JPH06167330A - Method and device for recognizing distance of object with camera - Google Patents

Method and device for recognizing distance of object with camera

Info

Publication number
JPH06167330A
JPH06167330A JP32024892A JP32024892A JPH06167330A JP H06167330 A JPH06167330 A JP H06167330A JP 32024892 A JP32024892 A JP 32024892A JP 32024892 A JP32024892 A JP 32024892A JP H06167330 A JPH06167330 A JP H06167330A
Authority
JP
Japan
Prior art keywords
camera
distance
robot
different positions
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32024892A
Other languages
Japanese (ja)
Inventor
Shinji Murai
真二 村井
Hitoshi Wakisako
仁 脇迫
Yoshinaga Maruyama
佳長 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP32024892A priority Critical patent/JPH06167330A/en
Publication of JPH06167330A publication Critical patent/JPH06167330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To make distance information be reflected in the action of a robot, to improve power distribution operation efficiency by a remote-control type power distribution operation robot, and to simplify the configuration and reduce the cost as compared with automatic operation of distance by image processing from two images by allowing an operator to control the posture of a TV camera so that an object is located at the center of two images which are picked up from different positions and then performing distance recognition according to the position and posture of the television camera at that time. CONSTITUTION:The image of an object is picked up from two different positions using cameras 11 and 12 which are mounted to a traveling rest 5 of a robot 1, the posture of the camera is aligned so that the object is located at the center of an image picked up by the camera which is projected on a monitor at each position, thus obtaining the distance to the object basing on the posture and position of the camera after alignment at two different positions by operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電所、高所、
深海、宇宙など、人間が直接作業できない環境での作業
や、配電作業ロボットの自動化を目的として、対象物ま
での距離を認識する方法および装置に関するものであ
る。
The present invention relates to a nuclear power plant, a high place,
The present invention relates to a method and apparatus for recognizing a distance to an object for the purpose of working in an environment where humans cannot directly work, such as in the deep sea and space, and for automation of a power distribution work robot.

【0002】[0002]

【従来の技術】例えば配電作業ロボットを例にとると、
従来の配電作業ロボットによる配電作業は、作業者がバ
ケットに乗り作業対象物を目で見てロボットを操作して
行っていた。このような従来の配電作業ロボットはバケ
ット搭乗形であるため、作業対象物までの距離は作業者
の目によって確認をしていた。ところが、近年において
は、高所での作業や感電事故から作業員を解放するた
め、バケットに作業者が乗る代わりにテレビカメラを移
動架台に搭載し、オペレータは操縦席でモニターを見な
がらロボットの操作を行う装置が開発されている。例え
ば特開昭61−45910号公報においては、異なる位
置に2台のテレビカメラを搭載する2つの2軸架台およ
び画像追尾装置を設けた3次元位置計測装置が開示され
ている。具体的には、各テレビカメラが出力する、目標
を含むビデオ信号を画像追尾装置に入力し、デジタル画
像処理計測を行って、テレビカメラの映像の中心に目標
が位置するようにテレビカメラの姿勢を自動制御し、誤
差が収斂したところで、2台のテレビカメラの俯仰角,
旋回角により移動物体の3次元的位置を計測するもので
ある。
2. Description of the Related Art For example, taking a power distribution work robot as an example,
The power distribution work by the conventional power distribution work robot is performed by a worker riding a bucket and visually observing the work target and operating the robot. Since such a conventional power distribution work robot is a bucket boarding type, the distance to the work target is confirmed by the eyes of the worker. However, in recent years, in order to relieve workers from work at high altitudes and electric shock accidents, a TV camera is mounted on the mobile stand instead of the worker riding on a bucket, and the operator can see the robot while watching the monitor in the cockpit. Devices have been developed to perform the operations. For example, Japanese Patent Laid-Open No. 61-45910 discloses a three-dimensional position measuring device provided with two two-axis mounts equipped with two television cameras and image tracking devices at different positions. Specifically, the video signal including the target output from each TV camera is input to the image tracking device, digital image processing is performed, and the attitude of the TV camera is adjusted so that the target is located at the center of the image of the TV camera. Automatically controlled, and when the error converged, the depression and elevation angles of the two TV cameras,
The three-dimensional position of the moving object is measured by the turning angle.

