、即ち、粒状性物体の表層を形成
する各粒体の粒度に比例したピッチを表している。
Therefore, by differentially calculating the above-mentioned waveform signal, the concave portion of the waveform signal, that is, the boundary position of each grain is emphasized as a greatly pulsating differential pulse signal. Further, in order to quantitatively grasp the width between the differential pulse signals, a threshold process is performed on the waveform signal subjected to the differential process, and only differential pulses exceeding a predetermined threshold level are extracted. Each of the extracted differential pulse widths represents a pitch between the recesses, that is, a pitch proportional to the grain size of each grain forming the surface layer of the granular object.

【0010】そして、上記微分波形信号の各微分パルス
間の幅にそれぞれ、コンベヤの搬送速度、即ち粒状性物
体の移動速度を乗ずることで、粒状性物体の表層を形成
する各粒状体の粒度が求められ、もって、粒状性物体の
粒度分布が算出される。上記移動速度を微分パルス間の
幅に乗算しているのは、時間で表されている各幅を距離
に変換するためである。
Then, by multiplying the width between the differential pulses of the differential waveform signal by the convey speed of the conveyor, that is, the moving speed of the granular object, the granularity of each granular object forming the surface layer of the granular object is determined. The particle size distribution of the granular object is calculated. The moving speed is multiplied by the width between the differential pulses in order to convert each width represented by time into a distance.

【0011】[0011]

【実施例】本発明の実施例を図面に基づいて説明する。
まず構成を説明すると、図1に示すように、測定原料で
ある粒状性物体1がベルトコンベヤ2の上行ベルト2a
に載せられて搬送可能になっている。上記ベルトコンベ
ヤ2のベルト車3には、搬送速度測定手段であるパルス
発生器4が接続されている。そのパルス発生器4は、演
算装置5に接続され、上記ベルト車3の回転速度、即ち
ベルトコンベヤ2の搬送速度に比例したパルス信号を、
演算装置5の微分パルス幅算出処理部5cへ供給可能に
なっている。
Embodiments of the present invention will be described with reference to the drawings.
First, the structure will be described. As shown in FIG. 1, the granular material 1 as the measurement raw material is the ascending belt 2a of the belt conveyor 2.
It is placed on and can be transported. The belt wheel 3 of the belt conveyor 2 is connected with a pulse generator 4 which is a conveyance speed measuring means. The pulse generator 4 is connected to the arithmetic unit 5 and outputs a pulse signal proportional to the rotation speed of the belt wheel 3, that is, the conveyance speed of the belt conveyor 2,
It can be supplied to the differential pulse width calculation processing unit 5c of the arithmetic unit 5.

【0012】また、上記上行ベルト2aが通過する途中
の上方にはレーザ距離計6が設置されていて、搬送され
てくる粒状性物体1表面形状の凹凸を、距離の変化とし
て測定している。上記レーザ距離計6は、例えば,図2
に示すように、粒状性物体1の表面に向けて、軸を下方
に向けたレーザ投光器6aからレーザ光8を照射し、物
体表面から所定反射角をもって反射する反射光9を、光
学レンズ6bを介してフォトセンサ部6cで受光する。
そして、物体7の移動によって連続的に物体7表面上の
照射位置が、例えば7aから7bに移動し、物体7表面
の凹凸、即ち距離の変化に追従してフォトセンサ部6c
での受光位置が、例えば11aから11bに変化し、こ
の受光位置の変化量hに比例した波形信号がレーザ距離
計6から出力される。上記波形信号Wは、図2に示すよ
うな1つの粒体7が通過した場合には、図3に示すよう
な波形信号となる。
A laser range finder 6 is installed above the course of the ascending belt 2a to measure the unevenness of the surface shape of the granular material 1 being conveyed as a change in distance. The laser range finder 6 is, for example, as shown in FIG.
As shown in, the laser light 8 is emitted from the laser projector 6a whose axis is directed downward toward the surface of the granular object 1, and the reflected light 9 reflected from the object surface with a predetermined reflection angle is reflected by the optical lens 6b. The light is received by the photo sensor portion 6c via the light.
As the object 7 moves, the irradiation position on the surface of the object 7 continuously moves from, for example, 7a to 7b, and the photosensor portion 6c follows the unevenness of the surface of the object 7, that is, the change in the distance.
The light receiving position at 1 changes from 11a to 11b, for example, and the laser range finder 6 outputs a waveform signal proportional to the change amount h of the light receiving position. The waveform signal W becomes a waveform signal as shown in FIG. 3 when one particle 7 as shown in FIG. 2 passes through.