【0003】[0003]

【発明が解決しようとする課題】ところが、この特開昭
61−45910号公報に記載された方法は、テレビカ
メラの映像の中心に目標がくるようにテレビカメラの姿
勢を自動制御するものであるため、制御回路が複雑化す
るとともに、テレビカメラの姿勢制御のための3次元駆
動機構が2台分必要になるなど、コストアップの要因が
大きいという問題があった。特に、対象物の距離を測定
した後に、オペレータがロボットで作業を行う場合にお
いては、対象物の距離の測定を完全自動化することにコ
ストを多く費やすことは、バランス的に問題となる。そ
こで本発明が解決すべき課題は、距離の測定を半自動化
することにより、コストアップの要因を低下し、高所や
危険な環境でのオペレータの作業を解放することにあ
る。
However, the method disclosed in Japanese Patent Laid-Open No. 61-45910 is to automatically control the posture of the television camera so that the target is located at the center of the image of the television camera. Therefore, there is a problem that the control circuit becomes complicated and that two three-dimensional driving mechanisms for controlling the attitude of the television camera are required, which causes a large cost increase. In particular, in the case where the operator works with the robot after measuring the distance to the object, spending a large amount of cost on completely automating the distance measurement to the object causes a balance problem. Therefore, the problem to be solved by the present invention is to reduce the factor of cost increase by semi-automating the distance measurement, and to release the work of the operator in a high place or a dangerous environment.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の距離認識方法は、ロボットの移動架台に取
り付けたカメラを用いて2つの異なった位置より対象物
を撮像し、各位置においてモニタに映し出された前記カ
メラで撮像した映像の中心に対象物がくるようにカメラ
の姿勢を位置合わせし、前記2つの異なった位置におけ
る位置合わせ後のカメラの姿勢、位置に基づいて対象物
までの距離を演算により求めるようにしたものである。
In order to solve the above-mentioned problems, the distance recognition method of the present invention uses a camera mounted on a moving base of a robot to image an object from two different positions and at each position. The position of the camera is aligned so that the target object is located at the center of the image captured by the camera displayed on the monitor, and the position and position of the camera after the alignment at the two different positions are used to reach the target object. The distance of is calculated.

【0005】また、本発明の距離認識装置は、ロボット
の移動架台の異なる位置に取り付けたカメラと、このカ
メラで撮像された映像を映し出す少なくとも2台のモニ
タ装置と、前記カメラの姿勢をオペレータが操作可能な
操作装置と、前記モニタに映し出された対象物の画像が
モニタ中心に合致したときの前記カメラの姿勢および位
置に基づいて前記対象物の3次元空間での位置を求める
位置算出装置とを備えたものである。上記において、2
つの異なった位置の対象物を撮像するに際し、1台のカ
メラを移動させて異なった位置の対象物の画像を撮像す
ることもできるし、2台のカメラで撮像することもでき
る。
Further, the distance recognition device of the present invention is such that a camera mounted at different positions on the moving base of the robot, at least two monitor devices for displaying images picked up by the cameras, and the operator's attitude of the camera. An operable operation device, and a position calculation device that obtains the position of the target object in a three-dimensional space based on the posture and position of the camera when the image of the target object displayed on the monitor matches the center of the monitor. It is equipped with. In the above, 2
When capturing an object at three different positions, one camera can be moved to capture an image of the target at a different position, or two cameras can capture images.

【0006】[0006]

【作用】本発明では、図1に示す異なる位置のAカメラ
11と、Bカメラ12(Aカメラ11を移動させてもよ
い)で作業対象物をモニタに映し出し、Aカメラ11と
Bカメラ12の姿勢をそれぞれ操作してモニタ中心に対
象物がくるように位置合わせし、その時の2台のカメラ
の位置と角度より作業対象物の距離を認識する。このこ
とにより、作業対象物までの距離認識ができ、その距離
情報は作業対象物への自動アプローチ等のロボット動作
に反映され、遠隔操作形配電作業ロボットでの作業性が
向上する。
In the present invention, the work object is displayed on the monitor by the A camera 11 and the B camera 12 (the A camera 11 may be moved) at different positions shown in FIG. Positions are adjusted so that the target object comes to the center of the monitor by operating each posture, and the distance to the work target object is recognized from the positions and angles of the two cameras at that time. As a result, the distance to the work object can be recognized, and the distance information is reflected in the robot operation such as an automatic approach to the work object, and the workability of the remote operation type power distribution work robot is improved.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1は本発明を適用する遠隔操作形配電
作業ロボット1の外形図であり、車両本体2と、オペレ
ータ用キャビン3と、俯仰,伸縮及び旋回可能なブーム
4と、同ブーム4の上端に絶縁トランス6を介して設置
されたバケット部5を備えている。バケット部5には、
距離認識に用いるA,B,C3台のカメラ11,12,
13を取り付けており、3台のカメラの取付位置は同一
垂直平面内に存在するようにしている。バケット部5の
先端には左右一対のマニピュレータ7,8が取り付けら
れている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an external view of a remote control type power distribution work robot 1 to which the present invention is applied. A vehicle body 2, an operator's cabin 3, a boom 4 which can be raised, retracted and swiveled, and an insulation at the upper end of the boom 4. The bucket unit 5 is provided via a transformer 6. In the bucket part 5,
A, B, C three cameras 11, 12, used for distance recognition
13 is attached, and the attachment positions of the three cameras are arranged to be in the same vertical plane. A pair of left and right manipulators 7 and 8 are attached to the tip of the bucket portion 5.

【0008】本実施例では、図2に示すAカメラ11
(3自由度のカメラ架台に取り付けたカメラ)と、図3
に示すBカメラ12(水平移動するカメラ架台に取り付
けたカメラ)の組み合わせにより距離認識を行う。距離
認識を行う前の準備として次のことを行う。Aカメラ1
1の操作架台のロール軸111と、パン軸112を0度
(カメラがX軸に平行)に合わせ、チルト軸113を動
作させ、モニタ中央に作業対象物が映し出されるように
Aカメラ11を移動する。次にBカメラ12を移動さ
せ、モニタ中央に作業対象物を映し出すようにする。こ
の操作により、Aカメラ11とBカメラ12と対象物は
X−Z平面上に存在することになり、図4の関係とな
る。ここでa,bは取り付け位置と移動量により、θ3
は取り付け角度より、θ1 は取り付け角度と移動量より
既知である。
In this embodiment, the A camera 11 shown in FIG.
(Camera attached to a camera stand with 3 degrees of freedom)
Distance recognition is performed by the combination of the B camera 12 (camera attached to the horizontally movable camera mount) shown in FIG. As a preparation before performing distance recognition, do the following. A camera 1
The roll axis 111 and the pan axis 112 of the operation platform of No. 1 are set to 0 degree (the camera is parallel to the X axis), the tilt axis 113 is operated, and the A camera 11 is moved so that the work object is displayed in the center of the monitor. To do. Next, the B camera 12 is moved so that the work target is displayed in the center of the monitor. By this operation, the A camera 11, the B camera 12, and the object are present on the XZ plane, and the relationship shown in FIG. 4 is obtained. Where a and b are θ 3 depending on the mounting position and the amount of movement.
Is known from the mounting angle, and θ 1 is known from the mounting angle and the movement amount.

【0009】従って、求める距離gとfは、 c=√(a2 +b2 ) θ2 =cos-1(a/c) θ5 =cos-1(b/c) θ6 =θ1 −θ2 θ4 = 180°−θ3 −θ5 e=c/{(sinθ4/sinθ6)cosθ6 +cosθ4 } g=e cosθ3 f=e sinθ3 であり、基本座標系(図1にX軸及びZ軸を示してお
り、Y軸方向の原点は右マニピュレータと左マニピュレ
ータの中点)での対象物のx,zの位置はBカメラ12
の位置とg,fの値より求めることができる。
Therefore, the obtained distances g and f are c = √ (a 2 + b 2 ) θ 2 = cos −1 (a / c) θ 5 = cos −1 (b / c) θ 6 = θ 1 −θ 2 θ 4 = 180 ° −θ 3 −θ 5 e = c / {(sinθ 4 / sinθ 6 ) cosθ 6 + cosθ 4 } g = e cosθ 3 f = e sinθ 3 and the basic coordinate system (X in FIG. 1 is used. Axis and Z axis are shown, and the origin in the Y axis direction is the middle point of the right manipulator and the left manipulator), and the position of x, z of the object is the B camera 12
Can be obtained from the position of and the values of g and f.