【0013】そして、上記レーザ距離計6は、演算装置
5の微分処理部5aに接続されていて、該微分処理部5
aに対して上記波形信号Wを、連続的に供給可能となっ
ている。演算装置5は、微分処理部5a,スレッシュホ
ールド処理部5b,及び微分パルス幅算出処理部5cか
ら構成されている。
The laser range finder 6 is connected to the differential processing section 5a of the arithmetic unit 5 and the differential processing section 5a.
The waveform signal W can be continuously supplied to a. The arithmetic unit 5 is composed of a differential processing section 5a, a threshold processing section 5b, and a differential pulse width calculation processing section 5c.

【0014】微分処理部5aは、上記レーザ距離計6か
ら入力した,粒状性物体1の表面形状に対応する波形信
号Wを微分演算し、その信号をスレッシュホールド処理
部5bに供給可能になっている。上記スレッシュホール
ド処理部5bでは、微分処理部5aから入力した信号
を、所定スレッシュホールドレベルでスレッシュホール
ド処理を施して所定以上の微分パルスを抽出し、その抽
出した微分パルス信号を微分パルス幅算出処理部5cに
供給可能となっている。微分パルス幅算出処理部5c
は、パルス発生器4から入力した信号をもとに粒状性物
体1の移動速度を算出し、その速度を、上記スレッシュ
ホールド処理部5bから入力した微分パルス信号に乗算
することで、粒状性物体1の表層を形成する各粒体の粒
度を求め、それをもとにレーザ距離計6がトレースした
粒状性物体1の粒度分布を算出可能になっている。
The differential processing section 5a differentiates the waveform signal W corresponding to the surface shape of the granular object 1 input from the laser range finder 6 and can supply the signal to the threshold processing section 5b. There is. In the threshold processing unit 5b, the signal input from the differential processing unit 5a is subjected to threshold processing at a predetermined threshold level to extract differential pulses of a predetermined level or more, and the extracted differential pulse signal is subjected to differential pulse width calculation processing. It can be supplied to the section 5c. Differential pulse width calculation processing unit 5c
Calculates the moving speed of the granular object 1 based on the signal input from the pulse generator 4, and multiplies the moving speed by the differential pulse signal input from the threshold processing unit 5b to obtain the granular object. The particle size distribution of the granular material 1 traced by the laser rangefinder 6 can be calculated based on the particle size of each particle forming the surface layer 1.

【0015】その微分パルス幅算出処理部5cは、CR
T装置10に接続され、所定単位時間毎に上記算出した
粒度分布を該CRT装置10に供給し、該CRT装置1
0に粒状性物体1の粒度分布が表示されるようになって
いる。上記のような構成の粒度分布測定装置において
は、ベルトコンベヤ2によって複数の粒度の粒体が混在
してなる粒状性物体1が連続して搬送される。
The differential pulse width calculation processing section 5c uses the CR
The CRT device 1 is connected to the T device 10 and supplies the calculated particle size distribution to the CRT device 10 every predetermined unit time.
The particle size distribution of the granular object 1 is displayed at 0. In the particle size distribution measuring apparatus having the above-described configuration, the belt conveyor 2 continuously conveys the granular object 1 in which particles having a plurality of particle sizes are mixed.