【0010】次に固定カメラとの組み合わせとしてAカ
メラ11とCカメラ13の組み合わせでの距離認識につ
いて説明する。この距離認識にも前準備が必要で、バケ
ット部5を移動させCカメラ13のモニタ中央に対象物
を映し出し、次にAカメラ11を上と同様に移動させ
る。この操作によりカメラと対象物はX−Z平面上に存
在することになり、図5の関係となる。ここでcは取り
付け位置より、θ2 は取り付け角度より、θ1 は取り付
け角度と移動量より既知である。
Next, the distance recognition in the combination of the A camera 11 and the C camera 13 as the combination with the fixed camera will be described. This distance recognition also requires preparation, and the bucket unit 5 is moved to display the object on the center of the monitor of the C camera 13, and then the A camera 11 is moved in the same manner as above. By this operation, the camera and the object are present on the XZ plane, and the relationship shown in FIG. 5 is obtained. Here, c is known from the mounting position, θ 2 is known from the mounting angle, and θ 1 is known from the mounting angle and the movement amount.

【0011】従って求める距離dとeは、 a cosθ2 +b cosθ1 =c d=a sinθ2 =b sinθ1 a=b sinθ1/sinθ2 b(sinθ1/sinθ2)cosθ2 +b cosθ1 =c b{(sinθ1/sinθ2)cosθ2 +cosθ1 }=c b=c/{(sinθ1/sinθ2)cosθ2 +cosθ1 } d=[c/{(sinθ1/sinθ2)cosθ2 +cosθ1 }] s
inθ1 e=b cosθ1 で基本座標系での対象物のx,zの位置はAカメラ11
の位置とd,eの値より求められる。
Therefore, the obtained distances d and e are a cos θ 2 + b cos θ 1 = c d = a sin θ 2 = b sin θ 1 a = b sin θ 1 / sin θ 2 b (sin θ 1 / sin θ 2 ) cos θ 2 + b cos θ 1 = c b {(sin θ 1 / sin θ 2 ) cos θ 2 + cos θ 1 } = c b = c / {(sin θ 1 / sin θ 2 ) cos θ 2 + cos θ 1 } d = [c / {(sin θ 1 / sin θ 2 ) cos θ 2 + cos θ 1 }] s
The position of x and z of the object in the basic coordinate system is A camera 11 with in θ 1 e = b cos θ 1.
Is obtained from the position of and the values of d and e.

【0012】図6は操作キャビン3内のカメラモニタで
あり、右のモニタ21はAカメラ11の画像専用、左の
モニタ22はBカメラ12とCカメラ13の画像を切替
器23で切り替えて映し出すようになっている。なお、
ハンドル式の切替器23は、フットスイッチとすること
もできる。本実施例は2台のカメラを組み合わせて三角
法で距離認識を行い、そのデータを用いた自動運転によ
り作業を行うものであり、その距離認識方法には、Aカ
メラ11とBカメラ12の組み合わせ、Aカメラ11と
Cカメラ13の組み合わせの二通りの方法があり、この
組み合わせの切り替えは左モニタの画像切り替えに連結
されている。
FIG. 6 shows a camera monitor in the operation cabin 3. The right monitor 21 is exclusively used for the image of the A camera 11, and the left monitor 22 is switched between the images of the B camera 12 and the C camera 13 by the switch 23 to display them. It is like this. In addition,
The handle-type switching unit 23 may be a foot switch. In this embodiment, two cameras are combined to perform distance recognition by trigonometry and work is performed by automatic driving using the data. The distance recognition method is a combination of A camera 11 and B camera 12. , A camera 11 and C camera 13 can be combined in two ways, and switching of this combination is linked to image switching of the left monitor.

【0013】Aカメラ11とBカメラ12の組み合わせ
による距離認識を用いた自動運転システムのブロック図
を図7に示し、手順を以下に説明する。 モデル作業対象物の位置決め モデル作業対象物が、マニピュレータ7,8の最適動作
点でバケット部5に正対するようになるように、ブーム
4及びバケット5を移動させ、モデル対象物とマニピュ
レータ7,8の位置を設定する。 地上でのモデル作業対象物の距離計測を行う 図8に示す操作盤内のタッチパネルスイッチで距離計測
を選択する。このときAカメラ11は自動的にロール軸
111、パン軸112が0度となる。図9に示すよう
に、Aカメラ11のモニタの中央印に作業対象物が来る
ようズームで拡大しジョイスティック24(図6参照)
でAカメラ11のチルト軸113を動かす。Bカメラ1
2のモニタの中央印に作業対象物がくるようズームで拡
大し、Bカメラ12のスライド軸121を動かす。再度
距離計測スイッチを押す。このときのそれぞれのカメラ
架台の位置より作業対象物の位置を、前述の三角法で求
める。この距離データを作業対象物の原点位置とする。 地上でのモデル作業教示 作業内容を教示する。 実作業点へのアプローチ ブーム4を動作して作業点にアプローチする。バケット
5を回転させて作業対象物に合わせる。距離計測を行
う。の方法と同様。作業可能範囲外ならばアラームに
て表示し、アプローチをやり直す。 自動作業 の距離データとの目標データより作業対象物原点の
シフト量を求める。上のデータよりモデル対象物での自
動運転をシフトして実作業を行う。
A block diagram of an automatic driving system using distance recognition by a combination of the A camera 11 and the B camera 12 is shown in FIG. 7, and the procedure will be described below. Positioning of the model work target The model work target and the manipulators 7, 8 are moved by moving the boom 4 and the bucket 5 so that the model work target faces the bucket unit 5 at the optimum operating points of the manipulators 7, 8. Set the position of. Distance measurement of the model work target on the ground is performed. The distance measurement is selected by the touch panel switch in the operation panel shown in FIG. At this time, the A camera 11 automatically sets the roll axis 111 and the pan axis 112 to 0 degrees. As shown in FIG. 9, the joystick 24 is enlarged by zooming so that the work object comes to the center mark of the monitor of the A camera 11 (see FIG. 6).
The tilt shaft 113 of the A camera 11 is moved with. B camera 1
Zoom in so that the work object comes to the center mark of the second monitor, and move the slide shaft 121 of the B camera 12. Press the distance measurement switch again. The position of the work object is obtained from the position of each camera mount at this time by the above-described trigonometry. This distance data is used as the origin position of the work target. Teaching model work on the ground Teaching work details. Approach to the actual working point Move the boom 4 to approach the working point. The bucket 5 is rotated to match the work target. Measure distance. Same as method. If it is outside the workable range, an alarm will be displayed and the approach will be redone. The shift amount of the work object origin is calculated from the distance data of the automatic work and the target data. From the above data, shift the automatic operation on the model object to perform the actual work.

【0014】また、Aカメラ11とCカメラ13との組
み合わせでの距離計測方法は、Aカメラ11とBカメラ
12の距離計測とほぼ同じであるが、Cカメラ13が固
定のため、の距離計測を次のように行う。 ・操作盤のスイッチで距離計測を選択する。このときA
カメラ11は自動的にロール軸111、パン軸112が
0度となる。 ・Cカメラ13のモニタの中央印に作業対象物がくるよ
うズームで拡大し、ブーム4とバケット5を動かす。 ・Aカメラ11のモニタの中央印に作業対象物がくるよ
うズームで拡大し、ジョイスティック24でAカメラ1
1のチルト軸113を動かす。 ・再度距離計測スイッチを押す。 このときのそれぞれのカメラ架台の位置より作業対象物
の位置を三角法で求める。また、二通りの方法で距離計
測できるため、片側のカメラの視野に障害物が入っても
逆のカメラの組み合わせで距離計測が行える。なお、以
上の実施例では、2台のカメラで対象物を撮像する例を
示したが、1台のカメラを異なる位置に移動させて2つ
の位置から対象物を撮像するようにしてもよい。
Further, the distance measuring method in the combination of the A camera 11 and the C camera 13 is almost the same as the distance measuring between the A camera 11 and the B camera 12, but the C camera 13 is fixed and the distance measuring is performed. Is performed as follows.・ Select distance measurement with the switch on the control panel. At this time A
The camera 11 automatically sets the roll axis 111 and the pan axis 112 to 0 degrees. -Zoom up so that the work object comes to the center mark on the monitor of the C camera 13, and move the boom 4 and the bucket 5. -Zoom in so that the work object comes to the center mark on the monitor of the A camera 11, and use the joystick 24 to enlarge the A camera 1.
The tilt shaft 113 of 1 is moved.・ Press the distance measurement switch again. The position of the work object is obtained by trigonometry from the position of each camera mount at this time. Further, since the distance can be measured by two methods, even if an obstacle enters the visual field of one camera, the distance can be measured by the combination of the opposite cameras. In the above embodiment, the example in which the object is imaged by the two cameras is shown, but it is also possible to move the one camera to different positions and image the object from the two positions.