【0016】そして、上記粒状性物体1が、レーザ距離
計6の下方を通過する際、図4に示すように、その粒状
性物体1表層部1aの形状に応じた上下方向の距離変化
が、該レーザ距離計6にて連続して測定され、図5に示
されるような波形信号Wが演算装置5に供給される。演
算装置5においては、順次入力する波形信号W(図6
(a))を、微分処理部5aで微分演算を実施して、波
形信号Wの凹部A,即ち粒体間の境界位置をパルスBと
して強調させ(図6(b))、続いて、スレッシュホー
ルド処理部5bでスレッシュホールド処理を実施して、
各粒体間のピッチに対応するパルス信号を抽出する(図
6(c))。更に、微分パルス幅算出処理部5cで、上
記各パスル幅に粒状性物体1の移動速度を乗算すること
で、粒状性物体1の表層に並ぶ各粒体の粒度を求め、そ
れをもとに各階級の粒度の個数を算出し、もってレーザ
距離計6の下方を通過した粒状性物体1の粒度分布が推
定される。
When the granular object 1 passes below the laser rangefinder 6, as shown in FIG. 4, a vertical distance change according to the shape of the surface layer portion 1a of the granular object 1 The laser distance meter 6 continuously measures the waveform signal W as shown in FIG. In the arithmetic unit 5, the waveform signals W (FIG.
(A)) is differentiated by the differential processing unit 5a to emphasize the concave portion A of the waveform signal W, that is, the boundary position between the particles as the pulse B (FIG. 6B), and then the threshold The hold processing unit 5b performs threshold processing,
A pulse signal corresponding to the pitch between the particles is extracted (FIG. 6 (c)). Further, the differential pulse width calculation processing unit 5c multiplies each of the pulse widths by the moving speed of the granular object 1 to obtain the grain size of each granular object arranged on the surface layer of the granular object 1, and based on that, The number of particle sizes of each class is calculated, and thus the particle size distribution of the granular object 1 that has passed below the laser rangefinder 6 is estimated.

【0017】上記算出された粒状分布信号は、所定単位
時間単位にCRT装置10に供給されて図7に示される
ような形で表示される。これによって、ベルトコンベヤ
2で搬送されてくる粒状性物体1の粒度分布を、所定単
位時間毎にリアルタイムで確認可能となる。これを、例
えば高炉装入原料の粒度分布測定用に適用すると、該原
料の時系列的な粒度分布が連続測定できるようになるの
で、炉内の原料の粒度毎の堆積状況が予測可能となり、
高炉の安定操業に寄与可能となる。
The calculated grain distribution signal is supplied to the CRT device 10 in units of a predetermined unit time and displayed in the form shown in FIG. As a result, the particle size distribution of the granular material 1 conveyed by the belt conveyor 2 can be confirmed in real time every predetermined unit time. When this is applied, for example, to the measurement of the particle size distribution of the blast furnace charging raw material, the time-series particle size distribution of the raw material can be continuously measured, so that the deposition state for each particle size of the raw material in the furnace can be predicted,
It is possible to contribute to stable operation of the blast furnace.

【0018】[0018]

【発明の効果】以上説明してきたように、本発明の粒状
性物体の粒度分布測定装置は、コンベヤに載置されて移
動している粒状性物体の粒度分布を、非接触方式で、し
かも、オンライン且つリアルタイムに測定することがで
きる。このとき、レーザ距離計からの出力信号を微分処
理した微分波形にもとづいて原料の粒度を算出している
ので、データ解析が簡単な処理となり、しかも、粒状性
物体の銘柄に依存しない高精度な粒度分布を算出可能と
なる。
As described above, the particle size distribution measuring apparatus for a granular object according to the present invention can measure the particle size distribution of a granular object placed on a conveyor and moving in a non-contact manner, and It is possible to measure online and in real time. At this time, since the particle size of the raw material is calculated based on the differential waveform obtained by differentiating the output signal from the laser rangefinder, the data analysis becomes a simple process, and moreover, it is highly accurate and does not depend on the brand of the granular object. The particle size distribution can be calculated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例の粒度分布測定装置を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing a particle size distribution measuring apparatus according to an embodiment of the present invention.