【0015】[0015]

【発明の効果】以上述べたように本発明は、異なった位
置から撮像した2つの画像の中心に対象物がくるように
テレビカメラの姿勢をオペレータが操作し、その時のテ
レビカメラの位置と姿勢により距離認識を行うもので、
この距離情報がロボット動作に反映され、遠隔操作形配
電作業ロボットでの配電作業効率の向上が図れる。ま
た、2つの画像から画像処理により距離を自動演算する
ものに比べ、構成が簡素化され、コストも低減される。
As described above, according to the present invention, the operator operates the attitude of the TV camera so that the object is located at the center of the two images taken from different positions, and the position and attitude of the TV camera at that time are operated. The distance is recognized by
This distance information is reflected in the robot operation, and the power distribution work efficiency of the remote control type power distribution work robot can be improved. Further, the configuration is simplified and the cost is reduced as compared with the one in which the distance is automatically calculated from the two images by the image processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を適用した遠隔操作形配電作業ロボッ
トの外形を示す側面図である。
FIG. 1 is a side view showing an outer shape of a remote control type power distribution work robot to which the present invention is applied.

【図2】 Aカメラの斜視図である。FIG. 2 is a perspective view of an A camera.

【図3】 Bカメラの斜視図である。FIG. 3 is a perspective view of a B camera.

【図4】 AカメラとBカメラによる距離認識のカメラ
位置と対象物の関係を示す説明図である。
FIG. 4 is an explanatory diagram showing a relationship between a camera position for distance recognition by an A camera and a B camera and an object.

【図5】 AカメラとCカメラによる距離認識のカメラ
位置と対象物の関係を示す説明図である。
FIG. 5 is an explanatory diagram showing a relationship between a camera position for distance recognition by an A camera and a C camera and an object.

【図6】 カメラモニタスイッチの部分を示す正面図で
ある。
FIG. 6 is a front view showing a portion of a camera monitor switch.

【図7】 カメラシステムのブロック図である。FIG. 7 is a block diagram of a camera system.

【図8】 カメラ操作用タッチパネルの正面図である。FIG. 8 is a front view of a camera operation touch panel.

【図9】 距離計測時のモニタ画面の図である。FIG. 9 is a diagram of a monitor screen during distance measurement.

【符号の説明】[Explanation of symbols]

1 遠隔操作形配電作業ロボット、2 車両本体、3
オペレータ用キャビン、4 ブーム、5 バケット部、
6 絶縁トランス、7,8 マニピュレータ、11 カ
メラA、111 ロール軸、112 パン軸、113
チルト軸、12カメラB、121 スライド軸、13
カメラC、21 右モニタ、22 左モニタ、23 切
替器、24 ジョイスティック
1 Remote control type distribution work robot, 2 Vehicle body, 3
Operator cabin, 4 booms, 5 buckets,
6 Isolation transformer, 7, 8 Manipulator, 11 Camera A, 111 Roll axis, 112 Pan axis, 113
Tilt axis, 12 camera B, 121 slide axis, 13
Camera C, 21 right monitor, 22 left monitor, 23 switch, 24 joystick