【図2】本発明に係る実施例のレーザ距離計による距離
測定方法を示す図である。
FIG. 2 is a diagram showing a distance measuring method using a laser rangefinder according to an embodiment of the present invention.

【図3】本発明に係る実施例の粒体を測定したときの出
力波形例を示す図である。
FIG. 3 is a diagram showing an example of an output waveform when measuring particles of an example according to the present invention.

【図4】本発明に係る実施例の粒状性物体の表面形状測
定状態を示す図である。
FIG. 4 is a diagram showing a surface shape measurement state of a granular object according to an example of the present invention.

【図5】本発明に係る実施例の測定した波形信号を示す
図である。
FIG. 5 is a diagram showing measured waveform signals of an example according to the present invention.

【図6】本発明に係る実施例の演算装置で処理される波
形例を示す図である。
FIG. 6 is a diagram showing an example of waveforms processed by the arithmetic unit according to the embodiment of the present invention.

【図7】本発明に係る実施例の粒度分布測定装置で算出
される粒度分布の一例である。
FIG. 7 is an example of a particle size distribution calculated by a particle size distribution measuring apparatus according to an embodiment of the present invention.

【図8】粒状性物体の表層の状態を説明する図である。FIG. 8 is a diagram illustrating a state of a surface layer of a granular object.

【符号の説明】[Explanation of symbols]

1 粒状性物体 2 ベルトコンベヤ 4 パルス発生器(搬送速度測定手段) 5 演算装置 6 レーザ距離計 W 波形信号 DESCRIPTION OF SYMBOLS 1 Granular object 2 Belt conveyor 4 Pulse generator (conveyance speed measuring means) 5 Computing device 6 Laser range finder W Waveform signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多数の粒体からなる粒状性物体を搬送す
るコンベヤと、そのコンベヤの上方に設置されて、その
設置位置下方を通過する上記粒状性物体表面の上下方向
の距離変化を連続的に測定するレーザ距離計と、上記コ
ンベヤの搬送速度を測定する搬送速度測定手段と、上記
レーザ距離計及び搬送速度測定手段に接続されて、レー
ザ距離計から入力した信号に微分処理,及びスレッシュ
ホールド処理を施して微分波形信号を求め、その微分波
形信号に、搬送速度測定手段から入力したコンベヤの搬
送速度を演算して、レーザ距離計の下方を通過した粒状
性物体の粒度分布を算出する演算手段と、を備えたこと
を特徴とする粒状性物体の粒度分布測定装置。
1. A conveyor that conveys a granular object composed of a large number of particles, and a vertical distance change of the surface of the granular object that is installed above the conveyor and passes below the installation position. Connected to the laser range finder and the transport speed measuring means for measuring the transport speed of the conveyor, the laser range finder for measuring the transport speed of the conveyor, and the differential processing and the threshold to the signal input from the laser range finder. Calculation to obtain a differential waveform signal by processing, calculate the conveyor conveyance speed input from the conveyance speed measuring means to the differential waveform signal, and calculate the particle size distribution of the granular object that has passed below the laser distance meter. And a means for measuring the particle size distribution of the granular object.
JP4320883A 1992-11-30 1992-11-30 Measuring equipment for particle size distribution of granular substance Pending JPH06167438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4320883A JPH06167438A (en) 1992-11-30 1992-11-30 Measuring equipment for particle size distribution of granular substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4320883A JPH06167438A (en) 1992-11-30 1992-11-30 Measuring equipment for particle size distribution of granular substance

Publications (1)

Publication Number Publication Date
JPH06167438A true JPH06167438A (en) 1994-06-14

Family

ID=18126331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4320883A Pending JPH06167438A (en) 1992-11-30 1992-11-30 Measuring equipment for particle size distribution of granular substance

Country Status (1)

Country Link
JP (1) JPH06167438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046077A (en) * 2006-08-21 2008-02-28 Taiheiyo Cement Corp Grain size measuring method
JP2009150673A (en) * 2007-12-19 2009-07-09 Moriai Seiki Kk Method for measuring adhering substance and apparatus for measuring adhering substance
JP2009195806A (en) * 2008-02-20 2009-09-03 Taiheiyo Cement Corp Method for controlling oscillation of vertical roller mill
JPWO2020203255A1 (en) * 2019-04-02 2021-04-30 Jfeスチール株式会社 Particle size distribution monitoring device, particle size distribution monitoring method, computer program, furnace, blast furnace, furnace control method, and blast furnace operation method
WO2023046711A1 (en) * 2021-09-24 2023-03-30 Dieffenbacher GmbH Maschinen- und Anlagenbau Method and device for determining a parameter of a size distribution of a mixture, plant for manufacturing material boards, and computer programme product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046077A (en) * 2006-08-21 2008-02-28 Taiheiyo Cement Corp Grain size measuring method
JP2009150673A (en) * 2007-12-19 2009-07-09 Moriai Seiki Kk Method for measuring adhering substance and apparatus for measuring adhering substance
JP2009195806A (en) * 2008-02-20 2009-09-03 Taiheiyo Cement Corp Method for controlling oscillation of vertical roller mill
JPWO2020203255A1 (en) * 2019-04-02 2021-04-30 Jfeスチール株式会社 Particle size distribution monitoring device, particle size distribution monitoring method, computer program, furnace, blast furnace, furnace control method, and blast furnace operation method
WO2023046711A1 (en) * 2021-09-24 2023-03-30 Dieffenbacher GmbH Maschinen- und Anlagenbau Method and device for determining a parameter of a size distribution of a mixture, plant for manufacturing material boards, and computer programme product

Similar Documents

Publication Publication Date Title
EP3605064B1 (en) Raw material particle size distribution measuring device, particle size distribution measuring method, and void ratio measuring device
CA2310838A1 (en) Method and device for identifying and sorting objects conveyed on a belt
JPH0249147A (en) Method and device for inspecting colored foreign matter in white compound powder
JP2001337028A (en) Method and apparatus for measuring particle size distribution
CN109341823A (en) Stream real-time detection apparatus based on video image
JP2008046077A (en) Grain size measuring method
JPH06167438A (en) Measuring equipment for particle size distribution of granular substance
JPH05164677A (en) Measuring method of particle size distribution of particulate matter
US4367244A (en) Method for monitoring and controlling the distribution of droplets on a surface
US4207001A (en) Particle size analyzer
CN113646446B (en) Powder rate measuring method and device
US4361110A (en) Apparatus for monitoring and controlling the distribution of droplets on a surface
ATE21771T1 (en) METHOD AND APPARATUS FOR DETERMINING THE FLOW VELOCITY OF A MOLTEN RADIANT EMITTING MATERIAL.
JPH0634360A (en) Steel plate shape measuring method
JPH08159728A (en) Shape measuring instrument
JP2002123811A (en) Detecting and counting method for moving object
JP2605158B2 (en) Flatness measuring device
JPS56128443A (en) Grain size measuring method of granulous substance
JPH0674755A (en) Flatness measuring apparatus
RU2790801C1 (en) Method for determining the raw material volume
Tsuboi et al. Real-time measurement method for powder ratio of coke using camera image
WO2024058686A1 (en) Method for measuring volume of a raw material
JP3572023B2 (en) In-line particle size measurement system
JP2690431B2 (en) Shape measuring device
SU1028387A1 (en) Apparatus for x=ray rado radiometric sorting of ores