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ロボットの移動架台に取り付けたカメラ
を用いて2つの異なった位置より対象物を撮像し、各位
置においてモニタに映し出された前記カメラで撮像した
映像の中心に対象物がくるようにカメラの姿勢を位置合
わせし、前記2つの異なった位置における位置合わせ後
のカメラの姿勢、位置に基づいて対象物までの距離を演
算により求めることを特徴とするカメラによる対象物の
距離認識方法。
1. An object is imaged from two different positions by using a camera attached to a mobile pedestal of a robot, and the object is placed at the center of an image imaged by the camera displayed on a monitor at each position. A method for recognizing a distance of an object by a camera, wherein the position of the camera is aligned with the position of the camera, and the distance to the object is calculated based on the position and the position of the camera after the alignment at the two different positions. .
【請求項2】 ロボットの移動架台の異なる位置に少な
くとも2台のカメラを用いて対象物を撮像することを特
徴とする請求項1記載のカメラによる対象物の距離認識
方法。
2. The method for recognizing a distance of an object by the camera according to claim 1, wherein the object is imaged by using at least two cameras at different positions on the mobile gantry of the robot.
【請求項3】 ロボットの移動架台の異なる位置に取り
付けたカメラと、このカメラで撮像された映像を映し出
す少なくとも2台のモニタ装置と、前記カメラの姿勢を
オペレータが操作可能な操作装置と、前記モニタに映し
出された対象物の画像がモニタ中心に合致したときの前
記カメラの姿勢および位置に基づいて前記対象物の3次
元空間での位置を求める位置算出装置とを備えたことを
特徴とするカメラによる対象物の距離認識装置。
3. A camera mounted at different positions on a mobile gantry of the robot, at least two monitor devices for displaying images taken by the camera, an operation device for allowing an operator to operate the attitude of the camera, A position calculating device for determining the position of the object in the three-dimensional space based on the posture and position of the camera when the image of the object displayed on the monitor matches the center of the monitor. A device for recognizing the distance of an object by a camera.
【請求項4】 ロボットの移動架台の異なる位置に少な
くとも2台のカメラを設けたことを特徴とする請求項3
記載のカメラによる対象物の距離認識装置。
4. The at least two cameras are provided at different positions on the mobile gantry of the robot.
A device for recognizing the distance of an object by the described camera.
JP32024892A 1992-11-30 1992-11-30 Method and device for recognizing distance of object with camera Pending JPH06167330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32024892A JPH06167330A (en) 1992-11-30 1992-11-30 Method and device for recognizing distance of object with camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32024892A JPH06167330A (en) 1992-11-30 1992-11-30 Method and device for recognizing distance of object with camera

Publications (1)

Publication Number Publication Date
JPH06167330A true JPH06167330A (en) 1994-06-14

Family

ID=18119383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32024892A Pending JPH06167330A (en) 1992-11-30 1992-11-30 Method and device for recognizing distance of object with camera

Country Status (1)

Country Link
JP (1) JPH06167330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117922835A (en) * 2024-03-22 2024-04-26 成都航空职业技术学院 Loading equipment and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117922835A (en) * 2024-03-22 2024-04-26 成都航空职业技术学院 Loading equipment and control method thereof

Similar Documents

Publication Publication Date Title
JP4167954B2 (en) Robot and robot moving method
JP4844453B2 (en) Robot teaching apparatus and teaching method
US7818091B2 (en) Process and device for determining the position and the orientation of an image reception means
GB2128842A (en) Method of presenting visual information
JP2014079824A (en) Work screen display method and work screen display device
CN214090044U (en) Excavator and excavator remote display system
US11618166B2 (en) Robot operating device, robot, and robot operating method
JP2020142326A (en) Robot system
JPH05318361A (en) Method for manipulating object
JP2778376B2 (en) Camera viewpoint change method
CN115210434A (en) Work support server and work support method
JP3376029B2 (en) Robot remote control device
JPH06167330A (en) Method and device for recognizing distance of object with camera
JP6368503B2 (en) Obstacle monitoring system and program
JP3754340B2 (en) Position detection device
JP2007331061A (en) Manipulator remote operation method in mobile robot system
JP2654899B2 (en) Teaching device for operation type manipulator and automatic operation method using operation type manipulator
JPH05138582A (en) Active camera searching device for manipulating object by using robot
JPH0430981A (en) Control unit for television camera of remote control type robot
JPH08322120A (en) Method for positioning boom for high-spot working and supporting system for positioning
Sato et al. Derivation of an optimum and allowable range of pan and tilt angles in external sideway views for grasping and placing tasks in unmanned construction based on human object recognition
JPH03213278A (en) Remote control support system for robot
JP2694025B2 (en) Overhead transmission line obstacle approach detection device
JP3212191B2 (en) Height work equipment and method
JP2556644Y2 (en) Remote imaging and display device